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Chaos in the Einstein-Yang-Mills Equations
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Yang-Mills color fields evolve chaotically in an anisotropically expanding universe. The chaotic
behavior differs from that found in anisotropic mixmaster universes. The universe nears isotropy at late
times, approaching the mean expansion rate of a radiation-dominated universe. However, small chaotic
oscillations of the shear and color stresses continue indefinitely. An invariant characterization of the
chaos is provided by means of fractal basin boundaries. [S0031-9007(97)05079-5]
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Yang-Mills fields are central to quantum theories of ele
mentary particles. They are of interest to dynamicis
since they evolve chaotically in flat spacetime [1–4]. Bu
how do Yang-Mills fields behave in the early universe
Does the chaos persist, or is it eradicated by the ge
eral relativistic effects of cosmological expansion? Th
earliest studies of the Einstein-Yang-Mills (EYM) system
assumed isotropic cosmological expansion. This impos
special symmetries on the dynamics, and the dynamic
system is integrable: chaos cannot exist [5]. Recent
a Yang-Mills theory was formulated in an axisymmetric
spatially homogeneous universe [6]. The large number
degrees of freedom made an analysis of the full dynami
difficult, and the coordinate dependence of the standa
chaotic indicators meant that the relativistic chaos cou
not be invariantly characterized.

In this Letter, we analyze general relativistic Yang
Mills chaos using invariant topological methods. We
make the problem more tractable by an economical de
nition of variables, which reduces the dimension of th
phase space substantially (from8 to 5). In the physical
picture that emerges, the asymptotic evolution of the sp
tial volume of the Universe imitates a radiation-dominate
universe, while the shear diminishes chaotically.

Previous studies of chaos in general relativity have fo
cused on the nonaxisymmetric Bianchi-type VIII and IX
(mixmaster) universes, where the presence of anisotro
3-curvature creates an infinite sequence of chaotic oscil
tions on approach to an initial Weyl curvature singularit
at t ­ 0 [7–9]. This behavior is intrinsically general rel-
ativistic. By contrast, the chaotic EYM cosmology tha
we study is different: chaos exists even when the metric
axisymmetric and the curvature is isotropic.

We evolve the Yang-Mills fields in the simplest
anisotropic metrics of Bianchi type I. The color degree
of freedom of the Yang-Mills gauge fields oscillate
chaotically, while the expansion attenuates their overa
energy. The EYM action is

S ­
Z

d4x
p

2g

∑
2

1
16pG

R 2
1
4

FmnFmn

∏
, (1)

where Fmn is the gauge-invariant field strength. The
spacetime is described by the axisymmetric Bianchi
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metric, with scale factorsbstd andcstd,

ds2 ­ 2dt2 1 b2std sdx2 1 dy2d 1 c2stddz2. (2)

After fixing the internal gauge of the SUs2d Yang-Mills
field, the matter can be parametrized by two variable
sa, gd [6], which can be thought of as color degree
of freedom for the massless gauge fields. There a
in principle three colors; however, two are degenera
as a consequence of the symmetries of the Bianch
spacetime. The cosmological evolution is an orbit in th
sb, c, a, gd configuration space.

We define the mean expansion scale factor bya ;
sb2cd1y3, the shear anisotropy byx ; sbycd1y3, with
volume expansionHa ; Ùaya, and shearHx ; Ùxyx.
The scaled Yang-Mills field strengths will be defined
by sC, Gd ; faysaxd, gx2yag, with conjugate momenta
sPC , PGd ­ f Ùaysaxd, Ùgx2yag. The Einstein equations
reduce to

ÙHa 1 2H2
a 1 H2

x ­ 0 , (3)

ÙHx 2 H2
x 1 H2

a 1 3HaHx ­
1
2 C4 1

1
2 P

2
G . (4)

The Hamiltonian constraint equation is
1
2 P

2
G 1 P

2
C 1

1
2 C4 1 C2G2 ­ 3sH2

a 2 H2
xd . (5)

The conservation of gravitational-plus-matter energy a
pears in the (C, G) subsystem as a loss of energy, give
by Estd ­ 3sH2

a 2 H2
xd. The matter conservation equa-

tions are
ÙPC 1 2sHa 1 HxdPC 1 CsG2 1 C2d ­ 0 ,

ÙPG 1 2sHa 1 Hx dPG 1 2C2G ­ 0 .
(6)

The matter sector is thus a driven, dissipative syste
The Yang-Mills coordinates decay adiabatically due to th
expansion, but they are also driven by oscillations inHx .

The 4 coordinates,sHa, Hx , C, Gd, plus their conjugate
momenta make8 degrees of freedom. This system per
mits at most4 positive Lyapunov exponents. However
Eqs. (3) and (4) are constraint equations for the conj
gate momentaÙHa, ÙHx . Consequently, the system reduce
to 6 degrees of freedom. The Hamiltonian constraint re
duces this by one more, leaving5 degrees of freedom.
© 1998 The American Physical Society
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If each of the three constraint equations are unique, th
there is only one positive Lyapunov exponent, as in fla
spacetimesHa ­ Hx ­ 0d. This is to be expected since
the vacuum Bianchi I universe is integrable. Any chao
in the metric variables is therefore a consequence of cha
in the Yang-Mills field.

The EYM system is an example of chaotic scattering
The color amplitudes of the Yang-Mills system scatte
around the potential of Fig. 1. The metric variables ar
chaotically scattered through their relativistic coupling to
the colors. The chaos is more complicated than th
found in mixmaster universes because of the rapid
varying curvature of the hyperbolic potential walls. In
flat spacetime the energy remains constant, and t
contours define different surfaces of constant energy.
the Bianchi I universe,Estd drops asymptotically [see
Eq. (5)]. The four hyperbolic potential walls shrink as the
energy available to the Yang-Mills field decays. We se
from Fig. 2, the trajectories occupy smaller and smalle
volumes of the matter phase space.

Chaos is often quantified by computing Lyapunov ex
ponents. However, the values of Lyapunov exponents a
coordinate dependent in general relativity [10], because
the coordinate covariance of Einstein’s equations (anoth
manifestation of the so-called “problem of time” in cos-
mology). The authors of Ref. [6] cite this fact, togethe
with the large number of degrees of freedom (which lea
to Arnold diffusion) and the noncompact phase spac
as major obstacles to a generalization of the study
chaotic properties of Yang-Mills theory to curved space
times. These barriers can be overcome by the metho
of chaotic scattering [11–14], which allow us to identify
fractal sets which fully characterize the chaos. Fracta
cannot be hidden by a reshuffling of coordinates: their e

FIG. 1. Isocontours of the color potential [Eq. (6)]. As the
energy,Estd, decreases, the walls of the potential move inwar
and the color oscillations are confined accordingly. A typica
trajectory is shown.
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istence and dimension are coordinate-independent to
logical features [11–14]. The fractal set that we se
is the set of all periodic orbits. This periodic set com
pletely describes the chaotic dynamics. The fractal se
also called a “strange repellor,” or “strange saddle.”
the global expansion of the Universe could be project
out of the dynamical evolution, the repellor would con
sist of all periodic orbits trapped in the potential. Whe
the global expansion is included, the periodic orbits a
actually self-similar, reminiscent of the dynamics of th
Bianchi IX cosmology [7–9,13,15,16].

It is easiest to isolate the strange repellor using t
method of fractal basin boundaries. A slice of initia
conditions is taken through phase space. All possib
asymptotic states are determined and assigned a c
(black or white here). If large blocks of initial data
space suffer the same fate, then the outcome basin
look smooth and monochromatic; by contrast, high
mixed, fractalized basins indicate a sensitivity to initia
conditions, as well as mixing and folding of trajectorie
Hence, fractalized basins signal chaos in a covariant w
All observers agree upon the occurrence of the eve
used to construct the fractal, and all will agree on th
dimension of the basin boundary.

A typical trajectory will travel down one of theG
channels in the potential of Fig. 1 before reboundin
back into the scattering region of the potential. Th
is again reminiscent of the mixmaster system, whe
the repellor was also inefficient [13]. In mixmaste
the repelling set can be isolated by artificially openin
the exit pockets, so that orbits thrown far from th
scattering region were allowed to escape. Similarly, he
we cut holes in the pockets and assign the color wh
to the initial condition if the orbit falls down the uppe
pocket (G . 0), and black if it falls down the lower
pocket (G , 0). In flat spacetime, this is straightforward
In the Bianchi I spacetime, the potential walls mov
inward as the energy is not constant. However, the sa
procedure can be followed, so that the angular size of
hole in the pocket is the same for all energy contou

FIG. 2. A projection of the Bianchi I phase space onto th
sC, PCd plane (left) and onto thesG, PG) plane (right). The
initial values for this trajectory areC ­ 0.1, G ­ 0, Ha ­
0.11, Hx ­ 0.08, and ÙC ­ 0, and ÙG is fixed by the Hamilton-
ian constraint, Eq. (5).
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Basin boundaries, sliced throughsC, Gd coordinates, are
shown in Fig. 3. The pockets are of size tanswy2d ­
jCyGjp ­ 0.5, and jGpj is defined as the value ofG
which just barely reaches the pocket:jGpj is defined as
the solution to the Hamiltonian constraint equation wit
jCpj ­ jGpj tanswy2d when the energy is pure potential
In other words, we stop the numerical simulation whe
jGj . jGpj. This definition maintains the size of the
pocket for each energy contour. The fractal basins lo
very similar to those we find in a flat spacetime. The bo
counting dimension was estimated to be maximal, name
D0 ­ 2 (the same dimension as we found for the basin
in flat spacetime). If the pockets are made infinitesimal
thin, the fractal boundary fills all of phase space.

The interweaving of outcomes, demonstrated by th
basin boundary structure, corresponds to a final-state s
sitivity that is directly related to the fractal dimension
An e uncertainty in initial values leads to a final-stat
uncertainty ofeN2D0 , whereN is the dimension of the
phase space [17]. In theN ­ 2 slice of Fig. 3, we found
D0 ­ 2. Axisymmetric, Bianchi type I, EYM cosmolo-
gies are therefore very sensitive to initial conditions, an
the shear evolution is highly chaotic.

The chaotic scattering has a subtle effect on the larg
scale structure of the spacetime. In vacuum, the sc
factor grows asa ~ t1y3, and the shear is of comparable
importance,x ~ t1y3. The color oscillations scatter the
metric variables chaotically. As the Universe expand
the volume of thesC, Gd phase space redshifts asr ,
1ya4. The scale factor eventually evolves towards th
behavior of a radiation-dominated universe,a , t1y2,
and is unaffected by the chaotic color oscillations. Th
relaxation time scale for this behavior is related to th
Lyapunov exponent, and hence to the fractal dimensi

FIG. 3. The strange repellor is revealed in these fractal ba
boundaries. The angular size of the pockets in theG channel
in this simulation is tanswy2d ­ 0.5. Trajectories are allowed
to escape if they reach the pocket.
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[18]. A rough estimate indicates that trajectories attra
onto Ha ­ 1ys2td after a few e-folds of the scale factor.
The shear is more vulnerable to stochastic behavior, a
the color oscillations sustain oscillations ofHx about
zero. This general behavior can be seen by treating ea
universe as a trajectory in a game of chaotic billiard
In any chaotic scattering problem, the scattering ang
offers a great deal of information on the asymptoti
state. For a collection of universes, the scattering ang
is defined in minisuperspace. A trajectory leaves th
sln a, ln xd minisuperspace plane at a scattered angle
u ­ arctansHxyHad. Figure 4 compares the scattering
angle in the case of regular motion to the angle i
the chaotic case. WhileHa escapes the effects of the
chaotic scattering,Hx remains sensitive and continues to
oscillate.

The dependence of the final scattered angle on t
impact parameter is a direct probe of the strange repell
In a simple chaotic system, the scattering angle ca
become fractal. No matter how small a difference i
the incident velocity, the difference in scattered angle
sizable. The scattering angle and the basin boundar
are different ways of viewing the same phenomeno
Regardless, the scattering angle provides an importa
perspective. When the motion is regular, the ang
approaches6py4 and soHx , 6Ha. The evolution of
the shear is as important as the global expansion of t
spacetime volume, and initially the spacetime is highl
anisotropic. At late times, under the influence of chao
the scattering angle clusters about zero, andjHx j ø Ha,
with the shear frozen at a nearly constant value. Sin
the field equations were shown to be invariant under
rescaling of the shear, we can choose that scale so t
ln x ! 0 at freeze-out. Physically, this is equivalent to
the statement thata , b , c. The anisotropy decays and
the final state looks isotropic.

The chaotic behavior influences the solution onl
through the second-order modes and the expansion of
volume behaves as if the Universe is radiation dominate

FIG. 4. The scattering angle defined asu ­ arcsinsHx yHad
as a function of the initialHa. The left plot is not chaotic with
C ­ ÙC ­ 0. In the right panel the initial conditions for the
remaining degrees of freedom areHx0 ­ 0.0999, C ­ 0.1 ­
2G ­ 2 ÙC. The horizontal axis in the right panel is in units
of DHa 3 103 ­ sHa 2 20d 3 103.
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This reveals a further connection between the chao
behavior in flat spacetime and in expanding universe
If the energy-momentum tensor is trace free, as it is f
Yang-Mills fields, then any solution of the equations o
motion in flat spacetime can be conformally rescaled
obtain a solution of the equations of motion in an isotrop
cally expanding universe. This solution is approxima
since it neglects the back reaction of the motions on t
spacetime metric. Though we did not actually emplo
this approximate method, such a scaled solution would
an increasingly good description of the late-time behavio
since isotropy is approached in that limit.

The global scale factor is fairly impervious to the
buffeting of the other degrees of freedom. Small she
and color oscillations will continue forever, getting eve
smaller in amplitude, and only asymptotically diluting t
zero. We expect an infinite number of oscillations t
occur to the future of any finite time. However, on th
coarsest scales, the Universe evolves as though filled w
radiation. Most interestingly, the original anisotropy i
eroded and the Universe appears isotropic.
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