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Chaos in the Einstein-Yang-Mills Equations
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Yang-Mills color fields evolve chaotically in an anisotropically expanding universe. The chaotic
behavior differs from that found in anisotropic mixmaster universes. The universe nears isotropy at late
times, approaching the mean expansion rate of a radiation-dominated universe. However, small chaotic
oscillations of the shear and color stresses continue indefinitely. An invariant characterization of the
chaos is provided by means of fractal basin boundaries. [S0031-9007(97)05079-5]
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Yang-Mills fields are central to quantum theories of ele-metric, with scale factoré(r) andc(z),
mentary particles. They are of interest to dynamicists 2 _ 0 2 2 2 2 2
since they evolve chaotically in flat spacetime [1-4]. But ds” = =dt” + b7() (dx” + dy") + *()dz”. (2)
how do Yang-Mills fields behave in the early universe?After fixing the internal gauge of the §2) Yang-Mills
Does the chaos persist, or is it eradicated by the gerfield, the matter can be parametrized by two variables
eral relativistic effects of cosmological expansion? The(e,y) [6], which can be thought of as color degrees
earliest studies of the Einstein-Yang-Mills (EYM) systemof freedom for the massless gauge fields. There are
assumed isotropic cosmological expansion. This imposeg principle three colors; however, two are degenerate
special symmetries on the dynamics, and the dynamicas a consequence of the symmetries of the Bianchi |
system is integrable: chaos cannot exist [5]. Recentlyspacetime. The cosmological evolution is an orbit in the
a Yang-Mills theory was formulated in an axisymmetric, (b, ¢, «, ) configuration space.
spatially homogeneous universe [6]. The large number of We define the mean expansion scale factor doy
degrees of freedom made an analysis of the full dynamicéb?c)!/?, the shear anisotropy by = (b/c)'/3, with
difficult, and the coordinate dependence of the standardolume expansionH, = a/a, and shearH, = x/x.
chaotic indicators meant that the relativistic chaos could’he scaled Yang-Mills field strengths will be defined
not be invariantly characterized. by (V,T) = [a/(ay), yx?/a], with conjugate momenta

In this Letter, we analyze general relativistic Yang- (Ily, IIr) = [&/(ax), yx%/al. The Einstein equations
Mills chaos using invariant topological methods. Wereduce to

make the problem more tractable by an economical defi- H +2H + H2 =0 3)
nition of variables, which reduces the dimension of the ¢ “ X ’
phase space substantially (fradnto 5). In the physical HX _ Hf( + H? + 3H,H, = %\1,4 + %H% (4)

picture that emerges, the asymptotic evolution of the spa- o _ o

tial volume of the Universe imitates a radiation-dominated e Hamiltonian constraint equation is

universe, while the shear diminishes chaotically. %H% + 113 + %qﬂ + W22 =3(H? - H2). (5)
Previous studies of chaos in general relativity have fo- ) o X

cused on the nonaxisymmetric Bianchi-type VIl and IX The conservation of gravitational-plus-matter energy ap-

(mixmaster) universes, where the presence of anisotropR€ars in the "2’ I) suzbsystem as a loss of energy, given

3-curvature creates an infinite sequence of chaotic oscilld2Y £(t) = 3(H; — Hy). The matter conservation equa-

tions on approach to an initial Weyl curvature singularitytlons are

atr = 0[7-9]. This behavior is intrinsically general rel- fpr + 2(H, + H )y + V(2 + ¥ =0,

ativistic. By contrast, the chaotic EYM cosmology that . )

we study is different: chaos exists even when the metric is Ir + 2(H, + H)Ilp + 2977 = 0.

axisymmetric and the curvature is isotropic. The matter sector is thus a driven, dissipative system.
We evolve the Yang-Mills fields in the simplest The Yang-Mills coordinates decay adiabatically due to the

anisotropic metrics of Bianchi type I. The color degreesexpansion, but they are also driven by oscillationgfin

of freedom of the Yang-Mills gauge fields oscillate The4 coordinates(H,, H,, ¥, I'), plus their conjugate

chaotically, while the expansion attenuates their overalmomenta make degrees of freedom. This system per-

energy. The EYM action is mits at most4 positive Lyapunov exponents. However,

_ s, —| 1 1 MV} Egs. (3) and (4) are constraint equations for the conju-

S ] d x\/_g[ l16wG R 4 Fu B2 15 () gate momentd#,, H,. Consequently, the system reduces

where F,, is the gauge-invariant field strength. Theto 6 degrees of freedom. The Hamiltonian constraint re-

spacetime is described by the axisymmetric Bianchi Iduces this by one more, leavirfgdegrees of freedom.

(6)
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If each of the three constraint equations are unique, theistence and dimension are coordinate-independent topo-
there is only one positive Lyapunov exponent, as in flalogical features [11-14]. The fractal set that we seek
spacetimegH, = H, = 0). This is to be expected since is the set of all periodic orbits. This periodic set com-
the vacuum Bianchi | universe is integrable. Any chaosletely describes the chaotic dynamics. The fractal set is
in the metric variables is therefore a consequence of chaadso called a “strange repellor,” or “strange saddle.” If
in the Yang-Mills field. the global expansion of the Universe could be projected
The EYM system is an example of chaotic scatteringout of the dynamical evolution, the repellor would con-
The color amplitudes of the Yang-Mills system scattersist of all periodic orbits trapped in the potential. When
around the potential of Fig. 1. The metric variables areghe global expansion is included, the periodic orbits are
chaotically scattered through their relativistic coupling toactually self-similar, reminiscent of the dynamics of the
the colors. The chaos is more complicated than thaBianchi IX cosmology [7-9,13,15,16].
found in mixmaster universes because of the rapidly It is easiest to isolate the strange repellor using the
varying curvature of the hyperbolic potential walls. In method of fractal basin boundaries. A slice of initial
flat spacetime the energy remains constant, and theonditions is taken through phase space. All possible
contours define different surfaces of constant energy. lasymptotic states are determined and assigned a color
the Bianchi | universeE(r) drops asymptotically [see (black or white here). If large blocks of initial data
Eq. (5)]. The four hyperbolic potential walls shrink as thespace suffer the same fate, then the outcome basin will
energy available to the Yang-Mills field decays. We sedook smooth and monochromatic; by contrast, highly
from Fig. 2, the trajectories occupy smaller and smallemixed, fractalized basins indicate a sensitivity to initial
volumes of the matter phase space. conditions, as well as mixing and folding of trajectories.
Chaos is often quantified by computing Lyapunov ex-Hence, fractalized basins signal chaos in a covariant way.
ponents. However, the values of Lyapunov exponents arAll observers agree upon the occurrence of the events
coordinate dependent in general relativity [10], because afised to construct the fractal, and all will agree on the
the coordinate covariance of Einstein’s equations (anothatimension of the basin boundary.
manifestation of the so-called “problem of time” in cos- A typical trajectory will travel down one of thd’
mology). The authors of Ref. [6] cite this fact, togetherchannels in the potential of Fig. 1 before rebounding
with the large number of degrees of freedom (which leacack into the scattering region of the potential. This
to Arnold diffusion) and the noncompact phase spaceis again reminiscent of the mixmaster system, where
as major obstacles to a generalization of the study ofhe repellor was also inefficient [13]. In mixmaster,
chaotic properties of Yang-Mills theory to curved space-the repelling set can be isolated by artificially opening
times. These barriers can be overcome by the methodhe exit pockets, so that orbits thrown far from the
of chaotic scattering [11-14], which allow us to identify scattering region were allowed to escape. Similarly, here,
fractal sets which fully characterize the chaos. Fractalsve cut holes in the pockets and assign the color white
cannot be hidden by a reshuffling of coordinates: their exto the initial condition if the orbit falls down the upper
pocket " > 0), and black if it falls down the lower
pocket " < 0). In flat spacetime, this is straightforward.

N Y A L1 W W ] In the Bianchi | spacetime, the potential walls move
04 < — inward as the energy is not constant. However, the same
i ] procedure can be followed, so that the angular size of the
y q hole in the pocket is the same for all energy contours.
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FIG. 2. A projection of the Bianchi | phase space onto the
FIG. 1. Isocontours of the color potential [Eq. (6)]. As the (¥,Ily) plane (left) and onto thel’, II1) plane (right). The
energy,E(r), decreases, the walls of the potential move inwardinitial values for this trajectory are¥ =0.1,I' = 0,H, =
and the color oscillations are confined accordingly. A typical0.11, H, = 0.08, andW¥ = 0, and[ is fixed by the Hamilton-
trajectory is shown. ian constraint, Eq. (5).
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Basin boundaries, sliced throud@h’, I') coordinates, are [18]. A rough estimate indicates that trajectories attract
shown in Fig. 3. The pockets are of size (@i2) = onto H, = 1/(2r) after a few e-folds of the scale factor.
|¥/T|. = 0.5, and || is defined as the value oF The shear is more vulnerable to stochastic behavior, and
which just barely reaches the pockék.| is defined as the color oscillations sustain oscillations &f, about
the solution to the Hamiltonian constraint equation withzero. This general behavior can be seen by treating each
|¥.| = |T.|tan(¢/2) when the energy is pure potential. universe as a trajectory in a game of chaotic billiards.
In other words, we stop the numerical simulation whenln any chaotic scattering problem, the scattering angle
IT'| > |T'x]. This definition maintains the size of the offers a great deal of information on the asymptotic
pocket for each energy contour. The fractal basins loolstate. For a collection of universes, the scattering angle
very similar to those we find in a flat spacetime. The boxds defined in minisuperspace. A trajectory leaves the
counting dimension was estimated to be maximal, namely(n a,In y) minisuperspace plane at a scattered angle of
D, = 2 (the same dimension as we found for the basin® = arctartH,/H,). Figure 4 compares the scattering
in flat spacetime). If the pockets are made infinitesimallyangle in the case of regular motion to the angle in
thin, the fractal boundary fills all of phase space. the chaotic case. Whilé/, escapes the effects of the
The interweaving of outcomes, demonstrated by thehaotic scatteringi/, remains sensitive and continues to
basin boundary structure, corresponds to a final-state senscillate.
sitivity that is directly related to the fractal dimension. The dependence of the final scattered angle on the
An e uncertainty in initial values leads to a final-stateimpact parameter is a direct probe of the strange repellor.
uncertainty ofe¥ P, whereN is the dimension of the In a simple chaotic system, the scattering angle can
phase space [17]. In th€ = 2 slice of Fig. 3, we found become fractal. No matter how small a difference in
Dy = 2. Axisymmetric, Bianchi type I, EYM cosmolo- the incident velocity, the difference in scattered angle is
gies are therefore very sensitive to initial conditions, andsizable. The scattering angle and the basin boundaries
the shear evolution is highly chaotic. are different ways of viewing the same phenomenon.
The chaotic scattering has a subtle effect on the largeRegardless, the scattering angle provides an important
scale structure of the spacetime. In vacuum, the scalperspective. When the motion is regular, the angle
factor grows as: « ¢'/3, and the shear is of comparable approaches-=/4 and SoH, ~ *H,. The evolution of
importance,y « t'/3. The color oscillations scatter the the shear is as important as the global expansion of the
metric variables chaotically. As the Universe expandsspacetime volume, and initially the spacetime is highly
the volume of the(W,I') phase space redshifts as~  anisotropic. At late times, under the influence of chaos,
1/a*. The scale factor eventually evolves towards thethe scattering angle clusters about zero, fidl < H,,
behavior of a radiation-dominated universe,~ /2, with the shear frozen at a nearly constant value. Since
and is unaffected by the chaotic color oscillations. Thethe field equations were shown to be invariant under a
relaxation time scale for this behavior is related to therescaling of the shear, we can choose that scale so that
Lyapunov exponent, and hence to the fractal dimensio y — 0 at freeze-out. Physically, this is equivalent to
the statement that ~ b ~ ¢. The anisotropy decays and
the final state looks isotropic.

0.6 The chaotic behavior influences the solution only
through the second-order modes and the expansion of the
0.4 volume behaves as if the Universe is radiation dominated.
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: : FIG. 4. The scattering angle defined &s= arcsinH,/H,)
-1.8 -16 -14 -1.2 -1 -0.8 as a function of the initial7,. The left plot is not ChaO)SEiC with
FIG. 3. The strange repellor is revealed in these fractal basit¥’ = ¥ = 0. In the right panel the initial conditions for the
boundaries. The angular size of the pockets inhehannel ~ remaining degrees of freedom akg, = 0.0999, ¥ = 0.1 =
in this simulation is taty/2) = 0.5. Trajectories are allowed —I' = —W. The horizontal axis in the right panel is in units
to escape if they reach the pocket. of AH, X 10 = (H, — 20) X 103,
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