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Theorem for Nonrotating Singularity-Free Universes
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It is shown that all scalars built from the stress-energy tensor must have vanishing space-time average
values in any nonrotating singularity-free universe in which the strong energy condition is satisfied.
Application to the real universe, where observations seem to rule out such an “empty” universe,
suggests that the hope of a reasonable realistic singularity-free cosmological model has to be abandoned.
[S0031-9007(97)05165-X]
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The singularity theorems [1] of Hawking and Penrose In any singularity free nonrotating universe, open in
led to a widely held belief that a time or null geodetic in- all directions, the space-time average of all stress energy
completeness is an essential feature of all relativistic cosavariants including the energy density vanishes.
mological solutions. That the proof of the theorem rested In the above, nonrotating means that the world lines of
on a number of conditions was often overlooked. Therdghe matter in the universe form a normal (i.e., hypersur-
were four notable conditions: (1) The causality condi-face orthogonal) congruence. The singularity free nature
tion requiring the nonexistence of closed timelike lines,requires, in particular, the scalars from the Riemann ten-
(2) the strong energy conditigif;, — %Tgik]vivk = (0, sorto have bounded values, and openness in all directions
(3) a generality condition on the Riemann-Christoffel ten-means that the space time has topol&jyx R.
sor, and (4) the existence of a trapped surface. About the For such a universe taking th# axes along the world
last condition, Misner, Thorne, and Wheeler [2] remark,lines of matter, the metric may be written in the form
“All the conditions except the trapped surface seem emi- s 0 « B
nently reasonable for any physically realistic space time.” ds” = goodx" + gapdx“dx”, (2)

It is inter.esting that th_e recently d!scovered _Singmaritywhere the Greek indices run from 1 to 3. The domain of
free solutions of Senoyﬂlat al. [3,4] violate precisely the da" the coordinates is fromo to 4.

t_rapped surface Cond't'F’U' W.hereas the othe_r three condi- Our assumption about the openness in all directions
tions hold good. True it is difficult to reconcile the Sen-

. - . L means that the ratio of the volume of any three dimen-
ovilla solutions with the characteristics of the presentlysi nal subspace to that of the entire space time vanishes

observed universe; nevertheless, hopes have been rais
that there may exist singularity free solutions which can’

serve as faithful models of the observed universe. [ ] [VPgldx! dx*adx!
A look at the simplest Senovilla solution [3] reveals [ [ [ [lgld*x - ©)

some interesting features. The space time is open in all

the four dimensions but the physical and kinematic scalarghere the indices,k,/ are unequal and may refer to
all vanish so rapidly at spatial and temporal infinity thatspace or time coordinatEg| is the appropriate coefficient
their space time averages taken over the entire space tint@ give the invariant volume for the three dimensional
vanish. The average of a quantjgyover the entire space element. For the unit vectow’ along the timelike
time is defined as follows: coordinatex’, we have the Raychaudhuri equation

o) = [ B B B B X\/|g|d4X} 00" + vl + 102 + 207 + k[Ty — L guTv'v* =0.
X! = Txo (tn [t [t T . '
—iﬁ —i: .[—iz .[—2 |g| d4x lim x,,x1,x2,x3—% (4)
_ _ _ o (1)_ Taking the space time average of each term in the
Of course, the. average is defined only if the limit exists.above equation, we get [here the space time averages are
For the Senovilla solution, over infinite space time in the sense defined in (1)],
3p)=(p) =0,

—(@0h) = () = 5(0%) + Ao

(6%) =0, .
+ k(T — 5 gaTTv'v*).  (5)

0y =0; (¥4)=0.
All the above scalars appear linearly in the RaychaudhuiWith the strong energy conditioff;, — %gikT]vivk =

equation, and we present below a proof of the following0 all the terms of the right-hand side are positive definite.
general theorem: Hence to get a positive value of the average density, we
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must have the left-hand side positive. The first term oring of § asx? — oo may not make the integral conver-

the left gives gent. Nevertheless, the vanishing@fvould reduce the
. fi).ii\/—_gd4x order of divergence of the numerator integral compared
(i) = W = to the integral in the denominator and hence one again

has(#) = 0. Consequently all the averages occurring in
The integral in the numerator can be converted to argq. (5) vanish.

integral of v’ over the three surface orthogonal 46 at The generality of our treatment needs to be emphasized.

infinity. As v’ is orthogonal tov’, this three surface The solutions of Senovilla type were based on the existence

contains two spacelike and one timelike dimension. Irof doubtful symmetries and an appareraty hocsplitting

any case it is given by |0/] |d2| where|v'| is the norm  of metric tensor components into factors involving sepa-

of the vectorv’ and |dX| is the proper volume of the rately the time and space coordinates. Our result is based

orthogonal three dimensional element. solely on the existence of a global time coordinate which
~The velocity vector of matter’ appears in the expres- s hypersurface orthogonal—one is tempted to identify it
sion for 7. Thus the equation with the absence of rotation in the universe. The implicit
Ri = —k[T] — %TS,’;] idea in our discussion is that the gravitational collapse is

‘ arrested by the action of acceleration and that again means
makes v' expressible as an algebraic expression ofhe existence of a nongravitational force. In such situ-
Ricci tensor components. In particular, if the matterations, our theorem shows that one has to sacrifice the idea
is perfect fluid, v* is the unit timelike eigenvector of of g finite average density. As one feels that observations
R;x. Hence, qUIte generally the kinematic variables |ik9ru|e out such an “empty” universe, the hope of a reason-
the acceleratiorv’, expansiond will be determined by aple realistic singularity free cosmological solution has to
the Ricci tensor and its covariant derivatives. So arpe given up.
unbounded value of any kinematic scalar would mean The question that naturally arises is the relation between
scalars of the Riemann tensor blowing up and thus signahe present theorem and the trapped surface condition. We
a singularity. We can hence také'v;|. 6, 6, etc., to be have not addressed ourselves to this in the present discus-

bounded everywhere. sion. Our condition seems physically more transparent.
Consequently, Thanks are due to the participants of the Relativity
[1oi] a3, and Cosmology Seminar in Jadavpur University for their
() = TR =0, (6)  helpful comments.

where we have used (3).
In evaluating the value g) defined by
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(6) will vanish. If, however, /=g blows up, the vanish- (1992).

655



