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We point out an equivalence between the discrete velocity method of solving the Boltzmann equation,
of which the lattice Boltzmann equation method is a special example, and the approximations to the
Boltzmann equation by a Hermite polynomial expansion. Discretizing the Boltzmann equation with
a Bhatnagar-Gross-Krook collision term at the velocities that correspond to the nodes of a Hermite
guadrature is shown to be equivalent to truncating the Hermite expansion of the distribution function to
the corresponding order. The truncated part of the distribution has no contribution to the moments of
low orders and is negligible at small Mach numbers. [S0031-9007(97)04950-8]

PACS numbers: 47.11.+j, 02.70.Dh, 05.20.Dd

The Boltzmann equation is a well accepted mathematitribution function so that the macroscopic fluid variables
cal model of a fluid at the microscopic level. It describesare completely determined by the values of the distribu-
the evolution of the single particle distribution function tion function at a set of discrete velocities. By noticing
f(x, &,1) in the phase spada, £), wherex and£ are the that in the Chapman-Enskog calculation, the functional
position and velocity vectors, respectively. This descripform of the equilibrium distribution function in veloc-
tion of a fluid is more fundamental than the Navier-Stokesty space is only relevant in the calculation of the low-
(NS) equations. It has a broader range of application andrder moments, and for the Taylor expanded Maxwellian,
provides more detailed microscopic information which isthose moments can be calculated exactly using a Gaussian
critical for the modeling of the underlying physics behind quadrature, it is concluded that the NS equations can be
complex fluid behavior. However, direct solution of the derived from the Boltzmann equation evaluated on the
full Boltzmann equation is a formidable task due to thenodes of the quadrature [8]. On substituting the weights
high dimensions of the distribution and the complexity inof the corresponding quadrature into the expansion of the
the collision integral. Among the various techniques de-Maxwellian, the coefficients of the LBE equilibrium dis-
veloped [1], the discrete velocity method was introducedribution function are recovered. The Boltzmann equation
[2] based on the intuitive assumption that the gas particlesvaluated at the discrete velocities can then be further dis-
can be restricted to have only a small number of velocicretized inx and ¢ in various ways for numerical inte-
ties. The lattice Boltzmann equation (LBE) method for-gration [8]. The LBE models are shown to correspond to
mally falls into this category. solving the discrete Boltzmann equations with a particular

The development of the LBE method for simulation finite difference scheme [10].
of fluid dynamics was independent of the continuum The recovery of the NS equations from the Boltzmann
Boltzmann equation. The discrete LBE was first writtenequation by using a small number of collocation points
to describe the dynamics of the distribution function inin velocity space is not accidental. Almost a half
the lattice gas automaton (LGA) [3,4], in which the century ago, Grad [11] introduced a sequence of ap-
fluid physics is simulated at the microscopic level byproximations to the Boltzmann equation by expanding
“Boolean” particles moving with discrete velocities on athe distribution function in terms of Hermite polyno-
regular lattice, mimicking the motion of the constituentmials in velocity space. The Hermite coefficients are
particles of a fluid. A Bhatnagar-Gross-Krook (BGK) directly related to the macroscopic fluid variables such
collision model [5] was later adopted in the LBE in placeas density, velocity, internal energy, stress, and so on.
of the complicated collision term [6,7]. In this lattice By keeping Hermite polynomials of up to third order,
Boltzmann BGK model, the equilibrium distribution is Grad obtained a system of equations for thirteen moments
chosena posteriori by matching the coefficients in a of the distribution function. This system of equations,
small velocity (Mach number) expansion so that theknown as the 13 moment approximation, was argued
correct hydrodynamic equations can be derived using thio be a better approximation than the Chapman-Enskog
Chapman-Enskog method. calculation [12,13]. By noticing that the Hermite co-

Recently it has been argued [8,9] that the LBE methodckfficients for a given function can be estimated using a
can be derived from the continuum Boltzmann equatiorHermite quadrature formula, and that this estimation is
with a BGK collision model. In the new derivations, exact when the function satisfies certain conditions, an
the Maxwellian distribution is Taylor expanded to secondimportant correspondence between the LBE method and
order in the fluid velocity scaled with the sound speedthe approximation by Hermite polynomial expansion can
Abe [9] employed a special functional form for the dis- be immediately identified. In this Letter, we show that by
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discretizing the Boltzmann-BGK equation at a set of ve-was also used in the solution of the Vlasov equation
locities that correspond to the nodes of a Gauss-Hermitfl5]. Clearly, the Maxwellian in Eq. (3) has such an
quadrature in velocity space, we effectively project andexpansion if the choice dfy andm, ensures thaf < 2.
solve the Boltzmann equation in a subspace spanned n the right-hand side of Eq. (6), bo#i” and ™
the leading Hermite polynomials. The truncated part ofare symmetric tensors of order The subscript is an
the distribution has no contribution to the low-order mo-abbreviation for the multiple indice§;,...,i,}, and the
ments that appear explicitly in the conservation equationgroducts denote contraction on all theindices. The
We start from the following Boltzmann-BGK equation: Hermite polynomials are a set of complete orthonormal

of 1 0 basis of the Hilbert space with the inner produgtg) =
o TE V(- o, (1) [wfgdé. They satisfy the orthonormal relation
wherer is a relaxation timef© is the Maxwellian ) A
f [ wg'[i( )g"[]( )dX = 6mn5ij’ (7)
f(O) _ p< >D/2e*m/2k,gT|§*u|2 (2)
27TkBT ’

where D is the dimension of the spacey is the Whered; = 1if i ={i,,....i,} is a permutation of =

Boltzmann constant, ana is the mass of the molecule. 1J1>---»Jx}, @nd 8;; = 0 otherwise. For any function

The mass density, macroscopic fluid velocity, and the /> the nth Hermite coefficient can be obtained by the

temperaturd’, are all functions ok andz. We introduce  following equation:

the dimensionless quantity = Tmg/Tom, where Ty is

a characteristic temperature amgy, is a unit of the a = ffﬂ(”)(g)df. (8)

molecular mass. After rescaling the velocitiésand u

in units of the constant, = \/kzTy/mo, which is the The function f is completely determined by all of its

sound speed in a gas consisting of molecules of mass Hermite coefficients.

and at temperaturg,, the Maxwellian takes the following ~ The moments given in Egs. (4) are invariants of both

simple form: the original Boltzmann collision term and the BGK
collision model. The hydrodynamic equations are simply

1O = m e (1/20)1§~ul* (3)  the corresponding conservation equations

For a single component system we can chese= my 9

and haved = T/T,. If the time and length scales Ejfgv d¢ +V - ]fst dé = 0. 9)
and L are chosen so that/r = cg, the dimensionless

Boltzmann-BGK equation will have the same form asThe lowest order moments have the most significant
Eqg. (1) with 7 being the dimensionless relaxation time. contribution to the macroscopic hydrodynamics. Since
The mass density, the dimensionless fluid velocity the Hermite expansion has the feature that a velocity
u, and the dimensionless internal energy dengity-  moment of a given order is solely determined by the
D@/2, are expressed as thelocity momentsf the form  Hermite coefficients up to that order and are not changed

[ fe(é)dé, with @ = 1, £ and£?, respectively: by the truncation of the higher-order terms, a sequence
of approximations to Eq. (1) can be made by seeking the
p = ]fdf’ pu = ]fdf’ approximate solution of the following form:
; SR o)
2pe + pu = [ & as. @  FxED=e@Y 2d"x0H @, 1)
n=0"""

In discussions hereafter, the dimensionless variables a[ﬁﬁe momentum and energy conservation equations explic

used unless otherwise specified. itly involve moments of up to the second and the third
Grad introduced the approximations by Hermite expan- y b

L . _order, respectively. It is necessary to requie= 2 if
iSrlmcg;nV\;Qig;\St :uigi%r:ent system [11]. Defining the follow the momentum equation is to be obtained anhd= 3 if

] the energy conservation equation is needed.
w(&) = e (172¢%) , (5) By the approximation above, we have assumed that the
(2m)P/2 distribution function lies entirely in the subspace spanned

where ¢2 = £ - £, as argued by Grad, ito~"/2f is by Hermite polynomials up to orde¥. For higher orders,
square integrable, i.e., if approaches zero faster than

e /4 as ¢ — o, the following Hermite expansion is a”' =0 if n>N. (11)
valid in the sense of mean convergence:

= Although the terms that are truncated do not appear
- (n) () explicitly in the conservation equations, they affect the
x, &)= w —a; (x,t)H,; , 6 plicrty q , y
Jx. 8.0 (&) ,;) n! (. 1) ) ©) fluid variables through their contributions to the dynamic
where H{ ™ is the nth order Hermite polynomial [14]. equations of the lower order moments. We will return to
This expansion, also known as the Gram-Charlier serieghe validity of the assumption Eq. (11) later.
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Let & andw;, i = 1,...,d, be the nodes and weights a,(jz-) = pusu; + (0 — 1)pdy;, andag,l = pui; X
of a quadrature of degrew, i.e., if p(§) is a polynomial ~ ,, + (9 — Dp(u;idji + ujdy + udij). Using the ex-

with a degree not greater thaw, we have plicit form of the Hermite polynomials, at the second and
d third orders, we have
[o@p@rae =S wper. @ 1 .
. ! g = Wi 1+7i+i'u+—(i'u)2——]
Becausef H ™ /w is such a polynomial iz = N, the # p[ ¢ 2 & 2
Hermite coefficients off can be calculated using the (18)

values off at the nodes; as the following:

d n -3 1

2 — f 0L 0 g — ZM 1z &= wm[l + i+ (L + D& u+ (&)
w i=1 w(gi) 2 | ]

wheref; = 7(x, &,t). The knowledge of; as functions — ”7 + E(fi ~u)® — > (& - u)uz}, (19)

of position and time is equivalent to that of the truncated

distribution function itself and therefore, that of the where y; = (f? -D)(O —1)/2, &= (§i2 - D —2) X

fluid variables calculated from the truncated distribution.(9 — 1)/2. Equations (17)—(19) are the projection of

These variables are the Boltzmann-BGK equation in the subspace spanned
B i wifi B d wifi& by the Ier_;tding Hermite polynomials. '!'hey are in the
p =, —w(f-)’ pu = Z —w(f) ) configuration spacdr,x) and have a linear differen-
i=1 ! i=1 ' tial operator on the left-hand side. The fluid variables

d . f &2 : :
2pe + pu = Z wifi; (14) defined by Egs. (15) obey the NS hydrodynamics. As

= w(E) previously shown [8,9], the LBE equilibrium distribu-
By defining the auxiliary variables; = w;fi/w (&), tions of Refs. [6,7] are obtained when the proper nodes

Egs. (14) can be put into a more efficient form forand weights are ;ubstituted in'to Eq. .(1.8)’ a_md the Iattjce
com.putation' Boltzmann equations are particular finite difference dis-

p J J cretizations of Eq. (17).
- , - £ + oyl = 2 It can be easily verified that moments of up to second
p ;g,, p i;ngz, 2pe + pu ;glf’ and third orders calculated from Egs. (18) and (19),
(15) respectively, are those of the Maxwellian. In particu-
lar, the tensorp;; = [fO¢ ¢ dé = puu; + p0d;;

This has th_e same form as how the fluid Var'ables.ar%urvives the truncation. The hydrostatic pressure is given
calculated in the LBE method, where the dlstr|but|onby the equation of state = p@, which translates to

function is defined from the beginning as the populatlonsp — 2 kT in laboratory units. When measured in the

of\pl)vartlclestmovtmgthat g!screte_ velofcg:es. i that th magnitude of one of the nodes of the quadrature, €,9g.,
€ howturn to the discussion of the equations tha s in the LBE models, the sound speed/i8/¢;. In a

fundctlonsfi S?t'Sfy' By directly evaluating Eg. (1) at the single component isothermal systefh,becomes a free
nodesg;, we have parameter which can be used to adjust the nominal sound

af; _ 1 L0 speed with respect to the nodes of the quadrature. When
Py & - Vfi= T [fi = F7E]. 16) 4 1, the Maxwellian has a very simple expansion:
Because f/(” has nonzero Hermite coefficients at all o _ < L arm
orders, on substituting©(&;) into the right-hand side o= wp,gon! T, (20)

of Egs. (14), the equalities hold only approximately. For
: ©

the conservation laws to hold exactly,”’ has to be proportional to the power of the Mach number. Equa-

projected into the subspace in whighlies. Namely, tions (18) and (19) are also simplified singe= ¢ = 0.

in Eq. (16), the .'V'axwe'"a'? has to b‘? replaced by itSTFor a multiple component system, a differeht~ 1/m
Nth order Hermite expansion. Denoting the values of,.< 1o be chosen for each component if all the compo-

the auxiliary variableg; corresponding to the truncated o5 are at thermal equilibrium. This requirement was

and the truncated part of the distribution function is

: (V) - , . .
Maxwellian byg; ", Eq. (16) can be written as found necessary to obtain a correct equation of state in a
g 1 ~) ) previous multiple component LBE model [16].

o TEVei=——(gi—& ) i=l...d. The truncation made in Eq. (11) is similar to, but not

(17) exactly the same as the third order approximation in the
Grad 13 moment system. In the latter the distribution
It is to be noted that the positivity of the distribution function is expanded around the local fluid velocity be-

function_ is lost in this t.runcatio_n.. ~ fore it is truncated. This is certainly a better approxi-
The first few Hermite coefficients of the Ma)%\l/\)lelllan mation than expanding around the absolute equilibrium.
can be obtained using Eq. (8). They af® = p,a;’ =  However, it is not possible to use such an expansion in
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the method discussed above because it would yield a shtgher degree. With such a discretization, the Boltzmann
of nodes that depend on the local velocity. equation becomes a homogeneous set of linear equations
The difference between the two expansions can be esa the configuration space. Comparing with the nonlinear
timated by expanding the following approximated distri-NS equations, these equations are easier to solve, have a
bution function of the 13 moment system [11] around thebroader range of application, and more importantly, allow

absolute equilibrium the underlying fluid physics to be simulated directly at
350 the cost of a macroscopic simulation. In addition, higher
FOSY =— 3HO(g - w), (21)  order approximations to the Boltzmann equation can be
iz 1! easily achieved by adding more points to the system.
whereb©® = 1,5 = 0, andb? = 0. The Hermite co- Some of the limitations that LBE methods inherited
efficients in the expansion around the absolute equilibriunirom the Boolean LGA models can be removed with the
a™ can be calculated as the following: present formulation. The equilibrium distribution is now

3, (0 obtained through a systematic orthogonal expansion of the
a™ = ff((” D = H (¢ - wH"(g)dg (22) Maxwellian, eliminating the tedious parameter-matching
= i procedure which usually produces results that are not
3 50 » ) unique and contain erroneous terms at higher orders. The
=p Z 1 f w(E)H D (EH (£ + u)dé. inflexible lattice structure and time stepping scheme of the
=0 (23) LBE method are inconvenient for practical applications
and often result in poor stability. By realizing that the
Noticing that H (& + u) = 37 u" D H O (£), we LBE models are merely simple and rather primitive finite
find thata® = p, aV = pu, a® = p(u® + p@), and difference representations of the discrete Boltzmann-BGK
forn = 3, equation, we can employ more sophisticated numerical
" n ne ne3 techniques in solving these equations with better effi-
" = p™ + 0B + I @4) i ability, and flexibility.
With nonzero Hermite coefficients at all orders, the distri- The authors thank Dr. Gary Doolen and Dr. Nicos
bution function in the 13 moment system does not meeMartys for helpful discussions.
the assumption in Eq. (11). Since these coefficients are
proportional to the power of the Mach number, Egs. (19)
approximate the 13 moment system only at the small Mach
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