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Discretization of the Velocity Space in the Solution of the Boltzmann Equation
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(Received 30 September 1997)

We point out an equivalence between the discrete velocity method of solving the Boltzmann equation,
of which the lattice Boltzmann equation method is a special example, and the approximations to the
Boltzmann equation by a Hermite polynomial expansion. Discretizing the Boltzmann equation with
a Bhatnagar-Gross-Krook collision term at the velocities that correspond to the nodes of a Hermite
quadrature is shown to be equivalent to truncating the Hermite expansion of the distribution function to
the corresponding order. The truncated part of the distribution has no contribution to the moments of
low orders and is negligible at small Mach numbers. [S0031-9007(97)04950-8]
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The Boltzmann equation is a well accepted mathema
cal model of a fluid at the microscopic level. It describe
the evolution of the single particle distribution function
fsx, j , td in the phase spacesx, j d, wherex andj are the
position and velocity vectors, respectively. This descrip
tion of a fluid is more fundamental than the Navier-Stoke
(NS) equations. It has a broader range of application a
provides more detailed microscopic information which i
critical for the modeling of the underlying physics behind
complex fluid behavior. However, direct solution of the
full Boltzmann equation is a formidable task due to th
high dimensions of the distribution and the complexity i
the collision integral. Among the various techniques de
veloped [1], the discrete velocity method was introduce
[2] based on the intuitive assumption that the gas particl
can be restricted to have only a small number of veloc
ties. The lattice Boltzmann equation (LBE) method for
mally falls into this category.

The development of the LBE method for simulation
of fluid dynamics was independent of the continuum
Boltzmann equation. The discrete LBE was first writte
to describe the dynamics of the distribution function i
the lattice gas automaton (LGA) [3,4], in which the
fluid physics is simulated at the microscopic level b
“Boolean” particles moving with discrete velocities on a
regular lattice, mimicking the motion of the constituen
particles of a fluid. A Bhatnagar-Gross-Krook (BGK)
collision model [5] was later adopted in the LBE in place
of the complicated collision term [6,7]. In this lattice
Boltzmann BGK model, the equilibrium distribution is
chosena posteriori by matching the coefficients in a
small velocity (Mach number) expansion so that th
correct hydrodynamic equations can be derived using t
Chapman-Enskog method.

Recently it has been argued [8,9] that the LBE metho
can be derived from the continuum Boltzmann equatio
with a BGK collision model. In the new derivations,
the Maxwellian distribution is Taylor expanded to secon
order in the fluid velocity scaled with the sound speed
Abe [9] employed a special functional form for the dis
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tribution function so that the macroscopic fluid variabl
are completely determined by the values of the distrib
tion function at a set of discrete velocities. By noticin
that in the Chapman-Enskog calculation, the function
form of the equilibrium distribution function in veloc-
ity space is only relevant in the calculation of the low
order moments, and for the Taylor expanded Maxwellia
those moments can be calculated exactly using a Gaus
quadrature, it is concluded that the NS equations can
derived from the Boltzmann equation evaluated on t
nodes of the quadrature [8]. On substituting the weig
of the corresponding quadrature into the expansion of
Maxwellian, the coefficients of the LBE equilibrium dis
tribution function are recovered. The Boltzmann equati
evaluated at the discrete velocities can then be further
cretized inx and t in various ways for numerical inte-
gration [8]. The LBE models are shown to correspond
solving the discrete Boltzmann equations with a particu
finite difference scheme [10].

The recovery of the NS equations from the Boltzma
equation by using a small number of collocation poin
in velocity space is not accidental. Almost a ha
century ago, Grad [11] introduced a sequence of a
proximations to the Boltzmann equation by expandi
the distribution function in terms of Hermite polyno
mials in velocity space. The Hermite coefficients a
directly related to the macroscopic fluid variables su
as density, velocity, internal energy, stress, and so
By keeping Hermite polynomials of up to third orde
Grad obtained a system of equations for thirteen mome
of the distribution function. This system of equation
known as the 13 moment approximation, was argu
to be a better approximation than the Chapman-Ens
calculation [12,13]. By noticing that the Hermite co
efficients for a given function can be estimated using
Hermite quadrature formula, and that this estimation
exact when the function satisfies certain conditions,
important correspondence between the LBE method
the approximation by Hermite polynomial expansion c
be immediately identified. In this Letter, we show that b
© 1997 The American Physical Society 65



VOLUME 80, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JANUARY 1998

n

l

h

y

t
e
ty

d
e
e

ic-

e
d

r

discretizing the Boltzmann-BGK equation at a set of v
locities that correspond to the nodes of a Gauss-Herm
quadrature in velocity space, we effectively project an
solve the Boltzmann equation in a subspace spanned
the leading Hermite polynomials. The truncated part
the distribution has no contribution to the low-order mo
ments that appear explicitly in the conservation equatio

We start from the following Boltzmann-BGK equation
≠f
≠t

1 j ? =f ­ 2
1
t

sf 2 fs0dd , (1)

wheret is a relaxation time,fs0d is the Maxwellian

fs0d ­ r

µ
m

2pkBT

∂
Dy2e2my2kBT jj2uj2

, (2)

where D is the dimension of the space,kB is the
Boltzmann constant, andm is the mass of the molecule.
The mass densityr, macroscopic fluid velocityu, and the
temperatureT , are all functions ofx andt. We introduce
the dimensionless quantityu ­ Tm0yT0m, where T0 is
a characteristic temperature andm0 is a unit of the
molecular mass. After rescaling the velocitiesj and u
in units of the constantc0 ­

p
kBT0ym0, which is the

sound speed in a gas consisting of molecules of massm0

and at temperatureT0, the Maxwellian takes the following
simple form:

fs0d ­
r

s2pudDy2
e2s1y2udjj2uj2

. (3)

For a single component system we can chosem ­ m0

and haveu ­ TyT0. If the time and length scalest0
and L are chosen so thatLyt0 ­ c0, the dimensionless
Boltzmann-BGK equation will have the same form a
Eq. (1) with t being the dimensionless relaxation time
The mass densityr, the dimensionless fluid velocity
u, and the dimensionless internal energy densitye ­
Duy2, are expressed as thevelocity momentsof the formR

fwsj d dj , with w ­ 1, j , andj2, respectively:

r ­
Z

f dj , ru ­
Z

f dj ,

2re 1 ru2 ­
Z

fj2 dj . (4)

In discussions hereafter, the dimensionless variables
used unless otherwise specified.

Grad introduced the approximations by Hermite expa
sion in his 13 moment system [11]. Defining the follow
ing weight function

vsj d ­
1

s2pdDy2
e2s1y2j2d , (5)

where j2 ­ j ? j , as argued by Grad, ifv21y2f is
square integrable, i.e., iff approaches zero faster tha
e2j2y4 as j ! `, the following Hermite expansion is
valid in the sense of mean convergence:

fsx, j , td ­ vsj d
X̀
n­0

1
n!

a
snd
i sx, tdH snd

i sj d , (6)

where H snd is the nth order Hermite polynomial [14].
This expansion, also known as the Gram-Charlier seri
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was also used in the solution of the Vlasov equatio
[15]. Clearly, the Maxwellian in Eq. (3) has such an
expansion if the choice ofT0 andm0 ensures thatu , 2.
On the right-hand side of Eq. (6), bothasnd and H snd

are symmetric tensors of ordern. The subscripti is an
abbreviation for the multiple indiceshi1, . . . , inj, and the
products denote contraction on all then indices. The
Hermite polynomials are a set of complete orthonorma
basis of the Hilbert space with the inner productkf, gl ­R

vfg dj . They satisfy the orthonormal relationZ
vH

smd
i H

snd
j dx ­ dmndij , (7)

wheredij ­ 1 if i ­ hi1, . . . , imj is a permutation ofj ­
h j1, . . . , jnj, and dij ­ 0 otherwise. For any function
f, the nth Hermite coefficient can be obtained by the
following equation:

asnd ­
Z

fH sndsj d dj . (8)

The function f is completely determined by all of its
Hermite coefficients.

The moments given in Eqs. (4) are invariants of bot
the original Boltzmann collision term and the BGK
collision model. The hydrodynamic equations are simpl
the corresponding conservation equations

≠

≠t

Z
fw dj 1 = ?

Z
fjw dj ­ 0 . (9)

The lowest order moments have the most significan
contribution to the macroscopic hydrodynamics. Sinc
the Hermite expansion has the feature that a veloci
moment of a given order is solely determined by the
Hermite coefficients up to that order and are not change
by the truncation of the higher-order terms, a sequenc
of approximations to Eq. (1) can be made by seeking th
approximate solution of the following form:

f̃sx, j , td ­ vsj d
NX

n­0

1
n!

a
snd
i sx, tdH snd

i sj d . (10)

The momentum and energy conservation equations expl
itly involve moments of up to the second and the third
order, respectively. It is necessary to requireN $ 2 if
the momentum equation is to be obtained andN $ 3 if
the energy conservation equation is needed.

By the approximation above, we have assumed that th
distribution function lies entirely in the subspace spanne
by Hermite polynomials up to orderN. For higher orders,

asnd ; 0 if n . N . (11)

Although the terms that are truncated do not appea
explicitly in the conservation equations, they affect the
fluid variables through their contributions to the dynamic
equations of the lower order moments. We will return to
the validity of the assumption Eq. (11) later.
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Let ji andwi , i ­ 1, . . . , d, be the nodes and weights
of a quadrature of degree2N, i.e., if psj d is a polynomial
with a degree not greater than2N, we haveZ

vsjdpsj d dj ­
dX

i­1

wipsjid . (12)

Becausef̃H sndyv is such a polynomial ifn # N , the
Hermite coefficients off̃ can be calculated using the
values off̃ at the nodesji as the following:

asnd ­
Z

v
f̃
v

H snd dj ­
dX

i­1

wifiH
sndsjid

vsjid
, (13)

wherefi ­ f̃sx, ji , td. The knowledge offi as functions
of position and time is equivalent to that of the truncate
distribution function itself and therefore, that of the
fluid variables calculated from the truncated distribution
These variables are

r ­
dX

i­1

wifi

vsjid
, ru ­

dX
i­1

wifiji

vsjid
,

2re 1 ru2 ­
dX

i­1

wifij
2
i

vsjid
. (14)

By defining the auxiliary variablesgi ­ wifiyvsjid,
Eqs. (14) can be put into a more efficient form fo
computation:

r ­
dX

i­1

gi , ru ­
dX

i­1

giji , 2re 1 ru2 ­
dX

i­1

gij
2
i .

(15)

This has the same form as how the fluid variables a
calculated in the LBE method, where the distributio
function is defined from the beginning as the population
of particles moving at discrete velocities.

We now turn to the discussion of the equations that th
functionsfi satisfy. By directly evaluating Eq. (1) at the
nodesji, we have

≠fi

≠t
1 ji ? =fi ­ 2

1
t

f fi 2 fs0dsjidg . (16)

Becausefs0d has nonzero Hermite coefficients at al
orders, on substitutingfs0dsjid into the right-hand side
of Eqs. (14), the equalities hold only approximately. Fo
the conservation laws to hold exactly,fs0d has to be
projected into the subspace in which̃f lies. Namely,
in Eq. (16), the Maxwellian has to be replaced by it
N th order Hermite expansion. Denoting the values o
the auxiliary variablesgi corresponding to the truncated
Maxwellian byg̃

sNd
i , Eq. (16) can be written as

≠gi

≠t
1 ji ? =gi ­ 2

1
t

s gi 2 g̃
sNd
i d, i ­ 1, . . . , d .

(17)

It is to be noted that the positivity of the distribution
function is lost in this truncation.

The first few Hermite coefficients of the Maxwellian
can be obtained using Eq. (8). They areas0d ­ r, a

s1d
i ­
d

.

r

re
n
s

e

l

r

s
f

rui , a
s2d
ij ­ ruiuj 1 su 2 1drdij, and a

s3d
ijk ­ ruiuj 3

uk 1 su 2 1drsuidjk 1 ujdik 1 ukdijd. Using the ex-
plicit form of the Hermite polynomials, at the second an
third orders, we have

g̃
s2d
i ­ wir

∑
1 1 gi 1 ji ? u 1

1
2

sji ? ud2 2
u2

2

∏
,

(18)

g̃
s3d
i ­ wir

∑
1 1 gi 1 s1 1 zidji ? u 1

1
2

sji ? ud2

2
u2

2
1

1
6

sji ? ud3 2
1
2

sji ? udu2

∏
, (19)

where gi ­ sj2
i 2 Dd su 2 1dy2, zi ­ sj2

i 2 D 2 2d 3

su 2 1dy2. Equations (17)–(19) are the projection o
the Boltzmann-BGK equation in the subspace spann
by the leading Hermite polynomials. They are in the
configuration spacest, xd and have a linear differen-
tial operator on the left-hand side. The fluid variable
defined by Eqs. (15) obey the NS hydrodynamics. A
previously shown [8,9], the LBE equilibrium distribu-
tions of Refs. [6,7] are obtained when the proper node
and weights are substituted into Eq. (18), and the lattic
Boltzmann equations are particular finite difference dis
cretizations of Eq. (17).

It can be easily verified that moments of up to secon
and third orders calculated from Eqs. (18) and (19
respectively, are those of the Maxwellian. In particu
lar, the tensor pij ;

R
fs0djijj dj ­ ruiuj 1 rudij

survives the truncation. The hydrostatic pressure is give
by the equation of statep ­ ru, which translates to
p ­

r

m kBT in laboratory units. When measured in the
magnitude of one of the nodes of the quadrature, e.g.,ji ,
as in the LBE models, the sound speed is

p
uyji . In a

single component isothermal system,u becomes a free
parameter which can be used to adjust the nominal sou
speed with respect to the nodes of the quadrature. Wh
u ­ 1, the Maxwellian has a very simple expansion:

fs0d ­ vr
X̀
n­0

1
n!

usndH snd, (20)

and the truncated part of the distribution function is
proportional to the power of the Mach number. Equa
tions (18) and (19) are also simplified sincegi ­ zi ­ 0.
For a multiple component system, a differentu , 1ym
has to be chosen for each component if all the comp
nents are at thermal equilibrium. This requirement wa
found necessary to obtain a correct equation of state in
previous multiple component LBE model [16].

The truncation made in Eq. (11) is similar to, but no
exactly the same as the third order approximation in th
Grad 13 moment system. In the latter the distributio
function is expanded around the local fluid velocity be
fore it is truncated. This is certainly a better approxi
mation than expanding around the absolute equilibrium
However, it is not possible to use such an expansion
67



VOLUME 80, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JANUARY 1998

n
ons
r
e a
w
t
r
e

e

he
g
ot
he
e
s

e
K
al

fi-

s

tt.

v.

.

E

g

the method discussed above because it would yield a
of nodes that depend on the local velocity.

The difference between the two expansions can be
timated by expanding the following approximated distr
bution function of the 13 moment system [11] around th
absolute equilibrium

fs0d
3X

i­0

bsid

i!
H sidsj 2 ud , (21)

wherebs0d ­ 1, bs1d ­ 0, andb
s2d
ii ­ 0. The Hermite co-

efficients in the expansion around the absolute equilibriu
asnd can be calculated as the following:

asnd ­
Z

fs0d
3X

i­0

bsid

i!
H sidsj 2 udH sndsj d dj (22)

­ r

3X
i­0

bsid

i!

Z
vsj dH sidsjdH sndsj 1 ud dj .

(23)

Noticing that H sndsj 1 ud ­
Pn

i­0 usn2idH sidsj d, we
find thatas0d ­ r, as1d ­ ru, as2d ­ rsus2d 1 bs2dd, and
for n $ 3,

asnd ­ rsusnd 1 usn22dbs2d 1 usn23dbs3dd . (24)

With nonzero Hermite coefficients at all orders, the distr
bution function in the 13 moment system does not me
the assumption in Eq. (11). Since these coefficients a
proportional to the power of the Mach number, Eqs. (1
approximate the 13 moment system only at the small Ma
number limit.

Finding the quadrature formula with a minimum num
ber of nodes for given geometry, weight function, and d
gree of accuracy is generally an unsolved problem. F
the weight function in Eq. (5), quadrature formulas of dif
ferent degrees are listed in Ref. [17]. Some of those a
believed to be minimum without proof. In two dimen-
sions, the minimum formula seems to be the 4th degre
6-point formula (origin and the vertices of a pentagon
for isothermal models and the 7th degree, 12-point fo
mula for thermodynamics models. In three dimension
the minimum formulas are those of 5th degree, 13 poi
(origin and the vertices of a regular icosahedron) and 7
degree, 27 point for isothermal and thermodynamic sy
tems, respectively. The nodes of these formulas usua
do not coincide with those of a regular lattice. Equa
tions (17) have to be solved using schemes such as
finite difference method [8,10].

The methodology of the discrete Boltzmann equatio
can be summarized as the following: The discretizatio
of the continuum distribution function into values a
the nodes of a quadrature formula is equivalent to th
truncation of the high-order terms in the Hermite spectr
space. The information that is lost in this procedure
represented by the high-order Hermite polynomials whic
do not explicitly appear in the conservation equation
This error is negligible at small Mach numbers and ca
always be made smaller by using a quadrature of
68
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higher degree. With such a discretization, the Boltzman
equation becomes a homogeneous set of linear equati
in the configuration space. Comparing with the nonlinea
NS equations, these equations are easier to solve, hav
broader range of application, and more importantly, allo
the underlying fluid physics to be simulated directly a
the cost of a macroscopic simulation. In addition, highe
order approximations to the Boltzmann equation can b
easily achieved by adding more points to the system.

Some of the limitations that LBE methods inherited
from the Boolean LGA models can be removed with th
present formulation. The equilibrium distribution is now
obtained through a systematic orthogonal expansion of t
Maxwellian, eliminating the tedious parameter-matchin
procedure which usually produces results that are n
unique and contain erroneous terms at higher orders. T
inflexible lattice structure and time stepping scheme of th
LBE method are inconvenient for practical application
and often result in poor stability. By realizing that the
LBE models are merely simple and rather primitive finit
difference representations of the discrete Boltzmann-BG
equation, we can employ more sophisticated numeric
techniques in solving these equations with better ef
ciency, stability, and flexibility.

The authors thank Dr. Gary Doolen and Dr. Nico
Martys for helpful discussions.
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