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Bimodal Character of Stress Transmission in Granular Packings
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The correlation between contact forces and the texture of a packing of rigid particles subje
to biaxial compression is analyzed by means of numerical simulations. Four different aspects
investigated: stress tensor, dissipation due to friction, angular distribution of forces, and fab
tensor characterizing the anisotropy of the texture. All of them provide evidence that the cont
network can be decomposed unambiguously into two subnetworks with complementary mechan
properties. [S0031-9007(97)04916-8]
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The plasticity of a packing of rigid spheres is mayb
the simplest example in which the dynamics is dominat
by topological constraints: Forces are transmitted on
through the interparticle contacts. This leads to strong
homogeneities of the forces [1–4]. Moreover, an initiall
isotropic packing develops an anisotropic contact ne
work under shear, because new contacts are formed al
the major principal axis of the strain-rate tensor, whi
some are lost perpendicular to it [5–7]. Thisgeometri-
cal anisotropy leads in turn to amechanicalanisotropy of
the contact forces. Both the geometrical and the mecha
cal anisotropy enter the expression of the stress tensor
are thus essential for the resistance of a granular medi
to shear [8,9].

In this Letter, we analyze the transmission of stress in
two-dimensional dense packing of rigid spheres by taki
for the first time both the inhomogeneity of the force
and the anisotropy of the texture into account. It will b
shown that the forces belong to two distinct classes whi
contribute differently to anisotropy, stress, and dissipatio
This bimodalcharacter of the force network is quite natu
rally suggested by the observation of the “buckling” o
strong force chains supported by weak lateral forces dur
shear [10]. The results presented in this Letter provide
unambiguous demonstration of this intuitive picture for a
the aspects considered.

The main idea of our analysis is to evaluate intern
variables such as the geometrical anisotropy for subsets
contacts with a given absolute value of the force. There
important aspects of the inhomogeneity of the system c
be taken into account. For example, the contribution
contact chains with strong forces may be evaluated se
rately from the rest of the packing. This is, however, n
practical because of the bad statistics of contacts with
a small force interval. Instead, we consider the subs
of contacts which carry a force lower than a given cuto
j. We shall refer to this subset as the “j-network.” The
variation of a quantity evaluated for thej-network asj is
varied from0 to the maximal force in the system allows u
then to estimate its correlation with the contact force.
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For the numerical simulations, we used the relative
new method of contact dynamics. This method allows
to integrate the equations of motion for multicontact sy
tems composed of rigid bodies with Coulombian friction
The method tackles the nonsmooth character of the int
actions with no resort to regularization schemes often us
in numerical algorithms for granular systems. An accou
of the mathematical basis and the discretization proced
of this approach can be found in [11].

The simulation was carried out for a two-dimension
system with4012 circular particles contained in a frame o
four rigid walls. The radii were uniformly distributed be
tween 3.8 and 7.5 mm. The particle-particle and partic
wall coefficients of friction were 0.5 and zero, respectivel
No gravity acted on the particles. The sample was bia
ally compressed (see Fig. 1) by imposing a constant v
locity of 1 cmys on the upper wall. The left wall was free
to move under a horizontal confining force of 500 N. Th
initial sample was prepared with an isotropic contact ne
work. As a consequence of compression the amplitu
of anisotropy and the stress ratioQ ­ ss1 2 s2dyss1 1

s2d increased, wheres1 ands2 are the principal values of
the stress tensor. We investigate below several quanti
as a function ofj at Q ­ 0.18.

The texture is characterized by the probability densi
Esu, jd of finding a contact with directionu in the j-
network. In general the first deviatoric component in th
Fourier expansion ofE provides an adequate measure o
geometrical anisotropy [12]:

Esu, jd ø
1

2p
h1 1 Acsjd cos2fu 2 ucsjdgj . (1)

The parameterAc defines the amplitude of anisotropy, an
uc is its principal direction. For the calculation of thes
parameters from the numerical data, it is convenient to u
the “fabric tensor” defined byfij ­ kninjl, whereni is the
i component of the unit vector along the contact directio
and the average is taken over all contacts in thej-network.
Using (1) to evaluate the average ofninj, it is easy to see
that f1 2 f2 ­ Acy2, wheref1 and f2 ­ 1 2 f1 are
© 1997 The American Physical Society 61
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FIG. 1. Velocity field in the center-of-mass frame during th
biaxial compression.

the eigenvalues of the fabric tensor.uc anduc 1 py2 are
the directions of the corresponding eigenvectors.

We found that the principal directions of the fabric
tensor in thej-network coincide with those of the strain-
rate tensor irrespective of the value ofj. Therefore
we setucsjd ­ ucs`d ­ 0, i.e., the direction of the axis
of compression in (1). Then a positiveAc indicates
that the direction of anisotropy is parallel to the axis o
compression, whereas a negativeAc corresponds to the
orthogonal direction. Figure 2 shows the amplitude o
geometrical anisotropyAc in the j-network as a function
of j. For largej it approaches the geometrical anisotrop

FIG. 2. Amplitude of geometrical anisotropyAc in the j-
network as a function ofj normalized with respect to the
average forcekFl; see text. The inset shows the polar diagram
of the probability densityE of contact directions for “weak”
contacts (F , kFl) and for “strong” contacts (F . kFl).
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of the whole system. The anisotropy of the networ
complementary to thej-network is given byAcs`d 2

Acsjd and can be obtained from Fig. 2.
Surprisingly, the direction of anisotropy is orthogonal to

the axis of compression (Ac , 0) for weak forces (small
j). The anisotropy becomes more pronounced asj in-
creases, and reaches a maximum forj ­ kFl, wherekFl
is the average force in the system. Whenj is increased
beyondkFl, Ac becomes less negative and finally change
sign. This shows that contacts which carry a force larg
than the average force (“strong contacts”) are preferen-
tially oriented parallel to the axis of compression. Al
though these are less than 40% of all contacts, their posit
contribution toAc overcompensates the negative contribu
tion of the contacts with a force lower than the averag
force (“weak contacts”). This means that the strong net-
work (composed of strong contacts) is more anisotrop
than the weak network (composed of weak contacts),
shown in the inset of Fig. 2.

The orthogonal anisotropy of the weak network cann
be simply understood as a result of the process of loss a
gain of contacts induced by the deformation. The latte
predicts only a positive anisotropy, i.e., parallel to the ax
of compression. Our result, Fig. 2, proves that a shear
granular packing is not only inhomogeneous with respe
to the forces, but also with respect to the geometric
anisotropy, and that these inhomogeneities are correlate

A similar analysis can now be applied to investigat
the mechanical anisotropy of the average normal for
Fnsu, jd and the average friction forceFtsu, jd as a
function of the contact direction. As forE, a second order
Fourier expansion provides an adequate representation

Fnsu, jd ­ skFly2pd h1 1 Ansjd cos2fu 2 ufsjdgj ,

Ftsu, jd ­ skFly2pdAtsjd sin2fu 2 uf sjdg ,
(2)

where An and At are the magnitudes of mechanica
anisotropy. The analytical form ofFt results from the
fact that the spherical component ofFt is zero due to
static equilibrium and its principle axes are rotated t
those ofFn by an angle ofpy4. Again we found that the
principal directions are independent ofj, so that we shall
setuf ­ 0 in the following.

For the calculation ofAn andAt we introduce two ten-
sorsx

snd
ij ­ s1ykFld kFnninjl andx

std
ij ­ s1ykFld kFttinjl,

whereti is the i component of the unit vectort orthogo-
nal to n and such thatsn, td preserves the same parity for
all contacts. It can then be shown thatsx snd

1 2 x
snd
2 dy

sx snd
1 1 x

snd
2 d ­ s1y2d sAc 1 And and sx1 2 x2dysx1 1

x2d ­ s1y2d sAc 1 An 1 Atd, wherex
snd
1 andx

snd
2 are the

principal values ofx snd andx1 andx2 are those ofx ­
x snd 1 x std. In Fig. 3, An and At in the j-network are
plotted as a function ofj. The two parameters remain
positive, i.e., the mechanical anisotropy is always oriente
along the axis of compression. However, the contributio
of normal forces to the total anisotropy begins to increa
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FIG. 3. Amplitudes of mechanical anisotropyAn andAt in the
j-network as a function ofjykFl.

significantly only afterj ­ kFl, where bothAn and At

have an inflection point.
The physical importance of mechanical anisotropy b

comes clear when it is considered in connection with th
stress tensor. The stress tensors for a granular system in
a quasistatic state is given by [13]

sij ­ rkFidjl , (3)

wherer is the number of contacts per unit volume,Fi is the
i component of the contact forceF ­ Fnn 1 Ftt, anddj

is thej component of the intercenter vector joining the cen
ters of two particles in contact. For spherical particles, w
haved ­ dn. Neglecting the weak correlation betwee
d andF, we getsij ­ rkdl kFinjl. Now, introducing the
two components ofF into this expression and comparing
with the expression ofx , we see thats ­ rkdl kFlx , and
accordingly [8]

Qsjd ­
1
2

fAcsjd 1 Ansjd 1 Atsjdg . (4)

In Fig. 4, both the stress ratioQ and the sums1y2d sAc 1

An 1 Atd are displayed as a function ofj. We see that
Eq. (4) holds for allj with very weak deviations due to a
weak correlation betweend andF.

Figure 4 reveals an unexpected property of the stre
tensor: the shear stressQ for all forces lower than the
average force is negligibly small compared to the tot
deviatoric loadQs`d sustained by the system. Thos
forces contribute only 28% of the average pressuress1 1

s2dy2 in the medium. This means that the weak netwo
behaves essentially like an interstitial liquid, whereas th
strong forces carry the whole deviatoric load and in th
respect behave like a solid. Furthermore, Eq. (4) sho
that this property is related to a compensation between
negative anisotropy of fabric and the positive anisotrop
of forces, so thatAc 1 An 1 At . 0 for forces lower
than the average.

Another aspect of stress transmission in a granular pa
ing is the appearance of chainlike structures of relative
strong forces. This observation is suggestive of long-ran
e-
e

-
e

n

ss

al
e

rk
e

is
ws
the
y

ck-
ly
ge

FIG. 4. Stress ratioQ and the sum0.5sAc 1 An 1 Atd in
the j-network as a function ofjykFl. The inset shows the
eigenvalues and the directions of the stress tensor for we
(F , kFl) and strong (F . kFl) contacts. The orientation of
the weak tensor is irrelevant since its deviatoric component
nearly zero.

correlations over a scale far larger than the particle siz
In our numerical experiments, we can check these corr
lations as a function ofj in the complementary network
to the j-network. At large values ofj, say j . 2kFl,
strong contacts are distributed in the form of relatively iso
lated clusters. Asj is decreased, these clusters grow [se
Fig. 5(a)] and finally atj ­ kFl there is directed percola-
tion along the axis of compression [Fig. 5(b)]. The fac
that the whole deviatoric load is supported by a percola
ing network of strong chains makes it plausible that buck
ling of the directed chains under the action of compressio
occurs. Their stability then requireslateral forces in the
complementary network. This is the origin of a negativ
geometrical anisotropy in the weak network. This mecha
nism goes with a peculiar scheme of the “mobilization
of friction, defined by the ratioh ­ jFt jyFn. Figure 6
shows the proportion of sliding contacts to the total num
ber of contacts in thej-network as a function ofj.
At sliding contacts the friction force takes its maximum
mobilized value,h ­ m, where m is the coefficient of
friction. At nonsliding contacts, particles roll over one
another andh , m [14]. Almost 8% of contacts are slid-
ing in the whole volume of the system atQ ­ 0.18, and
Fig. 6 shows that 96% of them are in the weak network fo
j ­ kFl. In other words, almost the whole dissipation by
friction occurs at contacts bearing a force lower than th
average force. Almost all contacts with a force larger tha
the average, corresponding to the buckling chains, are th
nonsliding.

In all the cases briefly discussed above, the average for
appears as a characteristic force separating two comp
mentary networks: a “load-bearing” percolating network o
contacts carrying a force larger than the average force, a
a “dissipative” network of contacts carrying a force smalle
than the average force. The load-bearing network carri
the whole deviatoric load, while the dissipative subnetwor
63
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FIG. 5. The forcesF for (a) F . 1.3kFl and (b) F . kFl,
where kFl is the average force, in the upper halves of th
sample. The line thickness is proportional to the force.

contributes only to the average pressure. All contac
within the load-bearing network are nonsliding, where
nearly the whole dissipation due to sliding takes place i
side the dissipative network. The load-bearing subnetwo
carries a direct geometrical anisotropy induced by she
but it gives rise via buckling to an indirect anisotropy insid
the dissipative network with a preferred direction orthog
nal to the major principal direction of the stress tensor.

For all the variables studied here, this distinction b
tween the two networks disappears in the particular ca
where the shear stress is zero. But it still holds for the s
tistical distributionPF of forces. PF is a power law with a
weak negative exponent for forces lower than the avera
force, and an exponentially decreasing function for forc
larger than the average [3]. The same behavior is obser
in 3D systems as well [15].

The central message is that the inhomogeneous distri
tion of forces on the particle scale does not average ou
the macroscopic level. It induces abimodalbehavior for
the macroscopic variables of interest. More particularl
we find that a more precise description of stress transm
sion in a dry granular packing requirestwo stress tensors
64
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FIG. 6. Proportionrs of sliding contacts to the total number
of contacts in thej-network as a function ofjykFl.

corresponding to two complementary phases. This prop
erty of a quasistatic granular medium is in contrast to both
liquids and solids.
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discussions with S. Roux and L. Brendel.
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