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Bimodal Character of Stress Transmission in Granular Packings
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The correlation between contact forces and the texture of a packing of rigid particles subject
to biaxial compression is analyzed by means of numerical simulations. Four different aspects are
investigated: stress tensor, dissipation due to friction, angular distribution of forces, and fabric
tensor characterizing the anisotropy of the texture. All of them provide evidence that the contact
network can be decomposed unambiguously into two subnetworks with complementary mechanical
properties. [S0031-9007(97)04916-8]

PACS numbers: 46.10.+z, 83.70.Fn

The plasticity of a packing of rigid spheres is maybe For the numerical simulations, we used the relatively
the simplest example in which the dynamics is dominateschew method of contact dynamics. This method allows us
by topological constraints: Forces are transmitted onlyto integrate the equations of motion for multicontact sys-
through the interparticle contacts. This leads to strong intems composed of rigid bodies with Coulombian friction.
homogeneities of the forces [1-4]. Moreover, an initially The method tackles the nonsmooth character of the inter-
isotropic packing develops an anisotropic contact netactions with no resort to regularization schemes often used
work under shear, because new contacts are formed alofig numerical algorithms for granular systems. An account
the major principal axis of the strain-rate tensor, whileof the mathematical basis and the discretization procedure
some are lost perpendicular to it [5-7]. Thgeometri-  of this approach can be found in [11].
cal anisotropy leads in turn to mechanicaknisotropy of The simulation was carried out for a two-dimensional
the contact forces. Both the geometrical and the mechansystem withd012 circular particles contained in a frame of
cal anisotropy enter the expression of the stress tensor amalur rigid walls. The radii were uniformly distributed be-
are thus essential for the resistance of a granular mediutween 3.8 and 7.5 mm. The particle-particle and particle-
to shear [8,9]. wall coefficients of friction were 0.5 and zero, respectively.

In this Letter, we analyze the transmission of stress in @&o gravity acted on the particles. The sample was biaxi-
two-dimensional dense packing of rigid spheres by takinglly compressed (see Fig. 1) by imposing a constant ve-
for the first time both the inhomogeneity of the forceslocity of 1 cm/s on the upper wall. The left wall was free
and the anisotropy of the texture into account. It will beto move under a horizontal confining force of 500 N. The
shown that the forces belong to two distinct classes whiclnitial sample was prepared with an isotropic contact net-
contribute differently to anisotropy, stress, and dissipationwork. As a consequence of compression the amplitude
This bimodalcharacter of the force network is quite natu- of anisotropy and the stress ratib= (o, — 03)/(o1 +
rally suggested by the observation of the “buckling” of o) increased, where; ando-, are the principal values of
strong force chains supported by weak lateral forces durinthe stress tensor. We investigate below several quantities
shear [10]. The results presented in this Letter provide aas a function of atQ = 0.18.
unambiguous demonstration of this intuitive picture for all The texture is characterized by the probability density
the aspects considered. E(6, &) of finding a contact with directior® in the &-

The main idea of our analysis is to evaluate internahetwork. In general the first deviatoric component in the
variables such as the geometrical anisotropy for subsets &fourier expansion of provides an adequate measure of
contacts with a given absolute value of the force. Therebgeometrical anisotropy [12]:
important aspects of the inhomogeneity of the system can |
be taken into account. For example, the contribution of E(6,¢&) = — {1 + A.(£)cos2[0 — 0.(&)]}. (1)
contact chains with strong forces may be evaluated sepa- 2w
rately from the rest of the packing. This is, however, notThe parameted. defines the amplitude of anisotropy, and
practical because of the bad statistics of contacts withim, is its principal direction. For the calculation of these
a small force interval. Instead, we consider the subsgbarameters from the numerical data, it is convenient to use
of contacts which carry a force lower than a given cutoffthe “fabric tensor” defined by;; = (n;n;), wheren; is the
&¢. We shall refer to this subset as thé-hetwork.” The i component of the unit vector along the contact direction
variation of a quantity evaluated for tigenetwork as¢ is  and the average is taken over all contacts indtreetwork.
varied from0 to the maximal force in the system allows us Using (1) to evaluate the averagemf:;, it is easy to see
then to estimate its correlation with the contact force. that 1 — ¢ = A./2, where¢; and ¢, = 1 — ¢; are
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of the whole system. The anisotropy of the network
complementary to thef-network is given byA.(«) —
A (¢) and can be obtained from Fig. 2.

Surprisingly, the direction of anisotropy is orthogonal to
the axis of compressiom( < 0) for weak forces (small
£). The anisotropy becomes more pronounced as-
creases, and reaches a maximumdor (F), where(F)
is the average force in the system. Wheis increased
beyond(F), A. becomes less negative and finally changes
sign. This shows that contacts which carry a force larger
than the average force gttrong contacty are preferen-
tially oriented parallel to the axis of compression. Al-
though these are less than 40% of all contacts, their positive
contribution toA. overcompensates the negative contribu-
tion of the contacts with a force lower than the average
force (“weak contacty. This means that the strong net-
work (composed of strong contacts) is more anisotropic
than the weak network (composed of weak contacts), as
shown in the inset of Fig. 2.

The orthogonal anisotropy of the weak network cannot
be simply understood as a result of the process of loss and
gain of contacts induced by the deformation. The latter
FIG. 1. Velocity field in the center-of-mass frame during the predicts only a positive anisotropy, i.e., parallel to the axis
biaxial compression. of compression. Our result, Fig. 2, proves that a sheared

granular packing is not only inhomogeneous with respect
the eigenvalues of the fabric tensdf. andf. + m/2are 1o the forces, but also with respect to the geometrical
the directions of the corresponding eigenvectors. anisotropy, and that these inhomogeneities are correlated.

We found that the principal directions of the fabric A similar ana|ysis can now be app“ed to investigate
tensor in theg-network coincide with those of the strain- the mechanical anisotropy of the average normal force
rate tensor irrespective of the value ¢f Therefore F,(0,¢) and the average friction forcé,(6,&) as a
we setd.(§) = 0.(=) = 0, i.e., the direction of the axis function of the contact direction. As fd#, a second order
of compression in (1). Then a positivé. indicates Fourier expansion provides an adequate representation:
that the direction of anisotropy is parallel to the axis of
compression, whereas a negatidg corresponds to the F,(9, &) = (F)/27) {1 + A, (&) cos2[6 — 0f(§)]},( )
orthogonal direction. Figure 2 shows the amplitude of .
geometrical anisotropy. in the £é-network as a function Fi(0,&) = (F)/2m)A(§)sin2[6 — 6;(£)],
of &. For largef it approaches the geometrical anisotropy

where A, and A, are the magnitudes of mechanical
anisotropy. The analytical form aof, results from the
0.1 ‘ ; : : . fact that the spherical component 6% is zero due to

1 static equilibrium and its principle axes are rotated to
those ofF, by an angle ofr /4. Again we found that the
principal directions are independent §f so that we shall
setd; = 0 in the following.

For the calculation oft,, andA, we introduce two ten-
sorsyi}’ = (1/(F)(Funinj)andysy) = (1/(F)(Ftin)),
wheret; is thei component of the unit vectarorthogo-
nal ton and such thatn, t) preserves the same parity for
Lo 00 o1 all contacts. It can then be shown that” — y\")/

-0.1 — " + ) = (1/2) (A + A,) and (y1 — x2)/(x1 +

6 1 2 3 4 5 6 x2) = (1/2)(A. + A, + A)), Where)(f") and)(én) are the
§/<F> principal values ofy™ and y; and y, are those ofy =
, , , _ x™ + xY. In Fig. 3,4, and A, in the ¢&-network are
FIG. 2. Amplitude of geometrical anisotropy. in the &-  oited as a function of. The two parameters remain
network as a function of normalized with respect to the itive. i.e. th h " | anisot is al iented
average forcgF); see text. The inset shows the polar diagramsposI IVE, 1.€., Ine mechanical anisotropy IS always oriente
of the probability densityE of contact directions for “weak” along the axis of compression. However, the contribution

contacts £ < (F)) and for “strong” contactsK > (F)). of normal forces to the total anisotropy begins to increase
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FIG. 3. Amplitudes of mechanical anisotrogy andA;, in the FIG. 4. Stress ratioQ and the sum0.5(A, + A, + A,) in
&-network as a function of /(F). the &-network as a function of/(F). The inset shows the

eigenvalues and the directions of the stress tensor for weak

- (F < (F)) and strong ¥ > (F)) contacts. The orientation of
significantly only after§ = (F), where bothA, andA;  the weak tensor is irrelevant since its deviatoric component is
have an inflection point. nearly zero.

The physical importance of mechanical anisotropy be-
comes clear when it is considered in connection with the

stress tensor. The stress tengofor a granular system in fr?gﬁlraﬂar?wseﬁzzlr :xsgzlri;ﬁ:sla\:\?:rc;hnaghtgc?kF;ﬁglsﬂeczlrzrzl
a quasistatic state is given by [13] P !

lations as a function of in the complementary network
oij = p(Fid)), 3)  to the &-network. At large values of, say & > 2(F),
wherep is the number of contacts per unit volunfgsthe  strong contacts are distributed in the form of relatively iso-
i component of the contact forde@ = F,n + F,t,andd; lated clusters. Ag is decreased, these clusters grow [see
is thej component of the intercenter vector joining the cen-Fig. 5(a)] and finally a¢ = (F) there is directed percola-
ters of two particles in contact. For spherical particles, weion along the axis of compression [Fig. 5(b)]. The fact
haved = dn. Neglecting the weak correlation between that the whole deviatoric load is supported by a percolat-
d andF, we geto;; = p{(d)(F;n;). Now, introducing the ing network of strong chains makes it plausible that buck-
two components of into this expression and comparing ling of the directed chains under the action of compression
with the expression of , we see thatr = p{(d)(F)y,and occurs. Their stability then requiréateral forces in the

accordingly [8] complementary network. This is the origin of a negative
| geometrical anisotropy in the weak network. This mecha-
Q(¢) = > [A(&) + A (&) + A(E)]. (4) nism goes with a peculiar scheme of the “mobilization”

of friction, defined by the ratioy = |F,|/F,. Figure 6

In Fig. 4, both the stress rati@ and the sunfl/2) (A. +  shows the proportion of sliding contacts to the total num-
A, + A,) are displayed as a function g¢f We see that ber of contacts in thef-network as a function ofé.
Eqg. (4) holds for all¢ with very weak deviations due to a At sliding contacts the friction force takes its maximum
weak correlation betweeth and F. mobilized value,n = u, where i is the coefficient of

Figure 4 reveals an unexpected property of the stresiction. At nonsliding contacts, particles roll over one
tensor: the shear streg® for all forces lower than the another andy < w [14]. Almost 8% of contacts are slid-
average force is negligibly small compared to the totaing in the whole volume of the system @t = 0.18, and
deviatoric loadQ(«) sustained by the system. Those Fig. 6 shows that 96% of them are in the weak network for
forces contribute only 28% of the average pressute+ & = (F). Inother words, almost the whole dissipation by
03)/2 in the medium. This means that the weak networkfriction occurs at contacts bearing a force lower than the
behaves essentially like an interstitial liquid, whereas theverage force. Almost all contacts with a force larger than
strong forces carry the whole deviatoric load and in thishe average, corresponding to the buckling chains, are thus
respect behave like a solid. Furthermore, Eq. (4) showaonsliding.
that this property is related to a compensation between the In all the cases briefly discussed above, the average force
negative anisotropy of fabric and the positive anisotropyappears as a characteristic force separating two comple-
of forces, so thatA. + A, + A, = 0 for forces lower mentary networks: a “load-bearing” percolating network of
than the average. contacts carrying a force larger than the average force, and

Another aspect of stress transmission in a granular packa “dissipative” network of contacts carrying a force smaller
ing is the appearance of chainlike structures of relativelfthan the average force. The load-bearing network carries
strong forces. This observation is suggestive of long-rangthe whole deviatoric load, while the dissipative subnetwork
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FIG. 6. Proportionp; of sliding contacts to the total number
of contacts in thet-network as a function of /(F).

corresponding to two complementary phases. This prop-
erty of a quasistatic granular medium is in contrast to both
liquids and solids.
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