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Solvable Dynamics in a System of Interacting Random Tops
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A new solvable model of synchronization dynamics is introduced. It consists of a system of long
range interacting tops or magnetic moments with random precession frequencies. The model allows for
an explicit study of orientational effects in synchronization phenomena as well as nonlinear processes
in resonance phenomena in strongly coupled magnetic systems. A stability analysis of the incoherent
solution is performed for different types of orientational disorder. A system with orientational disorder
always synchronizes in the absence of noise. [S0031-9007(97)04832-1]
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Much theoretical effort has been devoted to the stud
of synchronization dynamics in simple systems compos
of interacting units. In those cases there is competitio
between oscillations arising from the natural randomne
in the members of a population and macroscopic synchr
nization of the population as a whole. It is widely believe
that these models provide a plausible explanation for t
existence of synchronization phenomena in a large varie
of physical systems ranging from physics to biology [1].

A simple model which describes the emergence
synchronization phenomena in a population of pha
oscillators was proposed many years ago by Kuramo
[2]. Despite extensive studies in the past, there are s
some open issues such as a the study of the dynam
in the absence of external noise [3] or the onset
synchronization in the critical region [4,5]. Only very
recently, a physical realization of the Kuramoto model ha
been found [6].

The aim of this Letter is to introduce a new mode
which shows a new mechanism for synchronization ph
nomena. The fundamental new feature of this model
that it explicitly introduces the role of orientational de
grees of freedom in the synchronization dynamics. Th
feature is ubiquitous in nature in systems formed by uni
with natural magnetic (or angular) moment. Hence th
proposed model in this Letter is a step towards a m
croscopic semiclassical theory of nonlinear phenomena
magnetic resonance processes (and, in particular, fer
magnetic resonance [7]) as well as synchronization ph
nomena in biomagnetism (and, in particular, responses
living organisms to external magnetic fields).

The model consists of a system ofN tops (or magnetic
moments), each one characterized by a random natural p
cession vector$vi , interacting ferromagnetically in a mean-
field way. Randomness in magnetic systems can arise d
to local inhomogeneities or crystal field anisotropies. Th
tops are specified by a three component unit vector$xi

(i ­ 1, N) and obey the following dynamics:
≠ $xi

≠t
­ 2

≠H

≠ $xi
1 $vi 3 $xi 1 $hi , (1)

where the$vi are random quenched precession vectors,H
is the Hamiltonian of the system, and$hi is an external
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white noise with zero mean and correlationk $histd $hjst0dl ­
6Tdijdst 2 t0d. The HamiltonianH is given by

H ­ 2
K
N

X
i,j

$xi $xj 2
X

i

mi $x2
i , (2)

where themi are Lagrange multipliers introduced in orde
to ensure the local constraintj $xij ­ 1 at all times. Note
that in the dynamics there is competition between two o
posite effects: a ferromagnetic interaction, which tries t
align the tops in the same direction, and a natural pr
cession of the tops around random quenched directio
which drives the system to an incoherent state. The co
petition between a dissipative force (2

≠H

≠ $xi
) and a driving

force ($vi 3 $xi) which pumps energy into the system is
essential for the emergence of nonlinear oscillations a
synchronization dynamics in the model. In resonance e
periments this last term mimics some external resonan
magnetic field which induces Larmor precession in th
magnetic moments.

To analyze the previous dynamics it is conve
nient to introduce polar coordinates for the top
$xi ­ ssinui cosfi, sinui sinfi, cosuid as well as for the
random precessions$vi ­ vissinmi cosli , sinmi sinli ,
cosmid. It is not difficult to check that dynamical
equation (1) can be written in the following way:

≠ui

≠t
­ 2KsC sinui 1 A cosui cosfi 1 B cosui sinfid

1 vi sinmi sinsli 2 fid 1 T cotui 1 ai , (3)

≠fi

≠t
sinui ­ 2KsA sinfi 2 B cosfid

1 vif2 sinmi cosui cossli 2 fid

1 cosmi sinuig 1 bi , (4)

where NA ­
P

j cosfj sinuj , NB ­
P

j sinfj sinuj ,
NC ­

P
j cosuj, and theai , bi are white noises with

variance2T .
Solving the previous dynamical equations seems at fi

glance a rather difficult task. Here we will follow a
powerful approach recently introduced for the study o
© 1997 The American Physical Society
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the Kuramoto model [8] by considering an appropriat
set of moments which is invariant under the symmet
of the original dynamical equations (1). Before studyin
the most general case, and for sake of simplicity, we w
first consider the case where there are no frequencies,
vi ­ 0.

The non-disordered casevi ­ 0.—It is easy to ob-
serve from Eq. (1) that dynamics of the model is invaria
under the group of spatial rotations whose generators
L2 and Lz and the eigenfunctions are the spherical ha
monics. The most natural set of moments which can clo
the dynamics is

Mlmstd ­
1
N

NX
i­1

Ylmfuistd, fistdg , (5)

where the Ylmsu, fd ­ ClmPm
l sud expsimfd are the

spherical harmonics withClm ­ fs2l 1 1dsl 2 md!y
4psl 1 md!g1y2 as normalization constants.Pm

l are the
associated Legendre polynomials where2l # m # l.

It is not difficult to write the equation of motion for
the Mlmstd. Using the definition of spherical harmonics
simple recursion formulas for the Legendre polynomia
as well as the Gaussian representation of the noise, i
possible to show that the moments obey the followin
closure equation:

≠Ml,m

≠t
­ KfC sal,mMl21,m 2 bl,mMl11,md

2 sA 2 iBd scl,mMl21,m11 1 dl,mMl11,m11d

1 sA 1 iBd sel,mMl21,m21 1 fl,mMl11,m21dg

2 Tlsl 1 1dMl,m , (6)

wherea, b, c, d, e, andfare Clebsch-Gordan-like coeffi-
cients given by

al,m ­ sl 1 1d

s
l2 2 m2

4l2 2 1
;

bl,m ­ l

s
sl 1 1d2 2 m2

s2l 1 1d s2l 1 3d
, (7)

cl,m ­
sl 1 1d

2

s
sl 2 md sl 2 m 2 1d

4l2 2 1
;

dl,m ­
l
2

s
sl 1 m 1 1d sl 1 m 1 2d

s2l 1 1d s2l 1 3d
, (8)

and el,m ­ cl,2m, fl,m ­ dl,2m. The time de-
pendent parametersA, B, C in (6) are given by
A 1 iB ­

p
8py3 M1,1 , C ­

p
4py3 M1,0. Note that

the dynamical equation (6) is invariant under the tran
formation m ! 2m if the moments satisfy the relation
Ml,2m ­ s21dm Mp

l,m, which is indeed the relation sat-
isfied by the spherical harmonicsYl,m. The recursion
relations Eq. (6) show explicitly that the dynamics ha
been closed. The special caseK ­ 0 corresponds to the
random walk on a spherical surface, a case well know
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in the literature [9]. Then Eq. (6) trivially reduces to
ÙMl,m ­ 2Tlsl 1 1dMl,m, which shows that all moments

decay exponentially fast to zero (exceptM0,0, which is
a constant of motion equal to1y

p
4p). Equation (6)

can be expressed in a more intuitive form introducing a
appropriate generating function. To see this, let us defi

gtsu, fd ­
X̀
l­0

lX
m­2l

Ml,mstdYl,msu, fd

­
1
N

NX
j­1

dscosuj 2 cosuddsfj 2 fd , (9)

which is nothing else than the probability density to
find a top with a given solid angleV ­ su, fd on
the unit sphere. The last equality in Eq. (9) come
from the closure condition of the spherical harmonics
Using Eq. (6) it is not difficult to derive the following
equation forgt :

≠gt

≠t ­ 2divfgt $ysu, fdg 1 T=2gt , where
$y ­ syu , yfd is a two component velocity field given by
yu ­ KrfsinQ cosu cossF 2 fd 2 sinu cosQg; yf ­
Kr sinQ sinsF 2 fd.

The time dependent parametersr , Q, andF which ap-
pear in the velocity field are self-consistently compute
from the probability distributiongt . They are given by
A ­ r sinsQd cossFd; B ­ r sinsQd sinsFd; C ­ cossQd,
where A, B, and C have been introduced before.r ­p

A2 1 B2 1 C2 is the synchronization parameter (i.e.
the length of the global magnetization) and measures t
degree of coherence of the tops. The previous equati
seems hardly manageable but still some results can be
ferred, in particular, the nature of the stationary solution
It is easy to check that these are solutions of the Bolt
mann type, i.e., equilibrium solutions of the Hamiltonian
Eq. (1). This is expected since the model, in the absence
random precessions, is purely relaxational.

The disordered casevi fi 0.—In the presence of ran-
dom precessions the model is not purely relaxational sin
there are external driving random forces. In this case w
expect the emergence of a rich dynamical behavior due
the competition between the ordering ferromagnetic inte
action and the random natural precessions of the tops. F
the sake of simplicity and in order to investigate the effe
of orientational disorder, we will consider here the cas
in which the precession angular velocities have the sam
magnitude (i.e.,vi ­ v) but point in different directions
in space. In this case the disorder is specified by a prob
bility distribution psm, ld. It is easy to generalize the
definition of the moments (5) to include the presence
quenched disorder. Now the moments are characteriz
by four quantum numbers [10], two of them appearing a
a consequence of the disorder,

M
p,q
l,m ­

1
N

NX
i­1

Yl,msui , fidYp,qsmi , lid . (10)

After some algebra, the closure equations for the ne
set of moments read
7
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≠M
p,q
l,m

≠t
­ KfC salmM

p,q
l21,m 2 bl,mM

p,q
l11,md 2 sA 2 iBd scl,mM

p,q
l21,m11 1 dl,mM

p,q
l11,m11d

1 sA 1 iBd sel,mM
p,q
l21,m21 1 fl,mM

p,q
l11,m21dg

2 Tlsl 1 1dMp,q
l,m 1

iv
2

sAp,q
l,m M

p21,q11
l,m 2 B

p,q
l,m M

p11,q11
l,m21 2 C

p,q
l,m M

p21,q21
l,m11 1 D

p,q
l,m M

p11,q21
l,m11 d

1 imvsEp,qM
p11,q
l,m 1 Fp,qM

p21,q
l,m d , (11)

where the expressions fora, b, c, d, e, andf have been given in Eqs. (7) and (8) and the other coefficients are

A
p,q
l,m ­

s
sl 2 m 1 1d sl 1 md sp 2 qd sp 2 q 2 1d

4p2 2 1
; Ep,q ­

s
sp 1 q 1 1d sp 2 q 1 1d

s2p 1 1d s2p 1 3d
, (12)

B
p,q
l,m ­

s
sl 2 m 1 1d sl 1 md sp 1 q 1 2d sp 1 q 1 1d

s2p 1 1d s2p 1 3d
; Fp,q ­

s
sp 2 qd sp 1 qd

4p2 2 1
, (13)
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andC
p,q
l,m ­ A

p,2q
l,2m , D

p,q
l,m ­ B

p,2q
l,2m . The parametersA, B,

and C have been already defined after Eqs. (3) and (
In terms of the new set of moments they are given b
A 1 iB ­ 4p

p
2y3 M

0,0
1,1 ; C ­ 4p

p
1y3 M

0,0
1,0 . Note that

the moments M
p,q
0,0 ­

1
p

4p

R
d VYp,qsVdpsVd [where

V ­ sm, ld is the solid angle and the integration is ove
all of the unit sphere] are constants of the motion. L
us mention that also in this case a probability distr
bution, i.e., a generating function for all the moment
can be defined like in the nondisordered case. We w
not extend on these considerations and instead we w
focus on the novel properties of the model. For th
purpose let us consider the case of disorder distributio
with axial symmetry around thez axis (the following
considerations can be extended easily to the more g
eral case [11]). This means thatpsVd ­ psmd. In
this case it is possible to study the region in the pla
ṽ ­ vyT , K̃ ­ KyT , where the incoherent solution
r ­ 0 is unstable. Our calculation follows essentiall
the equivalent one for the Kuramoto model [12,13]. T
this end we expand the moments around the incoher
solution M

p,q
l,m ­

1
p

4p
dl,0dm,0M

p,q
0,0 1 eh

p,q
l,m expsatd,

where e is a small parameter. Substituting this resu
in Eq. (11) and performing a linear stability analysi
we find a set of two linear equations (uncoupled fro
the rest of the modes) involving the two fundament
modes h1,0sVd, h1,1sVd. These modes are defined b
h

p,q
l,m ­

R
d Vhl,msVdYp,qsVd. After some calculation

(details will be shown elsewhere [11]) the condition for th
linear stability of the incoherent solution is determined b
the roots of the equationl1sgdl2sgd ­ 0, where

l1sgd ­ g3 2
2K̃
3

g2 1 ṽ2g 2
2K̃
3

ṽ2cos2smd , (14)

l2sgd ­ g3 2
2K̃
3

g2 1 ṽ2g 2
K̃
3

ṽ2sin2smd ,

g ­ a 1 2 , (15)

andAsmd ­ 2p
Rp

0 sinsmdpsmdAsmd. These are two cu-
bic equations and each one yields three roots (one of th
8
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is real and the other two are complex conjugates). Wh
the real part of one of these six roots becomes larger th
2 the incoherent solution is unstable. The equation in (1
and (15) that determines the stability is one where t
independentg term is the largest (see the examples b
low). The boundaries of the region where the incohere
solution is unstable indicate the dynamical transition line
While the stability boundaries will depend on the particula
disorder distribution, some general results still can be
ferred. In particular, in the absence of noiseT ­ 0, there
is no critical value ofK below which the incoherent solu-
tion becomes linearly stable. This result is also found
the Kuramoto model with disorder distributions with van
ishing probability of oscillators with zero frequency [12]
for instance, the bimodal distribution [13]. This last cas
has been shown to display a very rich dynamical behav
also shared by the present model. Here we are going
consider three cases of disorder distributions which cov
a large variety of physical situations: (a) precession ve
tors lying in thez axis and randomly pointing in opposite
directions, i.e.,psmd ­ 0 except form ­ 0, p ; (b) pre-
cession vectors uniformly distributed and lying in thex-y
plane, i.e.,psmd ­ 1

2p dsm 2
p

2 d; (c) precession vectors
isotropically distributed on the sphere, i.e.,psmd ­ 1

4p .
Case (a) is particularly interesting despite its simpli

ity. Half of the tops precess in one sense, the other h
precess in the other sense, around thez axis. In this case
cos2smd ­ 1 and the stability condition for the incoheren
solution is determined byl1sgd, which yieldsK̃ , 3. For
K̃ . 3 the incoherent solution is always unstable wha
ever the value ofṽ. A quick inspection on the defi-
nition of the moments Eq. (10) reveals that they redu
to two familiesHl,m ­ M

0,0
l,m, Gl,m ­ M

1,0
l,m. A trivial sta-

tionary solution of dynamical equations is then given b
Hl,m ­ Hl,0dm,0, Gl,m ­ 0. This solution coincides with
that derived previously in the nondisordered casevi ­ 0.
With an appropriate gauge transformation this case can
shown to be equivalent to the relaxation of a mean-fie
antiferromagnet [and the stationary solutions in this ca
are the equilibrium solutions of the Hamiltonian Eq. (2)]
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Cases (b) and (c) display a more rich dynamical b
havior. Case (b) corresponds to all precession dire
tions lying on thex-y plane. In this casesin2smd ­ 1
and the stability criteria is fixed by the roots ofl2sgd.
The incoherent solution is linearly stable forK̃ , 3 and
linearly unstable forK̃ . 6 and for intermediate val-
ues of K̃ depending on the value of̃v. More con-
cretely, the incoherent solution is stable forṽ2 . s8K̃ 2

24dys6 2 K̃d. Case (c) is the limit situation (i.e., the
most orientationally disordered case) with the large
region in the phase diagram where the incoherent s
lution is linearly stable. In this case,cos2smd ­ 1y3
and l1sgd ­ l2sgd. The incoherent solution is lin-
early stable for K̃ , 3, linearly unstable forK̃ . 9,
and stable in the intermediate region3 , K̃ , 9 if
ṽ2 . s12K̃ 2 36dys9 2 K̃d.

The main difference between the present model and
Kuramoto model with bimodal distribution of frequencie
lies in their phase diagrams. The neutral stability lin
for the incoherent solution in the phase diagramsK̃, ṽd
has a vertical parabolic branch atK̃c: ṽ , sK̃ 2 K̃cd21y2

[K̃c ­ 6, 9 for cases (b) and (c), respectively]. In th
Kuramoto model, the neutral stability line is the semire
K̃c ­ 4, ṽ . 1 [13]. In the region where the incoheren
solution is unstable we expect the existence of coher
fixed point solutions as well as oscillatory time depende
solutions. To show this we have numerically solve
Eq. (11) for a finite set of moments using a simpl
second order Euler algorithm. A maximum value o
both angular momental an p equal to 10 is enough for
the calculation (which implies an approximate number
10 000 moments). In Fig. 1 we show the time evolutio
of the synchronization parameter for model (c) in th

FIG. 1. Synchronization parameterr as a function of time for
case (c) atK̃ ­ ṽ ­ 50y3 starting from two initial conditions:
all tops pointing in the same directions (continuous line) an
the uncoherent state (dotted line).
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region where the incoherent solution is unstable startin
from two different initial conditions.

To summarize, we have introduced a solvable model o
interacting random tops or magnetic moments. The mode
explicitly introduces orientational effects in the synchro-
nization dynamics, a feature which is not present in the
Kuramoto model. These features are extensively foun
in a large variety of physical systems formed by inter-
acting units with characteristic magnetic moment. In the
only presence of orientational disorder we have show
the emergence of synchronized oscillations and nonlinea
phenomena (see Fig. 1). These dynamical features a
commonly observed in magnetic resonance experimen
(spin echoes in NMR, nonlinear processes in ferrites a
high frequencies) as well as synchronized responses in li
ing systems in the presence of an external magnetic fiel
The present model altogether with the Kuramoto mode
provide simple examples of analytically tractable models
with nonrelaxational dynamics. The present study shoul
be extended to include frequency dispersion (i.e., thevi

different) and external uniform magnetic fields as well
as the noise free (T ­ 0) dynamics in this model where
the higher modes of the incoherent solution are neutrall
stable.
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