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Solvable Dynamics in a System of Interacting Random Tops
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A new solvable model of synchronization dynamics is introduced. It consists of a system of long
range interacting tops or magnetic moments with random precession frequencies. The model allows for
an explicit study of orientational effects in synchronization phenomena as well as nonlinear processes
in resonance phenomena in strongly coupled magnetic systems. A stability analysis of the incoherent
solution is performed for different types of orientational disorder. A system with orientational disorder
always synchronizes in the absence of noise. [S0031-9007(97)04832-1]

PACS numbers: 05.40.+j, 05.70.Fh, 87.10.+e

Much theoretical effort has been devoted to the studyvhite noise with zero mean and correlation()7,(1')) =
of synchronization dynamics in simple systems composed7's;;5(+ — t'). The Hamiltonian# is given by
of interacting units. In those cases there is competition K
between oscillations arising from the natural randomness H=—-——>x% — Zmlfclz 2
in the members of a population and macroscopic synchro- i<j i

nization of the populatio_n as awholfe. Itis Widely believedhere them; are Lagrange multipliers introduced in order
that these models provide a plausible explanation for thgy ensure the local constraitt;| = 1 at all imes. Note
existence of synchronization phenomena in a large variey,t in the dynamics there is competition between two op-
of physical systems ranging from physics to biology [1]. posite effects: a ferromagnetic interaction, which tries to
A simple model which describes the emergence Ohjign the tops in the same direction, and a natural pre-

synchronization phenomena in a population of phas@ession of the tops around random quenched directions,

oscillators was proposed many years ago by KuramotQynich drives the system to an incoherent state. The com-

[2]. Desplte.extenswe studies in the past, there are st!ll etition between a dissipative forcefa—gf) and a driving
some open issues such as a the study of the dynamlfs X

in the absence of external noise [3] or the onset o orce (@; X ;) which pumps energy into the system is

synchronization in the critical region [4,5]. Only very essential for the emergence of nonlinear oscillations and

recently, a physical realization of the Kuramoto model hagyn.chronlzat!on dynamics n 'Fhe model. In resgnance ex-
been found [6]. periments this last term mimics some external resonance

The aim of this Letter is to introduce a new model Magnetic field which induces Larmor precession in the
magnetic moments.

which shows a new mechanism for synchronization phe- . . I
To analyze the previous dynamics it is conve-

nomena. The fundamental new feature of this model is . t to introd | dinat for the t
that it explicitly introduces the role of orientational de- nient 1o introduce —polar ~coordinates tor tnhe  tops
; = (sin@, cosg;, sind; sing;, cosd;) as well as for the

grees of freedom in the synchronization dynamics. This d 0%, — w;(sin ; COSA,. Sin s, SinA;
feature is ubiquitous in nature in systems formed by unitd@N00M Precession®; = ;(SiNu; COSA;, SN, SINA;,

with natural magnetic (or angular) moment. Hence theCOS“i)' It is not difficult to check that dynamical

proposed model in this Letter is a step towards a mj&quation (1) can be written in the following way:
croscopic semiclassical theory of nonlinear phenomena i é;
magnetic resonance processes (and, in particular, ferrog;
magnetic resonance [7]) as well as synchronization phe-
nomena in biomagnetism (and, in particular, responses of

living organisms to external magnetic fields).

= —K(Csinf; + Acosf; cos¢; + Bcosh; sing;)

+ w;Sinu;sin(A; — ¢;) + Tcoth; + a;, (3)

The model consists of a system &ftops (or magnetic 99; sing; = —K(Asing; — Bcose,)
moments), each one characterized by a random natural pre- 97
cession vectow;, interacting ferromagnetically in a mean- + w;[— sinu; cosh; cogA; — ¢;)
field way. Randomness in magnetic systems can arise due i
to local inhomogeneities or crystal field anisotropies. The + cosp; sing;] + Bi, (4)

tops are specified by a three component unit ve@tor \where NA = 3, cosé;sind,, NB = 3, sing;sing;
(i = 1, N) and obey the following dynamics: ¢ ! 2 o L v
) I Y g ay . NC = Zi cosf;, and thea;, B; are white noises with
Xi _ _aH @ X F o+ 1) variance2T .
ot 0% Lo b Solving the previous dynamical equations seems at first
where thew; are random quenched precession vectBfs, glance a rather difficult task. Here we will follow a

is the Hamiltonian of the system, ang} is an external powerful approach recently introduced for the study of
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the Kuramoto model [8] by considering an appropriatein the literature [9]. Then Eq. (6) trivially reduces to
set of moments which is invariant under the symmetryMl,m = —TI(l + 1)M,,,, which shows that all moments
of the original dynamical equations (1). Before studyingdecay exponentially fast to zero (exceWty, which is
the most general case, and for sake of simplicity, we willa constant of motion equal td/+/4). Equation (6)
first consider the case where there are no frequencies, i.€an be expressed in a more intuitive form introducing an

w; = 0. appropriate generating function. To see this, let us define
The non-disordered case; = 0.—It is easy to ob-

serve from Eq. (1) that dynamics of the model is invariant 2.0, ) = Z
=0
1
N u

M~

. . M ()Y (6,
under the group of spatial rotations whose generators are / (Y1 (6, 6)

L? and L? and the eigenfunctions are the spherical har-
monics. The most natural set of moments which can close =
the dynamics is

M=3

5(cosh; — cosh)d(p; — @), (9)

j=1
1 & which is nothing else than the probability density to
My (1) = NZYlm[ei(t)vd)i(t)], () find a top with a given solid angl€) = (0,¢) on
- the unit sphere. The last equality in Eq. (9) comes
from the closure condition of the spherical harmonics.
ot . Using Eq. (6) it is not difficult to derive the following
47r(I + m)!]"/? as normalization constantsP]" are the equation forg,: 2 = —div[g,5(6, )] + TV2g,, where
. . . at 9 1

asso.mated L_egendre polynomlals whgrés m = l i = (vg.vy) is a two component velocity field given by

It is not d|ff|pult to ertg 'the equat|on'of motion fpr ve = Kr[sin® cosf cod — ¢) — sind cosO]; vy —
the M, (r). Using the definition of spherical harmonics, Krsin® sin® — &).

simple recursion formulas for the Legendre polynomials tha time dependent parametets®, and® which ap-

as well as the Gaussian representation of the noise, itg?

where the Y,,(0,¢) = C,,,P;"(0)explim¢) are the
spherical harmonics withCy, = [(2] + 1)(I — m)!/

. .~ pear in the velocity field are self-consistently computed
possible to show that the moments obey the following,q 1, the probability distributiong,. They are given by

closure equation: A = rsin(®)cogd); B = rsin(®)sin(®); C = cog0),
OM where A, B, and C have been introduced beforer =
o~ KIC(amMi1m = bimMisim) A2 + B + C? is the synchronization parameter (i.e.,

. the length of the global magnetization) and measures the

— (A = iB) (cimMi-1m+1 + dimMis1m+1)  degree of coherence of the tops. The previous equation

+ (A + iB) (etmMi—1m—1 + fimMis1m—1)]  S€€MS hardly manageable but still some results can be in-
ferred, in particular, the nature of the stationary solutions.

=TI+ DM, (6) It is easy to check that these are solutions of the Boltz-
wherea, b, ¢, d, e, andfare Clebsch-Gordan-like coeffi- mann type, i.e., equilibrium solutions of the Hamiltonian
cients given by Eq. (1). Thisis expected since the model, in the absence of
random precessions, is purely relaxational.
apn = (1 + 1) 12— m? . The disordered case; # 0.—In the presence of ran-
412 — 1° dom precessions the model is not purely relaxational since
there are external driving random forces. In this case we
bry = (I + 1) —m? @) expect the emergence of a rich dynamical behavior due to

S Ner+ @+ 3)° the competition between the ordering ferromagnetic inter-

action and the random natural precessions of the tops. For

t+1D |[0—-—m(I—-—m—1) the sake of simplicity and in order to investigate the effect
Clm = 75 412 — 1 ; of orientational disorder, we will consider here the case
in which the precession angular velocities have the same
I [U+m+1DI+m+2) magnitude (i.e.w; = w) but point in different directions
dim = 9 Q21 + 1) (21 + 3) ’ ®) i space. In this case the disorder is specified by a proba-

bility distribution p(u, A). It is easy to generalize the
definition of the moments (5) to include the presence of
quenched disorder. Now the moments are characterized
by four quantum numbers [10], two of them appearing as
a consequence of the disorder,

and  e; = Ci—ms fim = di—m. The time de-
pendent parametersA,B,C in (6) are given by
A+ l'B:\/87T/3M1,1,C:\/477/3M1,0. Note that
the dynamical equation (6) is invariant under the trans
formation m — —m if the moments satisfy the relation N
M, = (=1)"M/,,, which is indeed the relation sat- ) 1

isfied by the spherical harmonicg ,,. The recursion M,”,,‘f = NZ Vim0 @)Y pq(pais Ai) - (10)
relations Eq. (6) show explicitly that the dynamics has =l

been closed. The special cake= 0 corresponds to the  After some algebra, the closure equations for the new
random walk on a spherical surface, a case well knowrset of moments read
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M , , . : :
o = KIC (@M = binMi1n) = (A = iB) (comM [y wsr + dinMi 5 rs1)
(A iB) (ernM 1+ FrnMI 1]

P4 iw  pq, p—lg+l P, ptlgtl P44 ,p—1g—1 P44 ,ptlg—1
- Tl(l + 1)]Wl,m + T(Al,li,m - BZ,li,mfl - Cl,mMZ,m+1 + Dl,mMZ,m+1 )

+ imw(Ep M + Fp M), (11)

where the expressions fat b, ¢, d, e, andf have been given in Egs. (7) and (8) and the other coefficients are

E,, = (p+q+1)(p—q+1)’ (12)

Y :\/u —m+ DI +m(p-a(p-q-1)
lm

4p? — 1 ’ 2p + )(2p + 3)
pa _ [UzmFtDUEm(ptgt2prgtD, _ -9 (p+q
B _\/ 2p +1)2p +3)  Fra _\/ apr -1 (13)

andcy;! = AV DI = B! The parameters, B, | is real and the other two are complex conjugates). When
and C have been already defined after Egs. (3) and (4)the real part of one of these six roots becomes larger than
In terms of the new set of moments they are given by2 the incoherent solution is unstable. The equation in (14)
A+ iB = 4w \2J3M\}:C = 4w \[1/3M};. Note that and (15) that determines the stability is one where the

the momentsMby = —~— [d Qy,,(Q)p(Q) [where independenty term is the largest (see the examples be-

Q = (u,A) is the soling—ﬁgle and the integration is over!OW). The boundaries of the region where the incoherent

all of the unit sphere] are constants of the motion. | eSOlution is unstable indicate the dynamical transition lines.
us mention that also in this case a probability distri-While the stability boundaries will depend on the particular
bution, i.e., a generating function for all the moments disorder distribution, some general results still can be in-

can be defined like in the nondisordered case. We wilféTed. In particular, in the absence of noe= 0, there
not extend on these considerations and instead we wilp N0 critical value ofk below which the incoherent solu-
focus on the novel properties of the model. For thistion becomes linearly stable. This result is also found in

purpose let us consider the case of disorder distributiond'® Kuramoto model with disorder distributions with van-
with axial symmetry around the axis (the following ishing probability of oscillators with zero frequency [12],

considerations can be extended easily to the more geﬁ‘?r instance, the bimodal distribution [13]. This last case
eral case [11]). This means that(Q) = p(w). In has been shown to display a very rich dynamical behavior

this case it is possible to study the region in the plané/SC Shared by the present model. Here we are going to
@ = w/T, K = K/T, where the incoherent solution consider three cases of disorder distributions which cover

r = 0 is unstable. Our calculation follows essentially & large variety of physical situations: (a) precession vec-

the equivalent one for the Kuramoto model [12,13]. TotOrS l¥ing in thez axis and randomly pointing in opposite

this end we expand the moments around the incohereffirections, i-te-yp(,u)_f: 0| e’é‘_"etptbfct’”é :g’lﬂ.; (b) pre-
solution M/}l — ——5,08,00M{ + enl expla), cession vectors uniformly distributed and lying in the

where € is a small parameter. Substituting this resultPlane, ie.p(u) = 57 3(n = 7); () precession vectors
in Eq. (11) and performing a linear stability analysis Sotropically distributed on the sphere, i.p(u) = z7.
we find a set of two linear equations (uncoupled from, Case (a) is particularly interesting despite its simplic-
the rest of the modes) involving the two fundamentaly- Half_ of the tops precess in one Sense, the_other half
modes n10(Q), 71.1(Q). These modes are defined by Rrecess in the other sense, aroundztais. In this case

nld = [dQma(Q)Y,,(Q). After some calculation cos(u) = 1 and the stability condition for the incoherent
,m ,m pP-q )

(details will be shown elsewhere [11]) the condition for thesplution is determined by (y), which yieldsk™ < 3. For

linear stability of the incoherent solution is determined byK > 3 the |ncoher~ent SOIUt.'On 1S alwa_ys unstable what—
the roots of the equation; (y)A,(y) = 0, where ever the value ofo. A quick inspection on the defi-

nition of the moments [%(a (10) reveals that they reduce

2K 2K, ——— to two familiesH, . = M, o, Gi.. = M,">. A trivial sta-
_ 3 2 ~2_ ~2 l,m I,m> Ylm l,m
Mly) =y 3 ¥V T ety - - atcos(u), (14) tionary solution of dynamical equations is then given by
K ¢ Hi,m = H;06m0,G1,m = 0. This solution coincides with
Ly) =79 — =% + @’y — — @*sirt(n) ' i i i
2y Y 3 Y YT 3 M), that derived previously in the nondisordered case= 0.

With an appropriate gauge transformation this case can be
. y=a+2, (15  ghown to be equivalent to the relaxation of a mean-field

andA(u) = 2 [ sin(u)p(u)A(r). These are two cu- antiferromagnet [and the stationary solutions in this case

bic equations and each one yields three roots (one of theare the equilibrium solutions of the Hamiltonian Eq. (2)].

8
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Cases (b) and (c) display a more rich dynamical beregion where the incoherent solution is unstable starting
havior. Case (b) corresponds to all precession direcfrom two different initial conditions.
tions lying on thex-y plane. In this caseir’(u) = 1 To summarize, we have introduced a solvable model of
and the stability criteria is fixed by the roots af(y). interacting random tops or magnetic moments. The model
The incoherent solution is linearly stable f&r < 3 and  explicitly introduces orientational effects in the synchro-
linearly unstable forK > 6 and for intermediate val- nization dynamics, a feature which is not present in the
ues of K depending on the value of. More con- Kuramoto model. These features are extensively found
cretely, the incoherent solution is stable fof > (8K — in a large variety of physical systems formed by inter-
24)/(6 — K). Case (c) is the limit situation (i.e., the acting units with characteristic magnetic moment. In the
most orientationally disordered case) with the largesbnly presence of orientational disorder we have shown
region in the phase diagram where the incoherent sdhe emergence of synchronized oscillations and nonlinear
lution is linearly stable. In this caseos(u) = 1/3  phenomena (see Fig. 1). These dynamical features are
and A;(y) = A (y). The incoherent solution is lin- commonly observed in magnetic resonance experiments
early stable forK < 3, linearly unstable forK > 9, (spin echoes in NMR, nonlinear processes in ferrites at
and stable in the intermediate regich< K <9 if  high frequencies) as well as synchronized responses in liv-
@ > (12K — 36)/(9 — K). ing systems in the presence of an external magnetic field.

The main difference between the present model and th€he present model altogether with the Kuramoto model
Kuramoto model with bimodal distribution of frequencies provide simple examples of analytically tractable models
lies in their phase diagrams. The neutral stability linewith nonrelaxational dynamics. The present study should
for the incoherent solution in the phase diagrékh @) be extended to include frequency dispersion (i.e.,dhe
has a vertical parabolic branchkt: @ ~ (K — K.)~'/2  different) and external uniform magnetic fields as well
[K. = 6,9 for cases (b) and (c), respectively]. In the as the noise freeT{ = 0) dynamics in this model where
Kuramoto model, the neutral stability line is the semirectthe higher modes of the incoherent solution are neutrally
K. =4, > 1[13]. In the region where the incoherent stable.
solution is unstable we expect the existence of coherent F. R. is grateful to the Foundation for Fundamental Re-
fixed point solutions as well as oscillatory time dependensearch of Matter (FOM) in The Netherlands for financial
solutions. To show this we have numerically solvedsupport through Contract No. FOM-67596. | acknowl-
Eg. (11) for a finite set of moments using a simpleedge A. Labarta, |. Pagonabarraga, C.J. Perez-Vicente,
second order Euler algorithm. A maximum value ofand J. M. Rubfor useful discussions and L. L. Bonilla for
both angular momenta an p equal to 10 is enough for a careful reading of the manuscript.
the calculation (which implies an approximate number of
10000 moments). In Fig. 1 we show the time evolution
of the synchronization parameter for model (c) in the
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