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We consider quantum spin systems with dimerization, which at strong coupling have singlet gro
states. To account for strong correlations, theS  1 elementary excitations are described as
dilute Bose gas with infinite on-site repulsion. This approach is applied to the two-layer Heisenb
antiferromagnet atT  0 with general couplings. Our analytic results for the triplet gap, the excitatio
spectrum, and the location of the quantum critical point are in excellent agreement with nume
results obtained by dimer series expansions. [S0031-9007(98)06407-2]
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One of the most challenging problems of quantum
magnetism is the description of transitions between phas
with spontaneously broken symmetry and disordered (sp
liquid) phases. The properties of the disordered phas
are also of great interest [1].

A variety of quantum spin models has been introduce
in connection with the high-Tc cuprates and other recently
discovered compounds. Examples include the Heisenbe
ladder [2], the two-layer Heisenberg model [3], and 2D
square lattice models with dimerization [4]. In all of
the above the Hamiltonian favors singlet formation o
the spins between the chains (layers) or on neighbori
sites. For this class of models the disordered phase
relatively well understood, since the lowest excitatio
above the singlet is a massive triplet. Another examp
is the CaV4O9 lattice [5], where the spins form a singlet
state on a plaquette. There also have been suggesti
that dimerization of different kinds may occur in theJ1-J2

model [6,7].
All of the models mentioned above, except for the lad

der, exhibit a quantum phase transition from a disorder
dimer phase to a collinear Néel phase with long range o
der in the ground state as the dimerization decreases. T
transition occurs due to competition between singlet fo
mation and antiferromagnetic order. A useful approach
the description of the disordered phase is the bond ope
tor representation for spins, introduced by Chubukov [8
and Sachdev and Bhatt [6]. This representation can
considered as the analog of the usual Holstein-Primako
transformation for phases with unbroken spin rotation
symmetry. Let us consider twoS  1y2 spins $S1, $S2

and introduce operators for creation of a singletsyj0l 
1

p
2
sj "#l 2 j #"ld and three triplet statesty

a , a  x, y, z
above a fictitious vacuum statej0l: ty

x j0l  2
1

p
2
sj ""l 2

j ##ld, ty
y j0l 

i
p

2
sj ""l 1 j ##ld, ty

z j0l 
1

p
2
sj "#l 1 j #"ld.

Then the following representation is exact [6]:

Sa
1,2 

1
2

s6syta 6 ty
as 2 ieabgt

y
btgd . (1)

The four operators satisfy the usual bosonic commutati
relations. In order to ensure that the physical states a
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either singlets or triplets one has to impose the conditio
sys 1 ty

ata  1. For a lattice spin system, the constrain
is typically taken into account in a mean-field fashion
i.e., it is not strictly satisfied on every site, but only
on average [6]. A slightly different representation ca
be obtained by choosing the singlet as the ground sta
Then Eq. (1) is still valid, but the operators has the
form s 

p
1 2 ty

ata, which formally is the resolution
of the constraint [3,8]. Again, the form ofs ensures
that only physical states are present. However, it is ve
difficult to take thes term into account due to its nonlinear
nature. Expansions of the square root to infinite orde
have been proposed [3]. Unfortunately, there is no sma
parameter in this expansion and therefore the summati
is ambiguous and technically complicated. Alternatively
one can use numerical techniques, based on the Gutzwi
projection method [9].

In this Letter we present an effective analytical metho
to deal with the hard core constraint. This approach ca
be applied to any model, for which the excitations in
the disordered phase are triplets above a strong coupli
singlet ground state. For definiteness we consider th
model

H  J
X
ki,jl

$S1i ? $S1j 1 lJ
X
ki,jl

$S2i ? $S2j

1 J'

X
i

$S1i ? $S2i . (2)

All the spins are1y2 and the couplings are antiferromag-
netic (J, J' $ 0). The spins$S1i , $S2i represent two planes
of Heisenberg spins, coupled through the third term in (2
The summation in each plane is over nearest neighbors
a square lattice. In the present Letter we consider tw
cases:l  1, which corresponds to the two-layer Heisen
berg model, andl  0, describing free spins in one of the
planes. The latter model is interesting because of its co
nection to the Kondo lattice model (at half filling) with
an additional repulsive Hubbard interaction between th
conduction electrons. In the limit when the repulsion i
strong, the charge degrees of freedom are frozen, wh
© 1998 The American Physical Society
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the spin part is described by the Heisenberg Hamilto
ian, leading to (2) (atl  0). A simplified version of
this model was introduced by Doniach [10] to study th
competition between local singlet formation (the Kond
effect) and the induced magnetic (RKKY) interaction be
tween the free spins. The early mean-field treatment
Doniach predicted a criticalJ', below which the free
spins order antiferromagnetically. Recently this mode
was also studied numerically by Matsushita, Gelfand, an
Ishii [11] who also found a finite transition point.

For J' ¿ J interplane singlets are favored and th
wave function is a product of on-site dimers. The
excitations above this strong coupling ground state a
triplets. In order to obtain the effective Hamiltonian for
the triplets we pair the spins into interplane singlets b
using (1). Alternatively, instead of applying the trans
formation (1), one could use perturbation theory in th
“hopping” J, and calculate matrix elements of the type
ktai , sjj $S1i ? $S1j jsi , tajl  ktai , taj j $S1i ? $S1j jsi , sj l 
1y4, ktai , tbjj $S1i ? $S1jjtgi , tdjl  1y4sdaddgb 2 dab 3

dgdd, etc. The latter method is more useful when add
tional degrees of freedom are present in the problem, e.
holes. For a start we neglect the constraint complete
[i.e., formally sets  1 in (1)] and obtain the effective
Hamiltonian

H  H2 1 H3 1 H4 , (3)

H2 
X
k,a

Akt
y
katka 1

Bk

2
sty

kat
y
2ka 1 H.c.d , (4)

H3 
sl 2 1dJ

4

X
ki,jl,abg

hfieabgt
y
ai t

y
bjtgj 1 H.c.g

1 fi $ jgj , (5)

H4 
s1 1 ldJ

4

X
ki,jl,ab

hty
ait

y
bjtbitaj 2 t

y
ai t

y
aj tbitbjj .

(6)
The coefficients in (4) areAk  J' 1 s1 1 ldJjk,
Bk  s1 1 ldJjk, where jk  fcosskxd 1 cosskydgy2.
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By using the Bogoliubov transformationtka 
ukt̃ka 1 yk t̃

y
2ka we obtain for the excitation spectrum

at the quadratic level (H2 only) v
2
k  A2

k 2 B2
k. The

gap D  vp ,p is nonzero forJ' . sJ'dc  2s1 1 ldJ
and vanishes atsJ'dc, signaling a transition to a Néel
ordered phase. The location of the critical point at th
level of approximationsJ'dc  2J sl  0d, 4J sl  1d
differs significantly from the recent numerical results 1.3
([11], this Letter) and 2.54 [12], respectively. Let u
mention that spin wave theory in the ordered phase wo
rather poorly for this problem, predicting forl  1,
sJ'dc ø 4.3J [3].

We find, in agreement with previous work [2,6], tha
the effect of the termsH3 andH4 on the spectrum is quite
small and therefore cannot explain the numerical resu
We treat these terms later perturbatively.

The dominant contribution to the renormalization o
the spectrum comes from the constraint that only one
the triplet states can be excited on every site:t

y
ait

y
bi 

0. This hard-core condition can be taken into accou
by introducing an infinite on-site repulsion between th
bosons:

HU  U
X

i,ab

t
y
ai t

y
bitbi tai , U ! ` . (7)

Since the interaction is infinite, one has to find the e
act scattering amplitude for the triplets. Our treatment
similar to the one used for Fermi gas with hard cor
which appears in the theory of nuclear matter and3He.
The approach was initiated by Brueckner [13]. The sca
tering vertexGab,gdsKd, K ; sk, vd in the ladder ap-
proximation satisfies the Bethe-Salpeter equation, sho
in Fig. 1a. It depends on the total energy and mome
tum of the incoming particlesK  K1 1 K2 and has
the structureGab,gd  Gdagdbd. Since the interaction is
local and nonretarded, the equation forG can be readily
solved with the result
GsKd  i

√ Z d3Q
s2pd3

GsQdGsK 2 Qd

!21

 2

√
1
N

X
q

u2
qu2

k2q

v 2 vq 2 vk2q
1

(
u ! y

v ! 2v

)!21

. (8)
oint.
in-
f an
s of

re
an-

e it
Here GsQd is the normal triplet Green’s function, i.e.
Gsk, td  2ikTssstkastdty

kas0ddddl and the Bogoliubov coef-
ficientsu2

k, y
2
k  61y2 1 Aky2vk. The imaginary part

of G is determined by the rulev ! v 1 id.
The basic approximation made in the derivation ofGsKd

is that we neglect all anomalous scattering vertices, wh
are present in the theory due to the existence of anomal
Green’s functions,Gask, td  2ikT sssty

2kastdty
kas0ddddl. We

have also derived the complete set of equations by tak
all vertices into account. However, our key observation
that all anomalous contributions are suppressed by an ad
tional small parameter, present in the theory—the dens
,

ich
ous

ing
is
di-

ity

of triplet excitationsni 
P

akty
aitail  3N21

P
q y2

q ø
0.1 atJ'yJ ø 2.5. We find thatni is quite small through-
out the disordered phase, even close to the transition p
Thus the triplet excitations behave as a dilute, strongly
teracting Bose gas. Consequently, since an insertion o
anomalous Green’s function into the intermediate state
the ladder in Fig. 1a brings powers ofyq into the equa-
tion for the amplitude, its contribution is small. Therefo
Eq. (8) can be considered as the first term in an exp
sion in powers of the gas parameterni . To be con-
sistent, we also neglect the second term in (8), sinc
containsyq.
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FIG. 1. (a) Equation for the scattering amplitudeG. (b)
Diagrams for the self-energy, corresponding toG. (c) One-
loop diagrams, arising from the three-point interaction.

The self-energy, corresponding to the scattering a
plitude G is found as a sum of the diagrams shown
Fig. 1b:

Ssk, vd 
4
N

X
q

y2
qGsk 1 q, v 2 vqd . (9)

Let us stress again that at our level of approximati
(dilute gas), there is only a normal self-energy. Nex
in order to find the renormalized spectrum, one has
solve the coupled Dyson equations for the normal a
anomalous Green’s functions. Since the procedure is w
known from the theory of a Bose gas, we write only th
final result for the normal Green’s function [14]:

Gsk, vd


v 1 Ak 1 Ssk, 2vd

fv 1 Ak 1 Ssk, 2vdg fv 2 Ak 2 Ssk, vdg 1 B2
k

.

(10)
After separating this equation into a quasiparticle cont
bution and incoherent background, we find

Gsk, vd 
ZkU2

k

v 2 Vk 1 id
2

ZkV 2
k

v 1 Vk 2 id
1 Ginc .

(11)

The renormalized triplet spectrum and the renomalizati
constant are

Vk  Zk

q
fAk 1 Ssk, 0dg2 2 B2

k , (12)

Z21
k  1 2

√
≠S

≠v

!
v0

. (13)

The renormalized Bogoliubov coefficients in (11) are

U2
k, V 2

k  6
1
2

1
ZkfAk 1 Ssk, 0dg

2Vk
. (14)

Equations (8),(9),(12)–(14) have to be solved selfcons
tently for Ssk, 0d andZk. From Eq. (11) it is also clear
5792
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that one has to replaceuk !
p

Zk Uk, yk !
p

Zk Vk in
(8) and (9) [and also in (15) and (16); see below].

We have found that the effect ofH3 and H4 on the
quasiparticle spectrum is small, compared to the ren
malization due toHU . However, these two terms have
to be included for the precise determination of the crit
cal point. We treatH4 in mean-field theory, by splitting
the quartic operator products into all possible pairs. Th
is equivalent to taking only one-loop diagrams (first ord
in J) into account. These diagrams renormalize the tw
coefficients

Ak ! Ak 1 2s1 1 ldJjk
1
N

X
q

jqy2
q , (15)

Bk ! Bk 2 2s1 1 ldJjk
1
N

X
q

jquqyq . (16)

This concludes the solution of the two-layer problem
sl  1d.

To solve the casel  0 we also have to take into
accountH3. It is convenient to rewriteH3 in terms of
the Bogoliubov transformed operatorst̃ka , t̃

y
ka, since in

this way only the normal Green’s functions remain. T
one-loop order (J2) the renormalization of the spectrum
is determined by the sum of the two diagrams in Fig. 1
The formula for the interaction vertex in Fig. 1c is quit
lengthy and we do not present it here. Once the vertex
known, the self-energy of Fig. 1c can be easily compute
leading to renormalization ofAk andBk.

The results of the self-consistent numerical solutio
are summarized in Figs. 2 and 3. Figure 2 shows t

1 2 3 4

0

0.2

0.4

0.6

FIG. 2. Triplet gap as a function of interlayer coupling fo
l  0 (left curves) andl  1 (right curves). The dashed
lines with the solid circles are the results of the self-consiste
solution. Open squares (with error bars) are from direct Pa
approximants to the dimer series while solid lines are fro
approximants which assumen  0.71.
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FIG. 3. Triplet excitation spectrum forl  1 along high
symmetry directions in the Brillouin zone. The dashed lin
with solid circles is the self-consistent solution while the soli
lines are from direct summation of the dimer series. Th
upper (atk  0) dimer series curve corresponds to the critica
(within the error bar) spectrum (J'yJ  2.54), while the upper
analytical curve is computed atJ'yJ  2.6, in order to have
the same gapDyJ'  0.05. The lower (at k  0) curves
correspond toJ'yJ  3.33.

triplet gap D  Vp,p as a function of the interlayer
coupling. The transition into the Néel ordered phas
occurs at sJ'yJdc  2.57 sl  1d, 1.37 sl  0d. We
have also calculated the gap by using dimer seri
expansions [12] up to order 11 (10) forl  1 (l  0).
The critical points are found atsJ'yJdc  2.52s2d sl 
1d, 1.39s4d sl  0d, or 2.537s5d sl  1d, 1.393s8d sl 
0d by fixing the critical exponentn  0.71 [12]. The
agreement between the analytic method and the dim
series results is excellent. Such a good agreement is be
than might have been expected. Our analytic metho
involves approximations and an error of a few percent
always expected. The gap critical exponentn, defined as
D , sJ 2 Jcdn , is n  0.5 in our analytical calculation,
while the dimer series givesn ø 0.7, in agreement
with the Os3d nonlinear sigma model prediction. Recal
that the mean-field approximation givesn  1. Our
diagrammatic approach is not valid very close to th
critical point since the neglected terms inGsKd are of
the form

P
q y2

qyvq and thus logarithmically diverge at
criticality. However this happens only very near to th
critical point.

The comparison of the excitation spectra, presented
Fig. 3, shows that the agreement is very good over almo
the whole Brillouin zone. The disagreement between th
two curves is largest atk  0, where it is about 5%.
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In conclusion, we have presented an effective analytic
approach to take into account the hard-core constra
which appears in the bond operator description of th
dimer phase. The triplet excitations are described
a dilute Bose gas with infinite on-site repulsion. We
find that the spectrum is renormalized mostly due t
the hard core, while the additional three- and four-poin
interactions are comparatively weak and can be treat
perturbatively. The advantages of our formulation ar
that it is simple and captures the essential physics, bei
in agreement within a few percent with results obtaine
by dimer series expansions. Obvious other applicatio
of the method include the 2D Heisenberg model wit
dimerization, the Heisenberg ladder, and the Kondo latti
model [15]. The method can also be easily generalize
to describe phases with spontaneously broken symmetr
and nonzero temperature.
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