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We consider quantum spin systems with dimerization, which at strong coupling have singlet ground
states. To account for strong correlations, tfie= 1 elementary excitations are described as a
dilute Bose gas with infinite on-site repulsion. This approach is applied to the two-layer Heisenberg
antiferromagnet al' = 0 with general couplings. Our analytic results for the triplet gap, the excitation
spectrum, and the location of the quantum critical point are in excellent agreement with numerical
results obtained by dimer series expansions. [S0031-9007(98)06407-2]
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One of the most challenging problems of quantumeither singlets or triplets one has to impose the condition:
magnetism is the description of transitions between phaseds + 1+, = 1. For a lattice spin system, the constraint
with spontaneously broken symmetry and disordered (spiis typically taken into account in a mean-field fashion,
liquid) phases. The properties of the disordered phasd<., it is not strictly satisfied on every site, but only
are also of great interest [1]. on average [6]. A slightly different representation can

A variety of quantum spin models has been introducede obtained by choosing the singlet as the ground state.
in connection with the high=. cuprates and other recently Then Eq. (1) is still valid, but the operator has the
discovered compounds. Examples include the Heisenbefgrm s = /1 — t1z,, which formally is the resolution
ladder [2], the two-layer Heisenberg model [3], and 2Dof the constraint [3,8]. Again, the form of ensures
square lattice models with dimerization [4]. In all of that only physical states are present. However, it is very
the above the Hamiltonian favors singlet formation ofdifficult to take thes term into account due to its nonlinear
the spins between the chains (layers) or on neighboringature. Expansions of the square root to infinite order
sites. For this class of models the disordered phase isave been proposed [3]. Unfortunately, there is no small
relatively well understood, since the lowest excitationparameter in this expansion and therefore the summation
above the singlet is a massive triplet. Another examplés ambiguous and technically complicated. Alternatively,
is the CaViOy lattice [5], where the spins form a singlet one can use numerical techniques, based on the Gutzwiller
state on a plaquette. There also have been suggestiopsojection method [9].
that dimerization of different kinds may occur in thgJ, In this Letter we present an effective analytical method
model [6,7]. to deal with the hard core constraint. This approach can

All of the models mentioned above, except for the lad-be applied to any model, for which the excitations in
der, exhibit a quantum phase transition from a disorderethe disordered phase are triplets above a strong coupling
dimer phase to a collinear Néel phase with long range orsinglet ground state. For definiteness we consider the
der in the ground state as the dimerization decreases. Thisodel
transition occurs due to competition between singlet for-

mation and antiferromagnetic order. A useful approach to H=JY Si- S+ > S-Sy
the description of the disordered phase is the bond opera- (i) (i)
tor representation for spins, introduced by Chubukov [8] 7, Z i - S )

and Sachdev and Bhatt [6]. This representation can be

considered as the analog of the usual Holstein-Primakoff . ) )
transformation for phases with unbroken spin rotationaPll the spins arel/2 and the couplings are antiferromag-
symmetry. Let us consider tw§ = 1/2 spins S;, S,  netic U,/ = 0). The spinsSy;, $»; represent two planes

and introduce operators for creation of a singlél0) = of Heisenberg spins, coupled through the third term in (2).
%q 11y — | 1)) and three triplet states!, o = x,y,z The summation in each plane is over nearest neighbors on

a square lattice. In the present Letter we consider two
casesA = 1, which corresponds to the two-layer Heisen-
berg model, and = 0, describing free spins in one of the
planes. The latter model is interesting because of its con-
nection to the Kondo lattice model (at half filling) with
an additional repulsive Hubbard interaction between the
The four operators satisfy the usual bosonic commutatiosonduction electrons. In the limit when the repulsion is
relations. In order to ensure that the physical states argtrong, the charge degrees of freedom are frozen, while

above a fictitious vacuum staf@): 1|0) = —%(I m -

| 1), £H10) = =1 + 1), 410y = A 1)+ [1D).

Then the following representation is exact [6]:

1 .
¢, = E(isfta +rls — zeaﬁyt;ty). 1)
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the spin part is described by the Heisenberg HamiltonBy using the Bogoliubov transformations, =
ian, leading to (2) (ath = 0). A simplified version of  u,7., + vki_x, We obtain for the excitation spectrum
this model was introduced by Doniach [10] to study theat the quadratic levelH, only) i = A2 — Bi. The
competition between local singlet formation (the Kondogap A = w., , is nonzero for/, > (J.). = 2(1 + A)J
effect) and the ind_uced magnetic (RKKY) interaction be-gnd vanishes at/ )., signaling a transition to a Néel
tween the free spins. The early mean-field treatment ofrdered phase. The location of the critical point at this
Doniach predicted a critica¥,, below which the free level of approximation(/,). = 2J (A = 0), 4 (A = 1)

spins order antiferromagnetically. Recently this modelyigters significantly from the recent numerical results 1.39
was also studied numerically by Matsushita, Gelfand, an [11], this Letter) and 2.54 [12], respectively. Let us

Ishii [11] who also found a finite transition point. mention that spin wave theory in the ordered phase works
For J, > J interplane singlets are favored and the b y P

wave function is a product of on-site dimers. Therather poorly for this problem, predicting fox = 1,
excitations above this strong coupling ground state aré’L)C ~ 437 3]

triplets. In order to obtain the effective Hamiltonian for hWeﬁflntd,fl?ha%reegIent ‘g’gh pret\;]lous wc;rk [2.’6]’ t_?at
the triplets we pair the spins into interplane singlets b)} € eflect of tné lerms’s andli, on the Spectrum 1S quite

using (1). Alternatively, instead of applying the trans- small and therefore cannot explain the numerical results.

formation (1), one could use perturbation theory in the'Ve treat the_se terms Iqter_perturbanvely. o
The dominant contribution to the renormalization of

“hopping” J,_and calculate matrix elements of the type .
ppIng" /.o glems yp the spectrum comes from the constraint that only one of

(tairsjl St * Sijlsistaj) = taistaj|S1i - Sijlsins;) = ) . R
the triplet states can be excited on every silgtg; =

1/4, taistpjlSi + Sijltyists;) = 1/4(8a58yp — Sap X : 3 :
6{/5),<etc.ﬁj'|'h:e Iattgr gnet%(zd is {n(()reauggful Whgn addiO- This hard-core condition can be taken into account

tional degrees of freedom are present in the problem, e.¢?y introducing an infinite on-site repulsion between the
holes. For a start we neglect the constraint completely?0SONS.
[i.e., formally sets = 1 in (1)] and obtain the effective

Hamiltonian Hy =U Z llil;itlgitaia U— o, (7
H=H, + Hy + H,, 3) hep
_ 4 Bkt ¢ Since the interaction is infinite, one has to find the ex-
H; = kz Axlkalka + 2 (kal-ka + HC), () g scattering amplitude for the triplets. Our treatment is
(/ia_ 1 similar to the one used for Fermi gas with hard core,
Hy = ——— Z {[ifaﬁytlit;jtyj + H.c] which appears in the theory of nuclear matter ahtb.
4 (.jyaBy ' The approach was initiated by Brueckner [13]. The scat-
4o T 5) tering vertexI'yz,5(K), K = (k, w) in the ladder ap-
( ) 11> proximation satisfies the Bethe-Salpeter equation, shown
_ @+ s Tt _ Lttt in Fig. 1a. It depends on the total energy and momen-
Hy 4 (iﬂzaﬁ{t“’tﬁ’tﬁ’t“’ Lailajlpilp)}- tum of the incoming particleX = K; + K, and has
o (6)  the structurd’, g5 = I'6,,835. Since the interaction is

The coefficients in (4) aredx = J, + (1 + A)J &,
Bx = (1 + A)Jék, where & = [codk,) + codk,)]/2.

a0
(2m)3

I'K) = i(

-1
GQ)G(K — Q)) = —(

local and nonretarded, the equation forcan be readily
solved with the result

1 uéui_q u—v B
— E + . (8)
N T o — wg — wk—q w— —w

Here G(Q) is the normal triplet Green’s function, i.e., of triplet excitationsn; = Za<tl,~tai> = 3N‘IZq v?l =~

GKk,r) = —i(T(tka(t)t;{a(O))} and the Bogoliubov coef-
ficientsug, vi = *1/2 + Ax/2wx. The imaginary part
of I' is determined by the rule — o + ié.

The basic approximation made in the derivatiod'¢K)

0.1 atJ, /J = 2.5. We find thats; is quite small through-
out the disordered phase, even close to the transition point.
Thus the triplet excitations behave as a dilute, strongly in-
teracting Bose gas. Consequently, since an insertion of an

is that we neglect all anomalous scattering vertices, whiclanomalous Green'’s function into the intermediate states of
are present in the theory due to the existence of anomaloule ladder in Fig. 1a brings powers of into the equa-

Green’s functionsi ,(k, 1) = —i(T(tika(t)t;{a(O))). We

tion for the amplitude, its contribution is small. Therefore

have also derived the complete set of equations by takingq. (8) can be considered as the first term in an expan-
all vertices into account. However, our key observation ision in powers of the gas parameter. To be con-
that all anomalous contributions are suppressed by an addiistent, we also neglect the second term in (8), since it
tional small parameter, present in the theory—the densitgontainsv,.
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a) that one has to replacg, — +/Zy Uk, vk — /Zx Vi in
Kya Ky (8) and (9) [and also in (15) and (16); see below].
= . R . - = We have found that the effect df; and H; on the
_ _ 1 + = _ _ quasiparticle spectrum is small, compared to the renor-
‘o s malization due toHy. However, these two terms have
’ ! to be included for the precise determination of the criti-
b) cal point. We treat, in mean-field theory, by splitting
' / ; the quartic operator products into all possible pairs. This
is equivalent to taking only one-loop diagrams (first order
ol in J) into account. These diagrams renormalize the two
coefficients
c) Ak — Ak + 2(1 + /\)Jfk% %fqvé . (15)
FIG. 1. (a) Equation for the scattering amplitude (b 1
Diagrams( f)or t?'le self-energy, correspor?ding I[’?o (©) O(ne)- Bk = Bk — 2(1 + )‘)Jfkﬁ %fquqvq- (16)

loop diagrams, arising from the three-point interaction. ] )
This concludes the solution of the two-layer problem
The self-energy, corresponding to the scattering amtA = 1).

plitude T is found as a sum of the diagrams shown in To solve the casel = 0 we also have to take into
Fig. 1b: accountHs. It is convenient to rewrite; in terms of

. -t . .

4 ) the Bogoliubov transformed operatofis,, 7x,, Since in

2k, 0) = N Z v Ik + g0 —awg). (9 this way only the normal Green’s functions remain. To
Let us stress again tqhat at our level of approximatio one-loop order (*) the renormalization of the spectrum

9 PP "s determined by the sum of the two diagrams in Fig. 1c.

.(d'IUte gas), _there is only a Uo”“a' self-energy. NeX'[’The formula for the interaction vertex in Fig. 1c is quite
in order to find the renormalized spectrum, one has to

ve th led D i for th | ngthy and we do not present it here. Once the vertex is
solve he Coupe1 yson equations tor the normal an nown, the self-energy of Fig. 1c can be easily computed,
anomalous Green'’s functions. Since the procedure is we dina t lization of dB

known from the theory of a Bose gas, we write only the ading to renorma1zation ot andp. . .
final it for th G o f ,t' 147 The results of the self-consistent numerical solution
inal result for the normal Green's function [14] are summarized in Figs. 2 and 3. Figure 2 shows the

Gk, w)
0.6 —
_ o + Ax + 2(k, —w) i
[w + A + 3(k,—0)][0 — Ax — 3(k, )] + By’ I
(10) L
After separating this equation into a quasiparticle contri- o4 L
bution and incoherent background, we find ' i
Zy Uy ZuVie -
k = - + Gine - - i
Gk, w) w — Qg + i w + Qg —ié Gine } i
(11)
The renormalized triplet spectrum and the renomalization 02
constant are I
Qp = Zk\/[Ak + E(k,())]z - Bi , (12) L
O —
_ a3 s
w=0

J./J
The renormalized Bogoliubov coefficients in (11) are ] , ) ,
FIG. 2. Triplet gap as a function of interlayer coupling for

U V2= + 1 n Zy[Ax + 2(k,0)] 14) A =0 (left curves) andA =1 (right curves). The dashed
k> Tk 7 = 5 20 : (14) " Jines with the solid circles are the results of the self-consistent
. . solution. Open squares (with error bars) are from direct Padé
Equations (8),(9),(12)—(14) have to be solved selfconsisapproximants to the dimer series while solid lines are from

tently for 2(k,0) andZx. From Eq. (11) it is also clear approximants which assume= 0.71.
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2 In conclusion, we have presented an effective analytical
N 1 approach to take into account the hard-core constraint
which appears in the bond operator description of the
dimer phase. The triplet excitations are described as
a dilute Bose gas with infinite on-site repulsion. We
find that the spectrum is renormalized mostly due to
the hard core, while the additional three- and four-point
interactions are comparatively weak and can be treated
perturbatively. The advantages of our formulation are
that it is simple and captures the essential physics, being
in agreement within a few percent with results obtained
by dimer series expansions. Obvious other applications
of the method include the 2D Heisenberg model with
dimerization, the Heisenberg ladder, and the Kondo lattice
model [15]. The method can also be easily generalized
to describe phases with spontaneously broken symmetries
and nonzero temperature.
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