
VOLUME 80, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 29 JUNE 1998

rbital
,
ified

for
]

5758
Is Hund’s Second Rule Responsible for the Orbital Magnetism in Solids?
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We argue that the key parameter responsible for the exchange-correlation enhancement of the o
magnetic moments in solids is “HubbardU” rather than the intra-atomic Hund’s second rule coupling
being consistent with a more general concept of the orbital polarization. This leads us to a un
rotationally invariant local density approximationsLDA d 1 U prescription for the orbital magnetism.
Validity of the present theory is demonstrated by numerical calculations, which perfectly account
the orbital magnetism as well as the canted magnetic structure in CoO. [S0031-9007(98)06455-2

PACS numbers: 71.15.Mb, 71.30.+h, 75.10.Lp, 75.30.Gw
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Novel phenomena caused by strong coupling amo
spin, orbital, and lattice degrees of freedom are the ce
tral issue in the physics of transition-metal compounds f
the last few years. One of the modes, when this co
pling is mediated by the relativistic spin-orbit interaction
(SOI) leads to the orbital magnetism, which is manifeste
in the magnetocrystalline anisotropy, magneto-optical e
fects, magnetic x-ray circular dichroism, etc. It may eve
be a routine work to incorporate the relativistic effects i
the modern band structure techniques based on the loc
(spin)-density approximation [L(S)DA]. However, the re
sult is rather discouraging: calculated orbital moments a
typically too small compared with experiment [1–5]. Be
sides many limitations of LSDA caused by the homoge
neous electron gas picture for exchange and correlati
which is incompatible with the orbital magnetism, the fail
ure may imply an even more fundamental problem in th
framework of the density functional theory (DFT). LSDA
is the spin DFT, where the total energyELSDAfr, mg is
the explicit functional of the chargersrd and the spin-
magnetizationmsrd densities. Even if an exact spin-DFT
should be able to include all magnetic orbital effectsim-
plicitly, there is no guarantee that the orbital-related qua
tities can be reproducedexplicitly on the level of fictitious
single-particle Kohn-Sham (KS) equations. The explic
formulation for the orbital magnetism gave rise to th
concept of orbital polarization (OP) in the band structur
calculations. The purpose of this Letter is to clarify th
fundamental features, origins, and implications of the O
in the problem of orbital magnetism in solids.

Because of the quenching effects in the crystal fie
(CF), the orbital moments are expected to be well loca
ized in the spherical potential region near atomic nucle
and well described in terms of site-diagonal elements
the one-particle density matrix in the basis of atomiclik
(3d) orbitalsng1g2 ­ kg1jbnsr, r0djg2l askbLl ­ TrSLsbLbnd,
where bL is the orbital angular momentum operator,g ;
hs, mj is the joint index including spin (s) and azimuthal
(m) counterparts, andTrSL denotes the trace over alls and
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m. The matrix bn ­ kng1g2k generally consists of both
spin-diagonal and spin-nondiagonal elements. The lat
can be due to the SOI or a noncollinear magnetic ord
This localized nature of the orbital magnetic degrees
freedom has led to formulation of several classes of O
functionals [1,4–7], whose general formula can be wr
ten asEfr, m, bng ­ ELsSdDAfr, mg 1 DEOPfbng.

The first idea in this direction belongs to Brandow [8
who realized that parameters of the nonmagnetic LD
band structure in combination with the on-site interactio
among 3d electrons taken in a renormalized Hartree
Fock (HF) form provide a very realistic electronic pictur
behind various Mott-Hubbard phenomena. This lea
to the LDA 1 U functional, which in the most recent
rotationally invariant form has the following OP term [6,7]

DELDA1U
OP ­ EHFfbng 2 EdcfTrLsbndg , (1)

where

EHFfbng ­
1
2

X
hgj

sUg1g3g2g4 2 Ug1g3g4g2 dng1g2ng3g4 (2)

is the renormalized HF energy of the on-site3d interac-
tions, whose first term is the direct Coulomb interactio
EHfbng and the second term is the exchange interacti
EXfbng. EdcfTrLsbndg is a double-counting term, which doe
not depend on the orbital degrees of freedom [6]. It is a
sumed that the renormalization can be described by reta
ing the (unrenormalized) HF form for the electron-electro
(e-e) interactionsUg1g3g2g4 ­ km1m3j

1
r12

jm2m4lds1s2ds3s4

and tuning three (in the case ofd electrons) Slater integrals
F0, F2, andF4 [7]. The latter is equivalent to the definition
of three physical parameters: the on-site Coulomb rep
sion U ­ F0, J ­

1
14 sF2 1 F4d, and B ­

1
441 s9F2 2

5F4d. Typically, the behavior ofF2 andF4 in solids does
not differ significantly from the one in atoms and it hold
F4yF2 , 0.6 (e.g., [6]), which further leads to the estimat
B , 0.1J. If the orbital populations are integer (0 or 1), i
holdsbn2 ­ bn. Then, an analog of two Hund’s rules can b
derived fromEHF fbng: first, thes-dependent occupation is
© 1998 The American Physical Society



VOLUME 80, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 29 JUNE 1998

rs;
s
-
-

t

-

ly

ly
e

ch
ric
nt

al-

s

.

ef-
a

the

of

p-

n-
the
xis

e

driven byJ; second, them-dependent occupation is driven
by B. This is the atomic picture. In solids, however, th
local orbital populations are fractional and shall be treat
as independent variational degrees of freedom, which
the essence ofU dependence of the OP in LDA1 U: if
B is neglected, OP is determined byUeff ­ U 2 J [8].
As we will explicitly show below, the same is true for the
orbital magneticdegrees of freedom. Naturally, the spon
taneous formation of the orbital moments in LDA1 U is
closely related with opening a Hubbard gap. Another th
ory of the orbital magnetism in solids which is based on th
similar “HubbardU” idea is the self-interaction-corrected
LSDA [5].

The role of the HubbardU terms in OP functionals is
less clear in the theories designed for another categ
of magnetic materials, which exhibit clear tendencies
the itinerary and whose spin magnetic properties c
be reasonably well described within LSDA. Brook
and collaborators put forward an idea to connect t
OP entirely with atomic Hund’s 2nd rule coupling, an
proposed anansatz for the OP functional (called OPB
hereafter), which is based on two assumptions [1]: (i) O
is driven by B; (ii) the functional form itself is given
by DEOPB

OP ­ 2 1
2 BkbLl2 with the atomic B value and

the expectation value ofbL taken by use of the KS
orbitals including the effects of the OPB functional sel
consistently. OPB has attracted considerable attention
the computational electronic-structure community (e.g
Refs. [1–3]) because of its simplicity and relativel
encouraging results obtained along this line for seve
classes of metallic compounds. Norman [4] applie
similar ideas to the series of Mott-Hubbard insulator
claiming that only a part of interactions inEHfbng and
EXfbng, which does not depend onU should be able
to open a band gap (no matter how small it is) o
the level of ground-state DFT calculations, whereas t
actual magnitude of the gap is determined byU and is
an excited-state effect. Despite such apparent succ
we consider that there are serious confusions in t
basic physics of OPB. We will show that (i) the claim
that the OPB functionalDEOPB

OP directly follows from
the open-shell HF analysis [i.e., Eq. (2)] isincorrect,
(ii) the actual form of the orbital magnetic enhanceme
driven by the parameterB in Eq. (2) is different from
DEOPB

OP , and (iii) the form of OPB correction can be
mimicked by taking into account remaining terms o
Eq. (2) and considering the limit of a relatively smal
but still finite parameterU. Thus, if the OPB picture
is practically meaningful, as is apparently true for man
metallic magnets, the “hidden parameter” responsible
the orbital enhancement is againUeff, and OPB is one
of the limiting cases of the more general LDA1 U
concept.

In order to find an explicit expression for the orbital en
hancement, we take the following procedure: (i) solve
inverse problem so as to expressbn in terms of the expec-
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tation values of the orbital angular momentum operato
(ii) single out all interactions involving these variable
in EHfbng and EXfbng. First, we extract the spin depen
dence of the density matrixbn by a standard decomposi
tion bn ­

1
2

P3
n­0 bnn ≠ bsn, where bs0 is the 2 3 2 unity

matrix and the rest ofbsn (n ­ 1, 2, 3) are Pauli matri-
ces (bsx , bsy , bsz). The spinless matricesbnn are given bybnn ­ TrSsbsnbnd. It is rather straightforward to show tha
EXfbng ­

1
2

P3
n­0 EXfbnng. Taking into consideration the

time-inversionbR, each matrixbnn can be further decom-
posed asbnn ­ bnn1 1 bnn2, where bRbnn6 ­ 6bnn6 [9].
Using the basic propertybR bL ­ 2bL, we get

TrLsbLbnn1d ­ 0, TrLsbnn1d ­ kbsnl ,

TrLsbLbnn2d ­ kbLln , TrLsbnn2d ­ 0 ,

where kbLln are the orbital momenta in the spin sub
spacen. Thus, all spin-density variableskbsnl are given
by bnn1, whereas the orbital part is represented sole
by bnn2. The contribution ofbnn2 to EHfbng is vanish-
ing. SinceEXfbRbnng ­ EXfbnng, one can writeEXfbnng ­
EXfbnn1g 1 EXfbnn2g. Therefore thee-e interactions re-
sponsible for the magnetic part of OP are included on
in EXfbnn2g. This is a general property of the exchang
energy.

In order to evaluateEXfbnn2g let us consider first the
p-electron shell, the simple example of the system whi
can carry the orbital moment. Then, the antisymmet
3 3 3 matrix bnn2 is represented by three nonequivale
elements (in the real harmonics basis):nn2

xy , nn2
yz , andnn2

zx
[9], which can be expressed through the expectation v
ues of three antisymmetric operatorsbLx , bLy, and bLz as

nn2
m1m2

­ 2
i
2 kbLm3 ln, where (m1m2m3) is an even permu-

tation of (xyz). Taking into account the matrix element
of the Coulomb interaction, one can findEXfbnn2g ­
2

1
4 UeffkbLl2

n (for p electronsJ ­
1
5 F2). The Stoner-like

form of this expression coincides with the one of OPB
However, the OP is driven entirely byUeff. The result
is very natural, because thep-electron exchange is purely
spherical: due to the rotational invariance, there is no pr
erential orbital configuration of the exchange origin for
single electron; the same is also true for twop electrons
due to the electron-hole symmetry between states with
same spin.

Generalization ford (and higher,) electrons is cum-
bersome, but still feasible. The maximal number
nonequivalent matrix elements ofbnn2 for d electrons is
ten. The same number of irreducible antisymmetric o
erators being odd order products ofbLx, bLy, and bLz are
required in order to represent this matrix. Let us co
sider an isotropic case, when the CF is small, and
spin and orbital moments have the same quantization a
(z). Then, we shall retain only two operators,bLz andbL3

z ,
which simplifies the problem significantly and leads to th
5759
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following expression:

EXfbnn2g ­ 2c1kbLzl2
n 1 c2

µ
kbLzlnkbL3

zln 2
5
34

kbL3
zl2

n

∂
,

where c1 ­
1

288 s130Ueff 2 369Bd and c2 ­
17
144 3

s2Ueff 2 9Bd. The result clearly shows that not only
B but also Ueff is responsible for the OP. Beside
the Stoner-like exchange, OP ford electrons is deter-
mined by the higher order effects with respect to th
orbital angular momentum operators.c2 vanishes if
U ­ J 1

9
2 B , 1.5J. Then, the strength of Stoner’s

orbital exchange isc1 ­
3
4 B. Thus, both the form

and the magnitude ofEXfbnn2g in this limit is close
to the assumption made in OPB. The central questi
is whether the limitU , 1.5J is consistent with other
features of metallic magnetic materials where LSDA do
a good job for the spin magnetism, like ferromagnetic3d
metals. The spin polarization in LSDA is also generical
close to the Stoner conceptDELSDA

SP fmg . 2
1
2 Im2,

with the characteristic parameterI being of the order
of 0.6–1.0 eV [10]. The averaged spin splitting ford
electrons in LDA1 U is driven byI ­

1
5 sU 1 4Jd [8].

Then, U , 1.5J leads to the estimateI , 1.1J. If J
varies from 0.7 to 1.0 eV [8],I varies from 0.8 to 1.1 eV,
being well consistent with the LSDA picture. Although
some attempts have been made [11], the concrete scen
of how the on-siteU is renormalized up toU , 1.5J for
many metallic compounds is still an open question.

All processes considered so far have been related w
the enhancement of the orbital magnetic moments. Ho
ever, the problem has a counterpart, i.e., their quenchi
The basic mechanism of this phenomenon is the CF
fects, whose consequences are twofold: (i) Quenching
the orbital moments due to the CF is also enhanced by
e-e interaction throughEXfbnn1g, which should be treated
on an equal footing withEXfbnn2g [4]. Such a unified
treatment of magnetic and nonmagnetic orbital intera
tions also guarantees that in the absence of SOI and
the total energy displays a high degeneracy with resp
to the real orbitals and the complex orbitals occupatio
(ii) CF leads to the anisotropy of the orbital moment
Generally, the problem cannot be formulated through t
expectation values of onlybLz andbL3

z , and involves all ele-
ments ofbnn2. Thus, the correct OP functional should sa
isfy the requirement of the rotational basis invariance: a
unitary transformation ofbn does not changeDEOPfbng.

The intersite part of the density matrix relevant to th
orbital magnetic phenomena can be evaluated using
criterion

´ ­ jbn1bn2 1 bn2bn1 2 bn2jyjbn2j , (3)

wherebn6 ­
1
2

P3
n­0 bnn6 ≠ bsn, andjbAj means the matrix

norm [12]. If bnsr, r0d is totally localized at lattice points
(i.e., site diagonal in the basis of atomiclike orbitals), w
have ´ ­0 as the result of idempotency of the densit
matrix bn2 ­ bn.
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It is very demanding to derive an explicit general expres
sion for OP in terms of expectation values of the angula
momenta. We have demonstrated some examples and
cussed general ideas of how it can be done. In practic
however, the problem can be solved numerically by work
ing directly with the site-diagonal elements of the densit
matrix bn in the rotationally invariant LDA1 U approach.

Let us illustrate this scheme for the rock-salt ox
ide CoO, where the orbital moment is not necessari
quenched in the2

3 filled t2g manifold [13]. The an-
tiferromagnetic spin order additionally lowers the cu
bic symmetry of CoO to the trigonal one, resulting in
complicated anisotropy effects. Since the orbital mo
ments are least quenched along the magnetic easy a
[14], the maximum of the orbital angular momentum
directly corresponds to the minimum of the magneti
anisotropy energy (EMA). The general tendencies ofEMA
can be well understood as a competition of cubic (K)
and trigonal (T ) terms [13]: EMA ­ Kse2

xe2
y 1 e2

ye2
z 1

e2
z e2

xd 1 Tsexey 1 eyez 1 ezexd, where heij are the di-
rection cosines of the spin magnetization. If bothK and
T are positive as in the case of CoO [13], the model a
lows only one class of equilibrium solutions, where the
moments are confined in the planes110d and canted off
the f001g axis by the angleu varying from0± (the f001g
axis) to235± [the f112g direction in the planes111d] de-
pending on the relative strength ofK andT (Fig. 1). Ex-
istence of such canted magnetic structure in CoO is we
established. In fact, it has been predicted in the pionee
ing work of Kanamori [13] and supported by subsequen

FIG. 1(color). Relaxation to the new magnetic equilibrium
after turning on the SOI in CoO: orbital moment (green
line) and deviations of spin (white squares) and orbital (blac
squares) magnetic moments from the [001] axis. The ins
shows trajectories of the spins attached to magnetically differe
Co sites in the planes110d. Open and filled arrows correspond
to the initial and final states. After reaching the equilibrium, a
small tetragonal distortioncya ­ 0.988 has been turned on at
the point shown by the red arrow.U ­ 8 eV, J ­ 1 eV, and
B ­ 0.1J are used.
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FIG. 2(color). Spin magnetic moments (open circles), orbit
magnetic moments (filled circles), and the angles between
[001] axis and the easy magnetization directions (open squar
obtained for different values ofU, J ­ 1 eV, andB ­ 0.1J.
Arrows correspond to the high symmetry directions in th
cube. The inset shows the band gap (open diamonds) a
degree of orbital localizatioń given by Eq. (3) (crosses). Parts
corresponding to the metallic behavior (U , 2.2 eV) are shown
by broken lines.

experiments, although different authors report differe
values of u [15]. Our numerical calculations [16] are
in excellent agreement with this picture. We start wit
a self-consistent LDA1 U solution without SOI where
spins can take an arbitrary direction and there is no orbi
moment. With turning on the SOI, a typical relaxation
process to the new equilibrium state as a function of ite
ation steps is shown in Fig. 1, where we usedU ­ 8 eV,
J ­ 1 eV, and B ­ 0.1J, suggested by the constraint
LSDA calculations (e.g., [6]). As approaching the equ
librium, the orbital moment grows at the Co site and
stabilized between two high-symmetry directionsf001g
andf112g, causing a similar reorientation of the spin coun
terpart. The orbital instability is directly related with ap
pearance of the band gap in CoO. Once the band g
opens whenU varies in the wide range from 2.2 to 8 eV
(Fig. 2), the orbital moment becomes well localized [17
and the angleu is stabilized between229± and 235±.
On the contrary,Ueff ­ 0 closes the band gap, increase
´, and aligns magnetic moments parallel to the cub
diagonal. Finally, the magnetostriction is responsib
for the tetragonal deformation in CoO in the directio
cya ,1 which further enhances the orbital magnetic mo
ment (Fig. 1).

In conclusion, we have shown how the magnetic OP c
be systematically included in band structure calculation
A remaining question is theab initio renormalization of the
effective on-sitee-e interactions. The solution should be
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found along the following line. The first step is to map
real many-electron problem to the fictitious one describ
by the single-particle KS equations in the LDA1 U
form. The most advanced way is to use the optimiz
effective potential scheme [18] and to treat the on-s
e-e interactions in LDA1 U as variational degrees of
freedom, which minimize the true total energy function
based on a rigorous static expression for the exchan
correlation energy. The dynamic fluctuations near t
static mean-field solution then might be included in th
local form [19].
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