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Simple Physical Explanation of the Unusual Thermodynamic Behavior of Liquid Water
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Here we demonstrate that the unusual thermodynamic behavior of water can be explained by a
simple two-order-parameter Landau-type theory naturally and physically, without considering the effects
of a liquid-liquid critical point. To describe the hydrogen-bonding effects on the phase behavior, we
introduce a bond order parameterS, in addition to the density order parameterr. We ascribe the unusu-
alness of water to the competing orderings ofr andS, or their strong negative coupling. We argue that
in usual liquids the crystallization is primarily a result of the ordering ofr, while in water it is a result
of the ordering ofS at ambient pressure. [S0031-9007(98)06424-2]

PACS numbers: 64.60.My, 64.70.Dv, 64.70.Pf, 65.70.+y
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Liquid water exhibits unusual thermodynamic behavio
which is very much different from that of other liquids
[1–6]. The most striking anomaly is the density max
mum at 4±C and the decrease of the density upo
its crystallization at 0±C. In addition, the isothermal
compressibilityKT and specific heat at constant pressu
CP increase anomalously with decreasing the temperatu
[1,2,6–8]. It is widely believed that all the unusua
features originate from special characteristics of hydrog
bonding. This seemingly slight extra complexity of wate
molecules makes the understanding of liquid water lag f
behind that of other liquids, despite the fact that water
the most important liquid on the Earth.

To explain these unusual thermodynamic behavior
water, Speedy and Angell [7] proposed a new conce
concerning supercooled water, which is known as “stab
ity limit conjecture.” Later, a new amorphous form o
water was found under a high pressure by Mishimaet al.
[9], which is suggestive of the existence of a liquid-liquid
transition in water. Recent computer simulations an
theories of water provide us with a new insight into thi
problem [2,5,10–13]: For example, the existence of
second critical point has been suggested, and its locat
in the pressure-temperature (P-T) phase diagram and its
relation to the Speedy-Angell conjecture are argued [10
12,14]. However, there has so far been no consensus
the location of the additional critical point and even o
its existence (see, e.g., [2,10,12]). This is partly becau
simulations are so sensitive to the choice of the inte
molecular potential. A number of models free from th
thermodynamic singularity [1,2], which ascribe the unusu
alness of water to second nearest neighbor (nonlocal)
teractions [13] and cooperative hydrogen bonding [15,16
were also proposed. Although the thermodynamic pro
erties of water have recently attracted much attenti
[2,3,17], they are still far from complete understanding
and the situation is quite confusing, as described abo
For example, we still do not have any clear picture abo
what physical factors make water so unusual compared
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other ordinary liquids. The only consensus is the impo
tance of hydrogen bonding.

In this Letter, we propose a simple model that provid
an intuitive physical explanation of the anomalous the
modynamic behavior of water. We aim at seeking th
physical origin that makes water so different from othe
ordinary liquids by developing a model that is not spec
fied to water and can be applied to any liquids. We foc
our attention on the effective attractive interaction pote
tial between a molecule and its neighbors. It is genera
given by the formV sr , Vd ­ V̄ srd 1 DV sr , Vd, wherer
is the distance from the center of mass of the molecule a
V expresses the orientation. In water, the anisotropic p
DV , of course, mainly comes from the hydrogen bon
ing. In general, thus, a liquid locally favors two differ
ent types of symmetry: one is favored byV̄ , maximizes
density, and is consistent with long-range density orde
ing (the symmetry of crystal), while another is favore
by DV and maximizes the number of local bonds. Th
symmetry of the latter is usually different from that of th
former. In ordinary liquids, the local structure favore
by DV is not consistent with any crystallographic sym
metry. In water, however, it is consistent with the crys
tallographic symmetry of iceIh. The existence of these
competing orderings causes energetic frustration,which
we believe plays key roles in vitrification of any liquids
[18,19].

To express this complex feature of many-body inte
actions, we introduce two order parameters,r and S,
representing density order favored byV̄ and bond order
favored byDV , respectively. TheDV leads to the for-
mation of a locally favored hydrogen-bonded (HB) struc
ture such as tetrahedral arrangement stabilized by ac
hydrogen bonds. The bond parameterS is, then, defined
as the “local number density of locally favored HB struc
tures”: Ssrd ­ Sidsr 2 rid, whereri is the position vec-
tor of a locally favored HB structure (numberi), which is
randomly formed in space, andSi is the sum abouti over
a unit volume aroundr. The average value ofS, S̄, is
© 1998 The American Physical Society
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given by

S̄ ­ S0 expfbsndV 2 PDySdg , (1)

whereb ­ 1ykBT (kB: Boltzmann’s constant), since (i) a
locally favored HB structure, which is stabilized byn
hydrogen bonds, is in a lower energy state than the ot
part of the liquid byndV (dV : bonding energy) and (ii) it
is destabilized by applying pressureP by PDyS , where
DyS is the volume increase upon the formation of a local
favored HB structure.

The Hamiltonian of ideal liquids associated with onl
density fluctuations is given by [20]

bHr ­
Z

dr

"
t

2
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wheret ­ a2sT 2 Tp
rd (Tp

r: the density ordering tempera-
ture) anda2, a3, a4 . 0. Herer ­ r̄ 1 dr, wherer̄ is
the average density and a decreasing function ofT . In
water, however, the bond order parameter plays essen
roles in the freezing into iceIh. The bond ordering can be
expressed by the following free energy:

bHS ­
Z

dr

"
k

2
dSsrd2 2

b3
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dSsrd3 1
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4
dSsrd4

#
,

wherek ­ b2sT 2 Tp
S d (Tp

S : the bond ordering tempera-
ture),S ­ S̄ 1 dS, andb2, b3, b4 . 0. By further adding
the gradient terms and the relevant couplings betweenr

and S to the above Hamiltonian of density ordering an
that of bond ordering, we obtain the following Hamilton
ian that we believe is relevant to the physical descriptio
of the phase behavior of water as well as other liquids:
bHrS ­ bHr 1
Kr

2

Z
dr j=drsrdj2 2

Z
dr

"
c1rdrsrdSsrd 1 c1SrsrddSsrd 1

c2r
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drsrd2Ssrd 1
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2
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KS

2

Z
dr j=dSsrdj2. (2)
t
g

re

red
a
e
the
ific

ly
he
s

ed

in

ter

he
As explained before,S is frustrated withr. The above
coupling terms represent the most significant effects of th
frustration: an increase inS leads to a decrease inr and
the density ordering temperature, while an increase inr

leads to a decrease inS and the bond ordering temperature
Hence, all the coupling constantsci in Eq. (2) should
be negative. Because of these couplings, for examp
the ordering temperatures,Tp

r and T p
S , are shifted down

to T pp
r ­ Tp

r 1 sc2rya2dS̄ and T pp
S ­ T p

S 1 sc2Syb2dr̄,
respectively. This effect is physically the same as t
“dilution effects” of impurities on spin ordering.

This HamiltonianHrS well describes the basic feature
of the P-T phase diagram of water. In theP-T phase
diagram of water (see Refs. [1,2]), the melting temper
ture of ice has a minimum around 2 kbar, which we ca
“crossover pressurePx.” We argue that the primary or-
der parameter of water isS below Px (,2 kbar), while
r abovePx . Thus, we identify the melting point of ice
belowPx asTm

S ­ Tpp
S 1 2b2

3y9b2b4 [20] and that above
Px as T m

r ­ Tpp
r 1 2a2

3y9a2a4 , respectively: The two
melting curves,T m

S sPd andTm
r sPd, cross with each other

at Px. Our model naturally explains the decrease ofTm
S

(below Px) and the increase ofTm
r (abovePx) with in-

creasingP, as follows: (i)Tp
S and Tp

r, respectively, de-
crease and increase with increasingP, according to the
Clausius-Clapeyron relation, since the specific volume
creases and decreases, respectively, upon the orderin
S andr. (ii) With increasingP, r̄ increases whilēS de-
creases [see Eq. (1)] (note also thatc2r , c2S , 0).

This provides us with a clear answer to the long
standing question why water is so unusual compared
all other liquids. We argue that the unusual featur
of the thermodynamic behavior of water originate from
the fact thatthe crossover pressurePx is positive (Px ,
is
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2 kbar) only in water while negative for all other ordinary
liquids. In water, thus, the crystallization at ambien
pressure is primarily due to long-range bond orderin
and not due to density ordering; namely,the symmetry
of ice crystal is selected mainly byDV , and not byV̄ .
This is consistent with the fact that the crystal structu
of ice Ih [1] (a hexagonal “wurtzite” form) locally
has the tetrahedral arrangement of oxygens prefer
by hydrogen bonding, satisfying the constraint from
hard-core repulsion [21]. This can naturally explain th
unusual phenomenon of the volume increase upon
freezing of water at ambient pressure, since the spec
volume of a local structure favored byS is greater by
DyS than that favored byr. In all other ordinary liquids,
on the other hand, crystallization is induced primari
by long-range density ordering, although there exists t
frustration with bond ordering. Thus, the density alway
increases upon crystallization. This picture is support
by the fact that in ordinary liquidsdT mydP . 0 (Tm:
melting temperature) for all positive pressures, while
waterdT mydP , 0 belowPx , 2 kbar [1,2,6]. Figure 1
schematically shows the above difference between wa
and other ordinary liquids.

Next we discuss the unusual behavior of density on t
basis of the HamiltonianHrS . Since the average values
of r and S are shifted by their bilinear couplings, we
redefine the fluctuations ofr andS around their thermal
equilibrium values, respectively, asdrp ­ dr 2 kdrl
anddSp ­ dS 2 kdSl, where

kdrl ,
c1rS̄

t 2 c2rS̄
, kdSl ,

c1Sr̄

k 2 c2Sr̄
. (3)

The structure factor can then be obtained as
5751
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Fsqd ­ kjdrp
qj2l ­

k 2 c2Sr̄ 1 KSq2

st 2 c2rS̄ 1 Krq2d sk 2 c2Sr̄ 1 KSq2d 2 sc1r 1 c1Sd2
>

j2

Krs1 1 q2j2d
, (4)
el

of
n

B
en-
the
y.

ly

y

e-

r-

al
i-
l.
ex-

sed

on

ter
h

wherej2 , Kr

t2c2r S̄ . Here we should regardt 2 c2rS̄ as
a constant due to the first-order nature of the transitio
which is quite consistent with the absence of the anoma
in the correlation lengthj [22].

For water and any other liquids, thus, we have th
following relation for density [see Eq. (3)]:

rsT d > r̄ 1 kdrl , r̄ 2 Ar expfbEbondsPdg , (5)

whereEbondsPd ­ ndV 2 PDyS andAr . 0. Figure 2
shows the fitting of Eq. (5) to the density measure
experimentally [6,23]. Here we usēr ­ r0 2 aT 2

gT2. The agreement is quite satisfactory. The valu
of Ebond (­ 1800 K) obtained by the fitting is quite
reasonable because the hydrogen-bonding energydV is
estimated as,250 600 K [1,5] and n ­,4 8 for the
proposed locally favored structures of water such
tetrahedral and larger polyhedral arrangements [1,2,5,2

This behavior can be qualitatively explained as follows
Without bond formation,r always increases with decreas
ing T , due to van der Waals attractions. However, the i
crease inS upon cooling leads to the decrease inr. Bond
ordering starts to overcome density ordering since the te
perature dependence of the former is much stronger th
that of the latter. This competition is primarily responsibl
for the unusual decrease inr upon cooling below 4±C in
water. In usual liquids, on the other hand, density orde
ing always beats bond ordering due to smallAr andEbond.
Accordingly, the density of ordinary liquids monotonically
increases with decreasingT . This difference originates
from the fact thatPx . 0 for water, whilePx , 0 for all
other liquids, as explained before. For the case ofPx ,

0, bond ordering is always hidden by density orderin
(T m

r ¿ Tm
S ). However, it should be noted that ifPx is

only slightly negative, the strong effects of the local bon
ordering should still cause the similar phenomenon of
density maximum. This should be the case of SiO2 [2,3].

The isothermal compressibility associated with densi
fluctuations,dKT can also be calculated using Eq. (4
asdKT , byst 2 c2rS̄d , bKrj2, under the Gaussian
approximation. However, the absence of the anomaly

other liquids

crystallization

ρ

S
crystallization

Temperature Path

water

supercooled liquid

liquid
crystal

crystal

FIG. 1. The basic difference in the behavior in thesr, Sd
space between water atP , Px and ordinary liquids.
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the correlation lengthj (due to the first-order nature of the
transition) indicates that the anomaly ofKT or CP does
not primarily originate from density fluctuations [22], in
contrast to the Speedy-Angell conjecture [7] or the mod
based on a new critical point [10].

What is then the origin of the anomalous behavior
KT andCP? It may be caused by the direct contributio
of locally favored HB structures toKT andCP . The local
compressibility and heat capacity of a locally favored H
structure should be larger than those of a non-hydrog
bonded structure simply due to the soft nature and
additional vibrational entropy of the former, respectivel
To confirm this picture, we fit the following functions to
KT andCP , using the fact that the number density of local
favored HB structures is given bȳS,

KT ­ K̄T 1 S̄DKT ­ K̄T 1 AK expfbEbondsPdg , (6)

CP ­ C̄P 1 S̄DCP ­ C̄P 1 AC expfbEbondsPdg , (7)

whereK̄T andC̄P are the background parts dominated b
density order parameter,DKT andDCP are the increases
in KT and CP upon the formation of a locally favored
HB structure, respectively, andAK , AC . 0. We assume
that K̄T and C̄P are quadratic and linear functions ofT ,
respectively. As shown in Figs. 3 and 4, the above r
lations can reproduce the behavior ofKT and CP quite
well, with very reasonable backgrounds and more impo
tantly the same value ofEbond as that used in the fitting
of r. These excellent fitting results for the three physic
quantities,r, KT , andCP (see Figs. 2–4), cannot be acc
dental, which strongly supports the validity of our mode
We stress that all these anomalies can be commonly
pressed by the extremely simple functional form ofS̄,
namely, expsbEbondd with the common value ofEbond ­
1800 K. To our knowledge, this functional form of the
anomaly is the simplest one among those ever propo
[1,2,15]. Here it is worth noting that Sastyet al. [16]
showed that the anomalous behavior ofKT is a natural ther-
modynamic consequence of the volume expansion up
cooling, which is consistent with our picture.

FIG. 2. Temperature dependence of the density of wa
[6,23]. The solid curve is the curve fitted by our theory wit
Ebond ­ 1800 K. The dotted curve is the background part.
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FIG. 3. Temperature dependence ofKT of water [6,7]. The
curves have the same meanings as those in Fig. 2.

Our model further provides us with a natural explanatio
for the following facts: (i) With increasingP, the anoma-
lous decrease ofr upon cooling becomes less pronounce
and the liquid temperature of maximum density (TMD
decreases [1,2]. (ii) The anomaly ofKT andCP becomes
monotonically weaker with increasingP and almost dis-
appears under very high pressure (P ¿ Px) [8]. These
behaviors can commonly be explained by the decrease
S̄ with increasingP [see Eq. (1)]: The decrease inS̄ with
increasingP weakens the density anomaly and leads to t
decrease in TMD [see Eq. (5)]. It also weakens the ano
aly of KT andCP with increasingP [see Eqs. (6) and (7)].

In summary, we demonstrate that our two-orde
parameter Landau theory of water naturally and cons
tently explains (i) the unusual behavior ofr, KT , andCP

including their pressure dependence, (ii) the volume
crease upon freezing belowPx , (iii) the basic features of
theP-T phase diagram of water (the pressure depende
of Tm), and (iv) the pressure dependence of TMD. O
theory leads to the following extremely simple scenar
of the anomalous thermodynamic behavior of water:The
anomaly ofr, KT , and CP is primarily due to neither
thermodynamic singularity [7,10–12] nor cooperativit
of hydrogen bonding [15,16], but due to the coupling
between density and bond order parameters.

In contrast to previous theoretical models of wat
[1,11,13,15,16], which are rather specific to wate
our model is the first Landau-type theory of water,
our knowledge, that focuses on the competing orderin
namely, the frustration between density and bond orderi
Thus, our model can describe the basic thermodynam
behavior of not only water but also any other liquid
[19] and, thus, naturally explains what physical fact

FIG. 4. Temperature dependence ofCP of bulk water [6,8].
The curves have the same meanings as those in Fig. 2.
n

d
)

in

he
m-

r-
is-

in-

nce
ur
io

y

er
r,

to
gs,
ng.

ic
s

or

makes water so different from other ordinary liquids.
The unusual behavior of silica (SiO2) similar to that of
water such as the existence of TMD in a supercooled
state [2,3] can also be explained by assuming a ver
weakly negativePx for silica, which is consistent with the
known P-T phase diagram of silica. Finally, we stress
that our two-order-parameter model can be relevant eve
to the physical description of ordinary liquids in which
Px , 0: For Px , 0, the hidden bond ordering can be
regarded as the source of random disorder against dens
ordering, which causes the “spin-glass” effects and lead
to vitrification [19]. Stronger frustration leads to stronger
disorder effects. This answers the long-standing ope
question of what physical factor determines the fragility
of liquids [3]. Our model tells us that a liquid having
weaker frustration betweenr and S, namely, smaller
(more strongly negative)Px , is more fragile [19].
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