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High-Dimensional Bak-Sneppen Model
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We report on extensive numerical simulations on the Bak-Sneppen model in high dimensions.
We uncover a very rich behavior as a function of dimensionality. &or 2 the avalanche cluster
becomes fractal and faf = 4 the process becomes transient. Finally, the exponents reach their mean
field values ford = d. = 8, which is then the upper critical dimension of the Bak-Sneppen model.
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The Bak-Sneppen (BS) model [1], since its introduc-as a fundamental exponent (not a composite one) and
tion, has attracted much attention in statistical physicsteserve the name fractal dimension to describestiatial
Thanks to its simplicity, it has led to a much deeper un-geometrical properties of the avalanches. This choice, as
derstanding of the nature of self-organized criticality [2] we shall see, avoids ambiguities which can arise in higher
and of extremal dynamics [3] in general. The rules ofdimensions, where the avalanche cluster becomes fractal.
the BS dynamics, inl dimensions, are very simple: the A scaling theory was proposed in [2] which shows that
state of the model is completely defined b§ numbers scaling relations allow one to reduce the number of critical
fi arranged on @-dimensional lattice of edge siZe At  exponents to two, for exampley and . Numerical
every time step the smallest of these numbers an@dits simulations ind = 1 and2 fully confirm the validity of
nearest neighbors are replaced with new uncorrelated rathe scaling theory [2]. The mean field limit, formally
dom numbers, drawn from the uniform distribution. Suchcorresponding to the limitZ — «, has also been solved
very simple dynamics, based on the selection of the globadxactly [6]: the exponents, in this limit, take the values
minimum, is generally called extremal dynamics. Itwasr = 7, = 7, = 3/2, u =1, and Dy = 4. Finally, it
first introduced in invasion percolation [4], and it resultswas recently shown [7,8] that a further nontrivial relation,
in a remarkably rich and interesting critical behavior. of a different nature, exists betweem and 7. This

The self-organized critical nature of the BS modelsuggests that the BS universality class is characterized by
(as well as of other extremal models) is revealed in itsa single exponent, e.qu(d), as a function ofi.
ability to naturally evolve towards a critical state where In this Letter we analyze the behavior of the BS model
almost all of the variableg; are above a thresholf..  as a function of dimensionality. The understanding of the
The dynamics in this state is characterized by scale-freeritical behavior of a model, as a function of dimension-
bursts of activity olavalancheswhich form a hierarchical ality, is a central issue in statistical physics. In particular,
structure [1,5] of subavalanches within bigger avalancheghe identification of the upper critical dimensidp, above
This critical state is described by critical exponents. Thewhich the mean field picture applies, is of great impor-
distribution of avalanche duration behaves as a power tance. Indeed, it allows one to understand the behavior
law P(s) ~ s~7 with exponent7r. An avalanche of of a finite dimensional system using the powerful tools
duration s covers a number of site®(s) ~ s#. The of dimensional €) expansion. In equilibrium statistical
set of avalanche sites is generally fradidk) ~ R(s)?”, mechanics, this is almost routine work, but for nonequi-
whereR(s) is the gyration radius anf), is the (spatial) librium systems it is still a challenging issue. For this
fractal dimension. The active site (the one with thereason the understanding of the behavior of simple mod-
global minimumf;) has a dynamical wandering that can els as a function of dimensionality is of great importance.
be described in terms of return times: The distribution We present extensive numerical simulations for the BS
P¢(t) ~ t~7 of first return times is characterized by an model which show that (i) the upper critical dimension
exponentry, whereas the distribution of all return times is d. = 8, (ii) for 4 > 2 the avalanches are no more
P,(t) ~ ¢t~ 7 defines the exponent,. For a random compactD; < d, (i) in d =3 we find u < 7, <1,
walk these two exponents take the values= 3/2 and (iv) for d = 4 the process becomes transient, i.e.,
and 7, = 1/2 in d = 1, whereas ford = 2 one finds 7, =7, > 1. The BS model then shows a quite rich
7r = 7, = d/2. Note that, with respect to previous behavior, with four qualitatively different regimes & 2,
literature [1,2], our notation is slightly different: The 2 <d <4, 4 =d <8, andd = 8), as a function of
exponenty in Ref. [2] is defined asu = d/D, where dimensionality. In particular, we find that the relation
D was called “fractal dimension.” Here we regagd w = 7, holds up to onlyd = 2 (note that this relation
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is in any case problematic close to the mean fieldTABLE I. Exponents of the BS model for different dimen-
limit w = 1,7, = 3/2). A possible interpretation of our sionsd. An upper bound on the error i50.01 for safety, even
results is that “geometric” exponents, suchrasr;, and if for some of the listed exponents confidence is greater. In
D. become independent from “avalanche” or “memory” particular, ford = 7, the values are distinguishable from the

f P Y d = 8 ones. The last line gives the size= 2" of the edge of
(see later) exponents fo >2 and the number of the hypercube used for the simulations.
independent exponents changes with dimension. Indeed;
sinceDy < d andr, > u, for d > 2, we find that the 1 2 3 4 ° 6 7 8
BS critical behavior is determined by three independentx. 042 0.69 0.85 0.92 095 0.96 0.98 1.00
critical exponents. We shall first discuss in detail the = 1.07 125 135 141 145 146 148 1.50
numerical procedure, defining operationally the quantities’= 042 070 092 115 129 140 149 1.50
we measure. Then we present the numerical results, an@f 158 128 109 116 129 140 149 150
finally we discuss them. Dy Zi 1% 27'6 2'3 4 3 3 2

The BS dynamics can be simulated very efficiently "
using a treelike search and replace algorithm [9]. This
decreases greatly computation times, so that memory is
the only limitation to the system sizes studied. Thein Ref. [8]. This is an important consistency check for
numerical procedure was first testeddin= 1 andd = 2, the reliability of the simulations. Ind =2 we find a
and we found complete agreement with Refs. [2,9]. Inslight difference betweem, and n which is, however,
order to compute the exponenjs and 7, following  Within error bars. The data are also plotted in Fig. 2 for
Ref. [10], we introduce amge variablek; on each site. completeness. Fat = 3 the difference between, and
The agek; of site i measures the time elapsed since theu is much larger than the error bars (see Fig. 2). In Fig. 3
last update of the variablg;. This method enables us We plot the exponents as a function of dimensionality.
to give a precise evaluation of the exponent Indeed For d =3 the process is recurrent, sineg < 1, i.e.,
at each time the sites with ade less thans identify the ~ each visited site, in an infinite system, is visited again
current avalanche of duration ThereforeV (s) is simply ~ an infinite number of times (or, stated differently, a
obtained counting the sites with < s. Age variables Selected site will be selected again with probability one).
also allow for a determination of the avalanche exponeninstead ford = 4 the process becomes transient, i.e.,
7. In systems evolving by an extremal dynamics, it hast. = 77 > 1: each site, in an infinite system, is visited a
been found [3,10] that the probability that the globalfinite number of times (there is a finite, smaller than one,
minimum f; occurs on a site with agé; behaves as probability that a selected site will be selected again). The
p(ki) ~ k; . The exponentr > 0 implies that older relationr, + 7, =2if 7, <l andr, = 7/ if 7, = 1
sites are less likely to be selected. This reflects the fad@ classical result from renewal theory [12]) is always
that a very old site has survived many selections, anéespected, the former holding faf = 3. The return
therefore it has very likely a high value of the varialfie time statistics, in the BS model, is determined both by
The more it survives the higher is i, possibly even memory effects and by geometry. Activity can return to
greater than the thresholl, in which case the site will
never be selected before a new update (occurring if one of
its neighbors is selected). The exponaris related to the
avalanche exponent by = 3 — 7 [11]. The advantage
of measuringa;, with respect to a direct measure of
is that the statistics of the former is much richer than
that of the latter in the same simulation. We measured
7 in both ways and found good agreement (which also
supports the validity of the relation = 3 — 7). Since
statistical uncertainty of the exponeamtis much less than
that of 7, we report here only the value =3 — «a.
The return times exponents are measured in the usual
way [2]: let tlf"), k = 0,1,... be the (return) times when
site i is visited ¢ < :**V). The first return exponent
is obtained from the statistics of*) — /*~!, whereas o , , , , , ,
the all returns exponent is obtained frorft) — /©. 04 05 06 07 08 09 10
Finally, in order to obtain the fractal dimensidn,, we m

compute the gyration radius of avalanches of Size). FIG. 1. Avalanche exponent vs u for different dimensions

The ’?“m‘?“ca' results are_ summarized in Table I. AS(crosses). The continuous line is the exact relation between the
;hown in Fig. 1, our .numerlcal results. far and 7 are  two exponents as from Ref. [7]. The data from the simulations
in good agreement with the exact relation recently founchnd the exact relation are in excellent agreement.
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10’ avalanche clusters was already mentioned in [2], but not
fully explored since theird = 1,2 simulations yelded
compact avalanches). At = 2, we found numerically

that the fractal dimension is slightly smaller thap = 2.

We argue, however, that small size effects occur and that
Dy = 2 holds. Indeed, as the system sizés increased,

the slope of the curve log(s) vs logR(s) increases,
suggesting that avalanches are compact. The occurrence
of small size effects can be understood analyzing the
dynamics of the growth of the avalanche clusterdin
dimensions. Indeed, the avalanche cluster growth in
d = 2 is characterized by more and more returns of
the activity to the bulk as time goes by. Therefore the
process has many opportunities to fill any hole that was
left behind and that was giving fractal features to the
cluster. As a consequence, long avalanches are compact

(dashed line) and the (inverse) all return times distribuftg(r) ObJeCtS'. Yet, at an early growth stage, the surface-to
(full line) as a function of time. The resultsin (ay = 3 show Pulk ratio is large {-2d), returns to the bulk are rare,

that the slope of the two quantities are clearly different (henceand growth takes place most likely on the cluster surface.
u # 74); (b) d = 2 results show instead full compatibility of In a standard model of growth, where new sites can be

the slopes withu = 7,. added only at the surface of the cluster, memory effects
have been recently investigated in Ref. [13]. There it was
shown that when the memory exponent> 1 the cluster

L . . 'has a fractal dimensio®; < 4. Small avalanches can
f; are eliminated by the BS dynamics (which we call therefore show fractal features that disappear on longer

”?te",‘ory drgturn) or be((:jaalgs the acéi:i_ty r?turns CAIOS;ﬁet?imes due to returns to the bulk. These small size effects
sitei andf; = fi Is up (geometric return). As re also visible in the distribution of first return times (see

dimensiond increases, geometric returns become less an Iso [2]) Ind = 3 the same size effect should appear:

less relevant (see later), and for very large dimensions ONfowever, in this case we find a fractal dimension which

expects to recover the mean field resgjt= 7, = 3/2. . .
: . o S is definitely smaller thaw [14]. Returns to the bulk are
W(\eNflnd thatt thetmt(;an(;.leld limit hofl(:ﬁ for = ‘fc f_f 8. taliy €Wer ind =3 than ind = 2, and more importantly the
€ now turn to the discussion ot the onset of fractall ytopology of a fractal cluster is very different; while the

of avalanche clusters faf > 2 (the possibility of fractal two-dimensional cluster is characterized by a distribution

of holes of all sizes, a fractal id = 3 is most likely a
ramified object. Returns to the bulk can fill the holes of
thed = 2 cluster but it is much more difficult for them to
turn the branched fractal structure of #he= 3 avalanche
into a compact one. For this reason, we believe that our
data are compatible with the occurrence of a compact
cluster ind = 2 and withD; < d whend = 3. In any
case, numerical data are relatively stable with changes of
the system size, and we could not detect any small size
effect such as the one discussed aboveifer 2.

Geometric returns arise because the avalanche cluster
has many self-intersections: indeed, the self-intersection
set has a fractal dimensidd; = 2Dy — d > 0 ford <
8 [15]. Note thatD; is smaller thanD; which means
that the larger the avalanche the smaller is the fraction
of intersection sites. Moreover, as mentioned earlier,
geometric returns become less and less relevand as
| | | | | | | | increases sinc®; — D; = d — Dy also increases with
r 2 3 4 5 6 7 8 d. Above d = d. = 8 the fractal dimensionD; = 4

d attains its mean field value and the avalanche has no self-

FIG. 3. The exponentg, 7, 7,, and 7, as a function of intersegtionsl{), < 0) o
dimensionality. Dashed lines dt and 1.5 have been drawn The jump probability distributiorp(r) was analyzed
for reference. in Ref. [2] under the hypothesis of a compact cluster.
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It is defined as the probability that the activity jumpsd. = 8. This behavior, with three different nontrivial

in one time step to a site at a distaneefrom the regimes of criticality, is substantially richer than that of

current site and it falls off with a power law behavior: equilibrium statistical models, where nontrivial behavior

p(r) ~ r~™. For fractal avalanches, the exponentvas  occurs in only one region of dimensionality, limited by the

related tor andDy in Ref. [S] by = 1 + Ds(2 — 7).  lower and the upper critical dimensions. Our results also

It is interesting to observe that, for the values quotectall for a close analysis of the scaling theory of Ref. [2],

in Table |, 77 is always slightly larger than 3 (its mean which has been developed under the implicit assumptions

field value being exactly 3), so that the second momenof a recurrent process with compact avalanches.

of p(r) is finite; an uncorrelated random walk with such

a jump distribution would show the usual random walk

behavior, 7, = d/2, and W_ould become transient above [1] P. Bak and K. Sneppen, Phys. Rev. L. 4083 (1993).

d= 2._ The differences with respect to'the random walk 2] M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. 3

behavior are therefore a strong indication of correlations™ ~ 414 (1996).

induced by memory effects. [3] M. Marsili, J. Stat. Phys.77, 733 (1994); R. Cafiero,
In order to check the full consistency of the results A. Gabrielli, M. Marsili, and L. Pietronero, Phys. Rev.

shown in Table I, we are also exploring an alternative way  E 54, 1406 (1996).

to move away from the mean field limit [16]. Within a [4] D. Wilkinson and J.F. Willemsen, J. Phys. 26, 3365

d = 1 system, we choose the “nearest neighbors” of the  (1983).

active site at random over the lattice, with a probability [5] S- Maslov, Phys. Rev. LetZ4, 562 (1995).

which is a power law decreasing function of the distance [6] H- Flyvbjerg, K. Sneppen, and P. Bak, Phys. Rev. Lett.

from the active site, with exponent. Preliminary results 71, 4087 (1993); J. de Boer, B. Derrida, H. Flyvbjerg,

show that the mean field limit is recovered when— 29%45]“'(50“’ and T. Wettig, Phys. Rev. Let8, 906

1. Varying o > 1 again thr.ee differgnt critical regimes [7] S. Maslov, Phys. Rev. Let#77, 1182 (1996).

appear. In particular, we find a region of the values of [g] M. Marsili, P. De Los Rios, and S. Maslov, Phys. Rev.
o Where activity is recurrentr{, < 1) but uw # 7, and Lett. 80, 1457 (1998).

a region where activity is transient(> 1) but u < 1. [9] P. Grassberger, Phys. Lett. 200, 277 (1995).

Moreover we find that, whenever takes the same values [10] M. Marsili, G. Caldarelli, and M. Vendruscolo, Phys. Rev.
listed in Table I, also the other quantities take on the same  E 53, 13 (1996).

corresponding values (apart, of course, fromwhich is  [11] S. Maslov (private communication). o
always smaller tham). Finally, working ind = 1 allows [12] M. F_lsher, |n_FundamentaI Problems in Statistical Me-
us to simulate extremely large sizes and to rule out any g?;g:;v'l’ggg?d by E.G.D. Cohen (North-Holland, Am-
];I(?:uelt:iﬁ()evf\fr?(i:rt]s:r;hbﬁ Istrengthenlng the reliability of the[13] M. Marsili and M. Vendruscolo, Europhys. Let87,

) I 505-509 (1997).
It has been argued that the mean field limit of BS[14] The measurement of the fractal dimension is the most time

can be described as a branching process [6]. The value * consuming, and moreover the feasible system sizes are

d. = 8, which coincides with the upper critical dimension smaller the larger the dimension. For this reason we did
of branched polymers, is consistent with this picture [17]. not push the calculation ab; to d > 4. Note that the
We believe that close t8 = 8 branched polymers give a mean field resulD,; = 4 implies D, = 4 and therefore a

reasonable description of the geometry of the BS process. fractal structure foel = 5.

An & =d. — d expansion for the BS model could [15] The dimensionD, of the intersection of two objects of
therefore be feasible, also using the recent expansion fractal dimensionD; in 4 dimensions can be obtained
around the mean field solution of Ref. [8]. In this respect, ~ Knowing that the codimension of the intersectiah £
our results allow for a prediction of the first coefficient Dtl)') is the sum of the codimensions of the two intersecting
u =1 — 0.017¢ of the & expansion. objects ¢ — Dy). Therefored — D; = 2(d — Dy) from

. which the relationD; = 2D, — d follows.
In summary, we have presented numerical results fo 6] P. De Los Riot al. (to be published).
the BS model in high dimensions. These allow one tq17] |ndeedd = 8 is the upper critical dimension of branched
conclude that ford > 2 avalanches beCF)me fra_ctal and polymers as obtained using simple Flory arguments, see,
for d = 4 the process becomes transient. Finally the e.g., J. Isaacson and T.C. Lubensky, J. Phys. (Paris), Lett.

mean field limit is reached at the upper critical dimension 41, 469 (1980), and references therein.
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