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We report on extensive numerical simulations on the Bak-Sneppen model in high dimens
We uncover a very rich behavior as a function of dimensionality. Ford . 2 the avalanche cluster
becomes fractal and ford $ 4 the process becomes transient. Finally, the exponents reach their m
field values ford  dc  8, which is then the upper critical dimension of the Bak-Sneppen mod
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The Bak-Sneppen (BS) model [1], since its introduc
tion, has attracted much attention in statistical physic
Thanks to its simplicity, it has led to a much deeper un
derstanding of the nature of self-organized criticality [2
and of extremal dynamics [3] in general. The rules o
the BS dynamics, ind dimensions, are very simple: the
state of the model is completely defined byLd numbers
fi arranged on ad-dimensional lattice of edge sizeL. At
every time step the smallest of these numbers and its2d
nearest neighbors are replaced with new uncorrelated r
dom numbers, drawn from the uniform distribution. Suc
very simple dynamics, based on the selection of the glob
minimum, is generally called extremal dynamics. It wa
first introduced in invasion percolation [4], and it result
in a remarkably rich and interesting critical behavior.

The self-organized critical nature of the BS mode
(as well as of other extremal models) is revealed in i
ability to naturally evolve towards a critical state wher
almost all of the variablesfi are above a thresholdfc.
The dynamics in this state is characterized by scale-fr
bursts of activity oravalanches, which form a hierarchical
structure [1,5] of subavalanches within bigger avalanche
This critical state is described by critical exponents. Th
distribution of avalanche durations behaves as a power
law Pssd , s2t with exponent t. An avalanche of
duration s covers a number of sitesV ssd , sm. The
set of avalanche sites is generally fractalV ssd , RssdDf ,
whereRssd is the gyration radius andDf is the (spatial)
fractal dimension. The active site (the one with th
global minimumfi) has a dynamical wandering that can
be described in terms of return times: The distributio
Pfstd , t2tf of first return times is characterized by an
exponenttf , whereas the distribution of all return times
Pastd , t2ta defines the exponentta. For a random
walk these two exponents take the valuestf  3y2
and ta  1y2 in d  1, whereas ford $ 2 one finds
tf  ta  dy2. Note that, with respect to previous
literature [1,2], our notation is slightly different: The
exponentm in Ref. [2] is defined asm  dyD, where
D was called “fractal dimension.” Here we regardm
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as a fundamental exponent (not a composite one)
reserve the name fractal dimension to describe thespatial
geometrical properties of the avalanches. This choice
we shall see, avoids ambiguities which can arise in hig
dimensions, where the avalanche cluster becomes frac

A scaling theory was proposed in [2] which shows th
scaling relations allow one to reduce the number of critic
exponents to two, for example,m and t. Numerical
simulations ind  1 and 2 fully confirm the validity of
the scaling theory [2]. The mean field limit, formally
corresponding to the limitd ! `, has also been solved
exactly [6]: the exponents, in this limit, take the value
t  tf  ta  3y2, m  1, and Df  4. Finally, it
was recently shown [7,8] that a further nontrivial relatio
of a different nature, exists betweenm and t. This
suggests that the BS universality class is characterized
a single exponent, e.g.,msdd, as a function ofd.

In this Letter we analyze the behavior of the BS mod
as a function of dimensionality. The understanding of t
critical behavior of a model, as a function of dimensio
ality, is a central issue in statistical physics. In particula
the identification of the upper critical dimensiondc, above
which the mean field picture applies, is of great impo
tance. Indeed, it allows one to understand the behav
of a finite dimensional system using the powerful too
of dimensional (e) expansion. In equilibrium statistica
mechanics, this is almost routine work, but for noneq
librium systems it is still a challenging issue. For th
reason the understanding of the behavior of simple m
els as a function of dimensionality is of great importanc

We present extensive numerical simulations for the
model which show that (i) the upper critical dimensio
is dc  8, (ii) for d . 2 the avalanches are no mor
compactDf , d, (iii) in d  3 we find m , ta , 1,
and (iv) for d $ 4 the process becomes transient, i.e
ta  tf . 1. The BS model then shows a quite ric
behavior, with four qualitatively different regimes (d # 2,
2 , d , 4, 4 # d , 8, and d $ 8), as a function of
dimensionality. In particular, we find that the relatio
m  ta holds up to onlyd  2 (note that this relation
© 1998 The American Physical Society
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is in any case problematic close to the mean fie
limit m  1, ta  3y2). A possible interpretation of our
results is that “geometric” exponents, such asta, tf , and
Df become independent from “avalanche” or “memory
(see later) exponents ford . 2 and the number of
independent exponents changes with dimension. Inde
since Df , d and ta . m, for d . 2, we find that the
BS critical behavior is determined by three independe
critical exponents. We shall first discuss in detail th
numerical procedure, defining operationally the quantiti
we measure. Then we present the numerical results, a
finally we discuss them.

The BS dynamics can be simulated very efficientl
using a treelike search and replace algorithm [9]. Th
decreases greatly computation times, so that memory
the only limitation to the system sizes studied. Th
numerical procedure was first tested ind  1 andd  2,
and we found complete agreement with Refs. [2,9].
order to compute the exponentsm and t, following
Ref. [10], we introduce anage variableki on each site.
The ageki of site i measures the time elapsed since th
last update of the variablefi . This method enables us
to give a precise evaluation of the exponentm. Indeed
at each time the sites with ageki less thans identify the
current avalanche of durations. ThereforeV ssd is simply
obtained counting the sites withki , s. Age variables
also allow for a determination of the avalanche expone
t. In systems evolving by an extremal dynamics, it ha
been found [3,10] that the probability that the globa
minimum fi occurs on a site with ageki behaves as
rskid , k2a

i . The exponenta . 0 implies that older
sites are less likely to be selected. This reflects the fa
that a very old site has survived many selections, a
therefore it has very likely a high value of the variablefi :
The more it survives the higher is itsfi , possibly even
greater than the thresholdfc, in which case the site will
never be selected before a new update (occurring if one
its neighbors is selected). The exponenta is related to the
avalanche exponent bya  3 2 t [11]. The advantage
of measuringa, with respect to a direct measure oft,
is that the statistics of the former is much richer tha
that of the latter in the same simulation. We measur
t in both ways and found good agreement (which als
supports the validity of the relationa  3 2 t). Since
statistical uncertainty of the exponenta is much less than
that of t, we report here only the valuet  3 2 a.
The return times exponents are measured in the us
way [2]: let tskd

i
, k  0, 1, . . . be the (return) times when

site i is visited (tskd
i

, tsk11d
i

). The first return exponent
is obtained from the statistics oftskd

i
2 tsk21d

i
, whereas

the all returns exponent is obtained fromtskd
i

2 ts0d
i

.
Finally, in order to obtain the fractal dimensionDf , we
compute the gyration radius of avalanches of sizeV ssd.

The numerical results are summarized in Table I. A
shown in Fig. 1, our numerical results form and t are
in good agreement with the exact relation recently foun
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TABLE I. Exponents of the BS model for different dimen-
sionsd. An upper bound on the error is60.01 for safety, even
if for some of the listed exponents confidence is greater.
particular, for d  7, the values are distinguishable from the
d  8 ones. The last line gives the sizeL  2n of the edge of
the hypercube used for the simulations.

d 1 2 3 4 5 6 7 8

m 0.42 0.69 0.85 0.92 0.95 0.96 0.98 1.00
t 1.07 1.25 1.35 1.41 1.45 1.46 1.48 1.50
ta 0.42 0.70 0.92 1.15 1.29 1.40 1.49 1.50
tf 1.58 1.28 1.09 1.16 1.29 1.40 1.49 1.50
Df 1 2 2.6 3.3 · · · · · · · · · · · ·
n 21 10 7 5 4 3 3 2

in Ref. [8]. This is an important consistency check fo
the reliability of the simulations. Ind  2 we find a
slight difference betweenta and m which is, however,
within error bars. The data are also plotted in Fig. 2 fo
completeness. Ford  3 the difference betweenta and
m is much larger than the error bars (see Fig. 2). In Fig.
we plot the exponents as a function of dimensionality
For d # 3 the process is recurrent, sinceta , 1, i.e.,
each visited site, in an infinite system, is visited aga
an infinite number of times (or, stated differently, a
selected site will be selected again with probability one
Instead for d $ 4 the process becomes transient, i.e
ta  tf . 1: each site, in an infinite system, is visited a
finite number of times (there is a finite, smaller than on
probability that a selected site will be selected again). Th
relation ta 1 tf  2 if ta , 1 and ta  tf if ta $ 1
(a classical result from renewal theory [12]) is alway
respected, the former holding ford # 3. The return
time statistics, in the BS model, is determined both b
memory effects and by geometry. Activity can return t
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FIG. 1. Avalanche exponentt vs m for different dimensions
(crosses). The continuous line is the exact relation between
two exponents as from Ref. [7]. The data from the simulation
and the exact relation are in excellent agreement.
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FIG. 2. Log-log plot of the number of covered sitesV std
(dashed line) and the (inverse) all return times distributionPastd
(full line) as a function of timet. The results in (a)d  3 show
that the slope of the two quantities are clearly different (hen
m fi ta); (b) d  2 results show instead full compatibility of
the slopes withm  ta.

site i either because all sites with variables larger th
fi are eliminated by the BS dynamics (which we call
memory return) or because the activity returns close
site i andfi ! f 0

i is updated (geometric return). As th
dimensiond increases, geometric returns become less a
less relevant (see later), and for very large dimensions o
expects to recover the mean field resultta  tf  3y2.
We find that the mean field limit holds ford $ dc  8.

We now turn to the discussion of the onset of fractali
of avalanche clusters ford . 2 (the possibility of fractal
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FIG. 3. The exponentsm, t, ta, and tf as a function of
dimensionality. Dashed lines at1 and 1.5 have been drawn
for reference.
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avalanche clusters was already mentioned in [2], but
fully explored since theird  1, 2 simulations yelded
compact avalanches). Atd  2, we found numerically
that the fractal dimension is slightly smaller thanDf  2.
We argue, however, that small size effects occur and t
Df  2 holds. Indeed, as the system sizeL is increased,
the slope of the curve logV ssd vs logRssd increases,
suggesting that avalanches are compact. The occurre
of small size effects can be understood analyzing
dynamics of the growth of the avalanche cluster ind
dimensions. Indeed, the avalanche cluster growth
d  2 is characterized by more and more returns
the activity to the bulk as time goes by. Therefore t
process has many opportunities to fill any hole that w
left behind and that was giving fractal features to t
cluster. As a consequence, long avalanches are com
objects. Yet, at an early growth stage, the surface-
bulk ratio is large (,2d), returns to the bulk are rare
and growth takes place most likely on the cluster surfa
In a standard model of growth, where new sites can
added only at the surface of the cluster, memory effe
have been recently investigated in Ref. [13]. There it w
shown that when the memory exponenta . 1 the cluster
has a fractal dimensionDf , d. Small avalanches can
therefore show fractal features that disappear on lon
times due to returns to the bulk. These small size effe
are also visible in the distribution of first return times (se
also [2]). In d $ 3 the same size effect should appea
however, in this case we find a fractal dimension whi
is definitely smaller thand [14]. Returns to the bulk are
fewer in d $ 3 than ind  2, and more importantly the
topology of a fractal cluster is very different: while th
two-dimensional cluster is characterized by a distributi
of holes of all sizes, a fractal ind $ 3 is most likely a
ramified object. Returns to the bulk can fill the holes
thed  2 cluster but it is much more difficult for them to
turn the branched fractal structure of thed $ 3 avalanche
into a compact one. For this reason, we believe that
data are compatible with the occurrence of a comp
cluster ind  2 and withDf , d when d $ 3. In any
case, numerical data are relatively stable with changes
the system size, and we could not detect any small s
effect such as the one discussed above ford  2.

Geometric returns arise because the avalanche clu
has many self-intersections: indeed, the self-intersect
set has a fractal dimensionDI  2Df 2 d . 0 for d ,

8 [15]. Note thatDI is smaller thanDf which means
that the larger the avalanche the smaller is the fract
of intersection sites. Moreover, as mentioned earli
geometric returns become less and less relevant ad
increases sinceDf 2 DI  d 2 Df also increases with
d. Above d  dc  8 the fractal dimensionDf  4
attains its mean field value and the avalanche has no s
intersections (DI , 0).

The jump probability distributionrsrd was analyzed
in Ref. [2] under the hypothesis of a compact cluste
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It is defined as the probability that the activity jump
in one time step to a site at a distancer from the
current site and it falls off with a power law behavior
rsrd , r2p . For fractal avalanches, the exponentp was
related tot andDf in Ref. [5] by p  1 1 Df s2 2 td.
It is interesting to observe that, for the values quote
in Table I, p is always slightly larger than 3 (its mean
field value being exactly 3), so that the second mome
of rsrd is finite; an uncorrelated random walk with suc
a jump distribution would show the usual random wa
behavior,ta  dy2, and would become transient abov
d  2. The differences with respect to the random wa
behavior are therefore a strong indication of correlatio
induced by memory effects.

In order to check the full consistency of the resul
shown in Table I, we are also exploring an alternative w
to move away from the mean field limit [16]. Within a
d  1 system, we choose the “nearest neighbors” of t
active site at random over the lattice, with a probabili
which is a power law decreasing function of the distan
from the active site, with exponentv. Preliminary results
show that the mean field limit is recovered whenv !

1. Varying v . 1 again three different critical regimes
appear. In particular, we find a region of the values
v where activity is recurrent (ta , 1) but m fi ta and
a region where activity is transient (ta . 1) but m , 1.
Moreover we find that, wheneverm takes the same values
listed in Table I, also the other quantities take on the sa
corresponding values (apart, of course, fromDf which is
always smaller than1). Finally, working ind  1 allows
us to simulate extremely large sizes and to rule out a
finite size effects, thus strengthening the reliability of th
results shown in Table I.

It has been argued that the mean field limit of B
can be described as a branching process [6]. The va
dc  8, which coincides with the upper critical dimensio
of branched polymers, is consistent with this picture [17
We believe that close tod  8 branched polymers give a
reasonable description of the geometry of the BS proce
An ´  dc 2 d expansion for the BS model could
therefore be feasible, also using the recent expans
around the mean field solution of Ref. [8]. In this respec
our results allow for a prediction of the first coefficien
m . 1 2 0.017´ of the´ expansion.

In summary, we have presented numerical results
the BS model in high dimensions. These allow one
conclude that ford . 2 avalanches become fractal an
for d $ 4 the process becomes transient. Finally th
mean field limit is reached at the upper critical dimensio
s
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dc  8. This behavior, with three different nontrivial
regimes of criticality, is substantially richer than that o
equilibrium statistical models, where nontrivial behavio
occurs in only one region of dimensionality, limited by the
lower and the upper critical dimensions. Our results als
call for a close analysis of the scaling theory of Ref. [2
which has been developed under the implicit assumptio
of a recurrent process with compact avalanches.
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