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We derive a simple relation between a quantum channel’s capacity to convey coherent (qua
information and its usefulness for quantum cryptography. [S0031-9007(98)06456-4]
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A quantum communication channel can be used
perform a variety of tasks, including the following:

(i) Conveying classical information from a sender to
receiver.

(ii) Conveying quantum information (including quan-
tum entanglement) from a sender to a receiver.

(iii) Creating shared information between a sender an
receiver, information that is reliably secret from any thir
party and can thus be used as a cryptographic key for la
private communication. (The use of quantum channe
to aid in cryptographic tasks such as key distribution
called quantum cryptography.)

Each of these tasks can be performed in the presen
of noise. Indeed, in quantum cryptography the nois
is of central importance in revealing the activity of an
eavesdropper.

Deutschet al. [1] examined the security of quantum
cryptographic schemes over quantum channels that c
tain noise. They pointed out that any protocol whic
allowed “entanglement purification” between two partie
automatically provided a means of communicating secr
information that no third party could share. The privac
of quantum channels has also been investigated by Bih
and Mor [2] as well as Bennettet al. [3]. Here we will
continue this line of thought by showing that the privac
of the channel, measured by the amount of informatio
available to the receiver that is not available to any eave
dropper, can be made at least as great as the chann
coherent information[4].

Suppose Alice prepares a quantum systemQ in an
initial staterQ . Alice conveys the systemQ through a
noisy quantum channel to Bob. The noisy channel m
be described by a superoperatorE Q so that the final state
rQ0

­ E QsrQd.
The evolution of the channel given by the superoperat

E Q is in fact unitary evolution on a larger quantum
system that includes the environmentE of the system.
This environment may be considered to be initially in
pure statej0El. In this case, the superoperator is given b

E QsrQd ­ TrEUQEsrQ ≠ j0El k0EjdUQEy

. (1)

We can assume that the environment is initially in a pu
state without any loss of generality, since we can alwa
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imagine that a “local” environment in a mixed state is jus
part of a larger system in a pure entangled state.

We imagine first that the initial mixed staterQ of Q
arises fromQ’s entanglement with some other “reference
systemR in Alice’s possession. Alice’s goal in sending
Q to Bob is to establish some quantum entangleme
between her reference systemR and Bob’s output system
Q0. That is, Alice is sendingquantum informationvia the
channel to Bob.

As discussed in [5], the entropy exchangeSe measures
the amount of information that is exchanged between th
systemQ and the environmentE during their interaction.
If the environment is initially in a pure state, the entropy
exchange is just the environment’s entropy after th
interaction, i.e.,Se ­ SsrE0 d, whererE0

is the final state
of E. [The entropy here is just the ordinary von Neuman
entropy of a density operator,Ssrd ­ 2Tr r logr.] The
entropy exchange is determined entirely by the initial sta
rQ of Q and the channel dynamics superoperatorE Q;
that is, the entropy exchange is a property “intrinsic” toQ
and its dynamics.

The coherent informationIe, introduced in [4], is given
by

Ie ­ SsrQ0

d 2 Se . (2)

The coherent information has many properties that su
gest it as the proper measure of the quantum informatio
conveyed from Alice to Bob by the channel. For example
Ie can never be increased by quantum data processing p
formed by Bob on the channel output, and perfect qua
tum error correction of the channel output is possible fo
Bob if and only if no coherent information is lost in the
channel [4]. The coherent information seems to be relate
to the capacity of a quantum channel to convey quantu
states with high fidelity [6].

Alice might, on the other hand, be using the channel t
send classical information to Bob. Alice preparesQ in
one of a set of possible “signal states”r

Q
k , which are used

by Alice with a priori probabilitiespk. The average state
rQ is given by

rQ ­
X

k

pkr
Q
k . (3)
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Bob receives thekth signal asr
Q 0

k ­ E QsrQ
k d. Because

the superoperator is linear, the average received state

rQ0

­
X

k

pkE QsrQ
k d ­ E QsrQd . (4)

Bob attempts to decode Alice’s message (that is,
identify which signal state was chosen by Alice) b
measuring somedecoding observableon his received
systemQ0.

The amount of classical information conveyed fro
Alice to Bob, which we will denoteHBob , is governed
by the quantityxQ0

defined by

xQ0

­ SsrQ0

d 2
X

k

pkSsrQ0

k d . (5)

This quantity is significant in two ways:
(i) HBob # xQ0

, regardless of the decoding observab
chosen [7,8].

(ii ) HBob can be made as close as desired toxQ0

by
a suitable choice of a code and decoding observable.
makeHBob nearxQ0

, Alice must in general use the chan
nel many times and employ code words composed
many signals; Bob must perform his decoding measu
ment on entire code words. The net result is that t
channel is usedN times to send up toNxQ0

bits of clas-
sical information reliably [9].

In short,xQ0

represents an upper bound on the classi
information conveyed from Alice to Bob, an upper boun
that may be approached arbitrarily closely if Alice an
Bob use the channel efficiently.

If this general picture is used to describe a quantu
cryptographic channel, then the eavesdropper (“Eve”) m
have access to some or all of the environment systemE
with which Q interacts. In other words, the environmen
includes any apparatus used by Eve to gather informat
about Alice and Bob’s communication. The evolutio
superoperatorE Q thus describes all of the effects of th
eavesdropper on the channel; or, to put it another way,
of the eavesdropper’s efforts at “tapping” the link betwee
Alice and Bob are contained in the interaction operat
UQE. The informationHEve available to the eavesdroppe
will be limited by

xE0

­ SsrE0

d 2
X

k

pkSsrE0

k d . (6)

The limitationHEve # xE0

holds whether or not Eve has
access to the entire environment. If Eve can only se
subsystemD of the full environment, then we can mak
the stronger statementHEve # xD0

, wherexD0

# xE0

[8].
We define the “privacy”P of a channel to be

P ­ HBob 2 HEve . (7)

This definition makes sense because, in a classical cont
any positive differenceHBob 2 HEve can be exploited by
Alice and Bob, using public discussion, to create a reliab
5696
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secret string of key bits of length aboutP [10]. (Matters
are somewhat more subtle in the quantum case, since E
may delay her choice of “eavesdropping observable” un
after the public discussion by Alice and Bob. If she i
forced to choose her observable before this discussion,
classical result holds.)

Alice and Bob wish to makeP as large as possible.
However, they cannot control the actions of the eave
dropper. Thus, they must assume that the eavesdroppe
acquiring her greatest possible information from the cha
nel. The “guaranteed privacy”PG ­ inf P, where the in-
fimum is taken over all of Eve’s possible strategies th
are consistent with the superoperatorE Q describing the
channel. SinceHEve # xE0

, we have

PG $ HBob 2 xE0

. (8)

Alice and Bob will want to use the channel to make
the guaranteed privacyPG as great as possible. Let
P ­ supPG be the optimal guaranteed privacy, wher
the supremum is taken over all strategies that Alice an
Bob may employ to use the channel. How big isP ?
As discussed above, by suitable choice of the code a
decoding observable,HBob can be made arbitrarily close
to xQ0

. Thus,

P $ xQ0

2 xE0

. (9)

If Alice and Bob were simply trying to optimizeHBob

over a given noisy channel, it is known [9] that they ca
do no better than to choose pure states ofQ as the input
signal states of the channel. Here, they are instead tryi
to maximize the guaranteed privacyPG, so that pure state
inputs may not be optimal. However, we can certainl
find a lower bound forP by consideringxQ0

2 xE0

for
pure state inputs.

Assume that the states ofQ initially prepared by Alice
are pure statesjf

Q
k l; also recall that the environmentE

can be presumed to begin in a pure statej0El. After
Q and E interact unitarily, the joint statejC

QE0

k l ­
UQE jf

Q
k l ≠ j0El will also be a pure state, generally an

entangled one. The subsystem states, described by den
operators,

r
Q0

k ­ TrEjC
QE0

k l kCQE0

k j ,

rE0

k ­ TrQjC
QE0

k l kCQE0

k j , (10)

will have exactly the same nonzero eigenvalues, so th
SsrQ0

k d ­ SsrE0

k d. Therefore

IQ ­ SsrQ0

d 2 Se

­ SsrQ0

d 2 SsrE0

d

­ SsrQ0

d 2
X

k

pkSsrQ0

k d 2 SsrE0

d 1
X

k

pkSsrE0

k d

IQ ­ xQ0

2 xE0

. (11)
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We conclude that

P $ IQ . (12)

In other words, the ability of the quantum channel to sen
private information is at least as great as its ability to
sendcoherentinformation. This result may be viewed
as a quantum information theoretic basis for quantu
cryptography.

It is interesting to note that, although bothxQ0

and xE0

depend on the choice of pure state input
for the channel Q, the difference xQ0

2 xE0

de-
pends only on the overall density operatorrQ for the
inputs.

We have assumed that the properties of the cha
nel, given by the superoperatorE Q , are known to Al-
ice and Bob. IfE Q is known, and ifIQ . 0 for some
rQ , then the channel may be used to send private i
formation securely. However, this does not address t
question of how Alice and Bob can establish the ne
essary properties of the channel without being deceiv
by Eve.

We would like to thank W. K. Wootters and M. A.
Nielsen for helpful conversations and suggestions.
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