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Instability of Charge Ordered States in Doped Antiferromagnets
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We analyze the induced interactions between localized holes inweakly dopedHeisenberg antiferro-
magnets due to the modification of the quantum zero point spin wave energy; i.e., the analog
Casimir effect. We show that this interaction isuniformly attractiveand falls off asr22d11 in d dimen-
sions. For “stripes,” i.e., parallelsd 2 1d-dimensional hypersurfaces of localized holes, the interact
energy per unit hyperarea is attractive and falls, generically, liker2d. We argue that, in the absenc
of a long-range Coulomb repulsion between holes, this interaction leads to an instability ofany charge-
ordered state in the dilute doping limit. [S0031-9007(98)06433-3]
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It is still not clear what happens when a dilute conce
tration of holes is introduced into a quantum Heisenbe
antiferromagnet (AF). This is one of the central issue
in the theory of correlated electronic systems, especia
as it relates [1] to the high temperature cuprate superc
ductors and related oxides. One class of proposals [2–
holds that the result is a spatially inhomogeneous “char
ordered” ground state. Unfortunately, numerical analys
of the stability of such states is often inconclusive becau
the typical energy differences between states are sm
and the Goldstone modes (spin waves) produce finite s
effects which decrease slowly with system size.

The goal of this paper is to investigate the thermod
namic stability of charge-ordered states in short-range A
spin models in the dilute doping limit. We calculate the in
duced interaction between well-separated clusters of ho
due to their modification of the spin wave spectrum, an
find that it isuniformly attractive. Specifically, the asymp-
totic long distance (r ! `) interaction between two hole
clusters (see Fig. 1) is of the formE , 2JSr22d11 for
a d-dimensional, spin-S Heisenberg quantum AF with ex-
change couplingJ [see Eq. (2)]. For extended cluster
of holes, under generic circumstances, the dependence
separation (but not the absolute magnitude) of the int
action energy can be reliably estimated by summing t
pairwise hole-hole interaction over all pairs; for exampl
the interaction per unit hyperarea between parallel walls
localized holes (i.e., codimension1 hypersurfaces which,
with the case ofd ­ 2 in mind, we refer to as “stripes”)
falls with their separation asE , 2JSr2d.

As a consequence of this attraction, in the absence o
long-range Coulomb repulsion between holes, all charg
ordered states with sufficiently small hole concentratio
are unstable to phase separation, although it is poss
that there exist nonvanishing hole densities for whic
charge ordered states are stable [3,4]. Remarkably,
find that the correct asymptotic form of the induce
interactions cannot be obtained in any finite order
naı̈ve perturbation theory, because of the singular effe
of a marginally bound (zero-energy) spin-wave sta
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associated with the fact that doped holes actually chan
the Hilbert space, by changing the number of spin
However, a simple modified perturbation theory can
constructed which qualitatively reproduces the exact sp
wave results in all cases we have tested.

The model.—We start with an antiferromagnet with a
spin S operator on each site, and treat any system w
localized holes as a limiting case in which the couplin
between a set of “impurity” sites and its neighbors goes
zero. For static holes, this is all there is to the mod
However, so long as the holes arelocalized, either by
an impurity potential or by a self-consistent field (as
Hartree-Fock solutions [2]) the effect of hole hopping ca
be treated by including a larger set of modified exchan
interactions in the neighborhood of each hole. Thus, t
spin Hamiltonian of the doped system differs from th
of the pure AF only in the strength of some exchan
couplings:

Ĥ ­ Ĥ0 2 lĤ 0 ; Ĥ0 2 V̂ , (1)

whereH0 is the Hamiltonian for the perfect antiferromag
net, which, for concreteness, we take to have only neare
neighbor interactions on a hypercubic lattice,

Ĥ0 ­
X
kijl

Ĥij , Ĥij ­ J Ŝi ? Ŝj , (2)

and the perturbation Hamiltonian̂H 0 specifies a set of
pairwise exchange interactions such that, in the lim
l ­ 1, a spin near which the hole is localized is disco
nected from the rest of the system. Clearly, theinterac-
tion energy between hole clusters is obtained correctly

FIG. 1. Clusters of localized holes are modeled by removi
the bonds connecting the spins to the rest of the system.
additional bonds inside the disconnected areas do not contrib
to the interaction between hole clusters.
© 1998 The American Physical Society 5651
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FIG. 2. A stripe of holes forming an antiphase domain wall
modeled as a line of weak bonds in a perfect AF.

this limit, although the cluster self-energy could depend
the interactions between the fictitious, disconnected sp
We start with the simplest case of strongly localized hole
for which H 0 consists of the sum over the exchange inte
actions connecting the designated hole sites in a cluste
the nearest-neighbor sites surrounding it. One exceptio
geometry which we treat differently is a stripe which is s
multaneously an antiphase domain wall in the AF orde
Such a stripe can be treated [5], as shown in Fig. 2, eff
tively as a wall ofbondswith altered exchange coupling
so that we work in the proper Hilbert space from the beg
ning; here naı¨ve perturbation theory in powers ofl yields
qualitatively correct generic results.

Casimir energy of stripes.—We begin by considering
the interaction energy between two stripes of static hol
this turns out to be the simplest problem because forl ­ 1
the region between the two stripes is cut off from i
surroundings, and, according to a very general argum
originally due to Casimir [6], the interaction energy mu
fall off as E , 2r2d . To be more explicit, if we take
the stripes to be perfectly reflecting, the perpendicu
component of the spin-wave’s momentum in the region
width r between the stripes is discretely quantized, whi
modifies its vacuum energy. Then the distance-depend
part of the energy per unit hyperarea can be expresse
the difference

E srd ­
X

k'­pnyr

Z dd21kk

s2pdd21

µ
h̄v $k

2

∂
2 r E` ,

whereh̄v$k is the spin-wave energy, andE` is the vacuum
energy density of the infinite lattice. The summatio
performed with the Poisson formula, gives

E ­ r
X

mfi0

Z ddk
s2pdd

h̄v$k

2
e2ik'rm

­ 2
c
rd

"
z sd 1 1d Gsd 1 1d

22d pdy2 Gsdy2d

#
1 O sr2d21d , (3)

which is proportional to the spin-wave velocity,c (h̄v$k ø
cj $kj; in linear spin-wave approximation [7]c ­ JSy

p
d),

since only small momenta contribute to the large-distan
asymptotics of the interaction energy. This result is un
versal: it depends on the number of acoustic modes a
their speed but not on the form of the spectrum at high e
ergies or the specific boundary conditions.

Linear spin-wave (LSW) theory.—In more general
circumstances we need to compute the interactions fr
a more microscopic approach. For this purpose,
adopt LSW theory which is quantitatively accurate fo
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large S, but which we expect to be a reliable method
for extracting the long distance physics ford $ 2 even
for S ­ 1y2, since already ind ­ 2 AF order is very
robust [8]. In order to make contact with the perturbative
results discussed below, we calculate the LSW correction
to the ground-state energy in the presence of localized
stripes or holes at arbitraryl. The exact ground-state
energy can be calculated as a coupling constant integra
of the expectation value of the perturbation Hamiltonian
using the Feynman-Hellman formula, or, in the LSW
approximation, expressed as the functional determinant

2E sld ­
1
2

Tr sln Ĝl 2 ln Ĝ 0d . (4)

The latter can be rewritten as a coupling-constant integra
of the diagonal part of the exact LSW Green’s function
(GF) Ĝl, as we shall see below.

LSW theory for stripes.—As a first application of LSW
theory, we recompute the interaction energy between two
stripes oriented along they axis in d ­ 2. In an obvious
mixed representation, labeled by the conserved wave
vector ky parallel to the stripes and the lattice position
x in the direction perpendicular to the stripes, the Dyson
equation for the GF reduces to a finite sum,

Ĝl
x,x0sv, kyd ­ Ĝ0

x2x0sv, kyd 1 l
X

i

Ĝ 0
x2xi

Ĝl
xi ,x0 , (5)

wherei labels the vertical lines of sites connected by the
weak bond representing the effect of the stripes, and th
unperturbed GFs are given explicitly by

Ĝ0
r ­

Ç
Dr Fr
F r D r

Ç
­

Ç
kTtsrstds̄0s0dl kTtsrstds0s0dl
kTt s̄rstds̄0s0dl kTt s̄rstds0s0dl

Ç
,

(6)

where the operatorssr ­ br 1 b
y
r1x̂, s̄r ­ by

r 1 br1x̂
are defined on the bondskr, r 1 x̂l in terms of the
Holstein-Primakoff boson operatorsbr , by

r . As for the
problem of a quantum particle in the presence of a finite
number of point scatterers, the solution of Eq. (5) involves
the inversion of only a finite matrix, and the functional
determinant (4) can be rewritten in the convenient form,

E ­ 2
J S
2

Z l

0

dl0

l0

Z dkydv

4p2

X
i

jĜl0

2 Ĝ0jii , (7)

with integrations over the coupling constantl, the zero-
temperature Matsubara frequencyv, and the conserved
momentumky along the stripes, along with the finite
summation over the stripe indexi.

The matrix elements of the pure crystal GF (6) in the
mixed representation are given explicitly by the integrals

D xsv, kyd ­ Dxs2v, kyd, F̄xsv, kyd ­ Fxs2v, kyd ,

Fxsv, kyd ­
Z dkx

4p

coskx 2 gk 2 v sinkx

v2 1 e
2
k

ei kxx ,

Dxsv, kyd ­
Z dkx

4p

1 2 gk coskx

v2 1 e
2
k

ei kx x , (8)
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where gk ­ fcosskxd 1 cosskydgy2 and e
2
k ­ 1 2 g

2
k .

For the case of only two antiphase stripes separated by
distancer ­ jx2 2 x1j, the coupling-constant integratio
(7) can be performed analytically, with the result

E

J S
­

Z dv dky

8p2

3
X

h­61

ln
jl21 2 D0 1 hDr j

2 2 jF0 2 hFr j
2

jl21 2 D0j2 2 jF0j2
. (9)

The matrix elements of the bare spin-wave GF (6)
small atr ! `, sofor all l , 1, an asymptotic expressio
for the interaction energy can be obtained by expand
Eq. (9) in powers ofFr , Dr ; to leading order we obtain

E ­ 2
JS l2

r4

3

"
240ls1 2 ld 1 3

p
2 f51 2 102l 1 67l2g

1024 ps1 2 ld2
£
2 2

°
2 2

p
2

¢
l

§
2

#
. (10)

The naı¨ve perturbative results for this energy can
obtained by further expanding this expression to sec
order inl:

E l!0srd ­ 2
JS l2

r4

∑
153

2048 p
p

2

∏
1 O sr25d . (11)

At l ­ 1, however, the expression (10) diverges, beca
the denominator of the argument of the logarithm in Eq.
has a zero at the pointv ­ ky ­ 0. It is this zero,
identified as the zero-energy spin wave state bound to e
stripe, which is ultimately responsible for the modificatio
of the asymptotic form of the interaction energy. A
discussed later, the existence of such a state is rel
to the change in the structure of the Hilbert space as
clusters become isolated at this value ofl; such a state
exists near a hole cluster of any geometry, and it can
be eliminated by corrections due to spin-wave interacti
or to the holes’ mobility. In our calculation, we accou
for this zero-energy state by solving the scattering prob
near each stripe or hole cluster exactly.

The correct asymptotic behavior atl ­ 1 can be
obtained by re-evaluating the interaction energy, start
with the complete expression (9). Using the long-distan
asymptotics of the components (8) of the GF, we obt
to leading order in1yr

E l­1srd ­
JS

2 r2

Z dky dv

s2pd2 lnf1 2 e22 sk2
y 12v2d1y2

g ,

which leads to the universal Casimir result (3) evalua
at d ­ 2 andc ­ JSy

p
2. We have also investigated th

crossover from the perturbative expressions (10),(11
small values ofl to the universal form (3) atl ­ 1 by
integrating the exact LSW energy (9) numerically. T
results are shown in Fig. 3, along with the correspond
asymptotic expressions.

LSW theory for isolated holes.—Zero-energy spin-
wave bound states and the associated divergence o
perturbation series happen not only for extended obje
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FIG. 3. The LSW Casimir energy of two stripes in units of
JS2sl2ySd from Eq. (9). Thel ­ 0 line indicates the pertur-
bative result. The solid lines show the calculated asymptot
behavior atr ! ` at intermediate values ofl.

like the stripes we just considered, but also for solitar
holes or bigger hole clusters. As a second example, w
consider explicitly the interactions between two isolate
holes. The Hamiltonian of a single hole can be expresse
as a sum of terms with different symmetries with respec
to the point group [9], and we find that in arbitrary
dimension, a zero-energy, totally symmetric bound sta
emerges at the same critical valuel ­ 1, so that the
corresponding spin-wave scattering amplitude diverge
at small frequencies. Thus, while for anyl , 1, the
interaction between two holes has the same asympto
behavior as the leading order perturbative expression,

Epert ­ 2
JSl2

r2d11

24 sd2 2 1dGsd 1
1
2 dGs d13

2 d
s2pddd1y2Gs d

2 1 2d

35 , (12)

for l ­ 1 the asymptotic form of the interaction is

E l­1 ­ 2
JS

r2d21

24Gsd 2
1
2 dGs d11

2 d
2dpd

p
d Gs d

2 d

35 , (13)

which is valid both for holes at odd separations (differen
sublattices, holes with opposite spins) and holes at ev
separations (same sublattice, holes with the same spin).

Marginally bound states and the proper way to do
perturbation theory.—We return now to the issue of
the failure of naı¨ve perturbation expansion in powers of
l. For a hole cluster of arbitrary geometry the Dyson
equation [Eq. (5) for the case of stripes] gives boun
states when

detjĜ0
ri2rj

svd 2 dijl21j ­ 0 , (14)

where the two-component GF (6) is calculated for eac
pair of bonds present in the perturbation HamiltonianĤ 0

as specified in Eq. (1). Atl ­ 1, where the artificially
introduced spins become disconnected, they acquire t
freedom to rotate with respect to the rest of the system
which reveals itself as a zero-energy spin-wave sta
localized on these spins. Because of the continuity of th
5653
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GF in Eq. (14), this implies the existence of a soft spi
wave mode coupled to the holes, which is responsible
the divergence of the spin-wave scattering amplitudes
the hole cluster at small frequencies, and also provid
the singularity required to modify the Casimir interactio
energy obtained perturbatively.

We checked this argument by computing the eige
values of the matrix̂1 2 Ĝ0

ri2rj
sv ­ 0d for several hole

cluster geometries, including those shown in Fig. 1.
agreement with the prediction, there are exactly two ze
eigenvalues for the clusters with only one disconnect
group of spins, one for each spin wave branch, and th
are four such eigenvalues for the geometry in the seco
example in Fig. 1, where the two spins of the cluster a
disconnected from each other. All other eigenvalues a
positive, implying that the perturbation expansion is fre
of singularities forl , 1. Within the same approach
we have also considered the effect of virtual hops of le
strongly localized holes, which induce additional AF ex
change couplings between the spins in the neighborho
of the hole. Once again, the zero-energy spin-wave bou
state persists regardless of the strengths of these additi
interactions.

Because the existence of a zero-energy spin wa
bound state within an isolated cluster representing loc
ized holes follows from symmetry arguments, it is a ve
robust feature of the spectrum. However, the degener
of the artificially inserted spins can be lifted by a loca
magnetic field term, added to the perturbation Hamilto
ian Ĥ 0 (obviously, this does not modify the physics o
the rest of the system). It turns out that this term n
only removes the divergence of the perturbation series,
also contributes an energyE , r22d11 to the interaction
between the hole clusters already in second order
the perturbation expansion, which now gives the corre
qualitative result. The improved perturbation expansi
can be used to prove that the Casimir interaction betwe
hole clusters indeed falls off asE , r22d11 even in the
presence of spin-wave interactions.

The only case where the nonphysical spins need not
introduced is the stripe serving as an antiphase dom
wall, modeled as shown in Fig. 2. Although perturbatio
theory here also breaks down atl ­ 1 because of the
soft spin-wave mode bound to the stripe, this mode
related to the freedom to rotate the AF magnetization
the two parts, which become disconnected at this va
of l. Such symmetry is easily destroyed by the hole
mobility or by spin-wave interaction corrections, and
therefore, the robust asymptotic form of the interactio
energy between the antiphase stripes is the one given
the perturbation expansion (11). Note, however, that t
general asymptotic behaviorE , 2J 0Sr2d is restored
if next-nearest-neighbor interactions are included in t
Hamiltonian (2).

Implications.—We have considered Casimir interac
tions between well separated hole clusters in AFs. F
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hole clusters or stripes in a uniform AF, this energy is un
formly attractive and generally falls off with distance as
E , r22d11 andE , r2d, respectively. The interaction
is quantitatively weak; for two holes in theS ­ 1y2 AF
the interaction between next-nearest-neighbor holes is le
than1022J. However, because the interaction falls slowly
with distance, it is important for an analysis of the stabil
ity of static charge-ordered structures in systems lackin
long-range Coulomb repulsion. It has been conjecture
[3,10] that phase separation is a ubiquitous feature
lightly doped antiferromagnets, and that consequent
there is always a first-order transition separating the u
doped and doped states. Evidence in support [11] and
conflict [4,12] with this conjecture has been obtained from
numerical studies of small-size systems. Phase separat
has been shown to occur [13,14] in the larged limit of
the Hubbard andt-J models, and in the mean-field spiral
states of the largeN t-J model [15]. The present re-
sults offer strong additional support for the validity of this
conjecture. Specifically, we claim that because of th
Casimir-like interaction, any static ordered state of neutr
holes will be thermodynamically unstable with respect t
phase separation at small enough doping.

We thank A. H. Castro Neto for conversations. This
work was supported in part by NSF Grants No. DMR93
12606 at UCLA and No. PHY94-07194 at ITP-UCSB.

[1] Experiments and theories are reviewed in Ref. [3].
[2] J. Zaanen and O. Gunnarsson, Phys. Rev. B40, 7391

(1989); H. Schulz, Phys. Rev. Lett.64, 1445 (1990).
[3] S. A. Kivelson and V. J. Emery, inProceedings of the Los

Alamos Symposium–1993: Strongly Correlated Electron
Materials, edited by K. S. Bedellet al. (Addison-Wesley,
NY, 1994), p. 619.

[4] S. R. White and D. Scalapino, Phys. Rev. Lett.80, 1272
(1998).

[5] A. H. Castro Neto and D. Hone, Phys. Rev. Lett.76, 2165
(1996).

[6] H. B. G. Casimir, Proc. K. Ned. Akad. Wet.51, 793
(1948).

[7] A. Auerbach, Interacting Electrons and Quantum Mag-
netism(Springer-Verlag, NY, 1994).

[8] S. Chakravarty, B. Halperin, and D. Nelson, Phys. Rev. B
39, 2344 (1989).

[9] N. Bulut, D. Hone, D. Scalapino, and E. Loh, Phys. Rev
Lett. 62, 2192 (1989).

[10] G. Baskaran and P. W. Anderson, cond-mat/970607
(unpublished).

[11] V. Emery, S. Kivelson, and H. Lin, Phys. Rev. Lett.64,
475 (1990); C. Hellberg and E. Manousakis, Phys. Rev
Lett. 78, 4609 (1997), and references therein.

[12] H. Viertio and T. Rice, J. Phys. Condens. Matter.6, 7091
(1994).

[13] P. van Dongen, Phys. Rev. Lett.74, 182 (1995).
[14] E. W. Carlson, S. A. Kivelson, Z. Nussinov, and V. J.

Emery, cond-mat/9709112 (unpublished).
[15] A. Auerbach and B. E. Larson, Phys. Rev. B43, 7800

(1991).


