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Instability of Charge Ordered States in Doped Antiferromagnets
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We analyze the induced interactions between localized holesakly dopedHeisenberg antiferro-
magnets due to the modification of the quantum zero point spin wave energy; i.e., the analog of the
Casimir effect. We show that this interactionuisiformly attractiveand falls off as==2¢*! in 4 dimen-
sions. For “stripes,” i.e., parallél — 1)-dimensional hypersurfaces of localized holes, the interaction
energy per unit hyperarea is attractive and falls, generically,dike We argue that, in the absence
of a long-range Coulomb repulsion between holes, this interaction leads to an instabdity ciarge-
ordered state in the dilute doping limit. [S0031-9007(98)06433-3]

PACS numbers: 75.30.Ds, 75.50.Ee

It is still not clear what happens when a dilute concen-associated with the fact that doped holes actually change
tration of holes is introduced into a quantum Heisenberghe Hilbert space, by changing the number of spins.
antiferromagnet (AF). This is one of the central issuedHowever, a simple modified perturbation theory can be
in the theory of correlated electronic systems, especiallgonstructed which qualitatively reproduces the exact spin-
as it relates [1] to the high temperature cuprate supercorwave results in all cases we have tested.
ductors and related oxides. One class of proposals [2—4] The modek—We start with an antiferromagnet with a
holds that the result is a spatially inhomogeneous “chargepin S operator on each site, and treat any system with
ordered” ground state. Unfortunately, numerical analysidocalized holes as a limiting case in which the coupling
of the stability of such states is often inconclusive becausbetween a set of “impurity” sites and its neighbors goes to
the typical energy differences between states are smaltero. For static holes, this is all there is to the model.
and the Goldstone modes (spin waves) produce finite sizidowever, so long as the holes aecalized, either by
effects which decrease slowly with system size. an impurity potential or by a self-consistent field (as in

The goal of this paper is to investigate the thermody-Hartree-Fock solutions [2]) the effect of hole hopping can
namic stability of charge-ordered states in short-range Abe treated by including a larger set of modified exchange
spin models in the dilute doping limit. We calculate the in-interactions in the neighborhood of each hole. Thus, the
duced interaction between well-separated clusters of holespin Hamiltonian of the doped system differs from that
due to their modification of the spin wave spectrum, andf the pure AF only in the strength of some exchange
find that it isuniformly attractive Specifically, the asymp- couplings:
totic long distance — =) interaction between two hole H=H,— \A'=H, -V, 1)
clusters (see Fig. 1) is of the ford ~ —JSr=2¢*! for
a d-dimensional, spirs Heisenberg quantum AF with ex-
change coupling/ [see Eq. (2)]. For extended clusters
of holes, under generic circumstances, the dependence
separation (but not the absolute magnitude) of the inter- Hy = Z iy, a;=1JS; -8, 2)
action energy can be reliably estimated by summing the O ' '

tphalryvl[se h(t)_le-hole mt;e[]actlon ovet; 6,:” pairs, for”e>|<aml?le, nd the perturbation Hamiltoniafl’ specifies a set of
€ interaction per unit hyperarea between parallel wa SOgairwise exchange interactions such that, in the limit

localized holes (i.e., codimensidnhypersurfaces which, A = 1, a spin near which the hole is localized is discon-

with the case ol = 2 in mind, we refer to as “stripes’) nected from the rest of the system. Clearly, timterac-

. . . — —d . . . .
falls with their separation a§ JSr . tion energy between hole clusters is obtained correctly in
As a consequence of this attraction, in the absence of a

long-range Coulomb repulsion between holes, all charge-

whereH, is the Hamiltonian for the perfect antiferromag-
net, which, for concreteness, we take to have only nearest-
8gighbor interactions on a hypercubic lattice,

ordered states with sufficiently small hole concentration (*/*(*/’(’/’(’/’/’/’(’/*/*r‘/*
are unstable to phase separation, although it is possible »{@ ;{ 8 ,{ 8 ,{ 0-0-0 ,{ 0-0 /‘4,
that there exist nonvanishing hole densities for which /“*r‘/*/“ /“ /“f,‘/f/“f,‘/f/“ 0-o ,‘/f
charge ordered states are stable [3,4]. Remarkably, we R R e Ty

find that the correct asymptotic form of the induced . .
interactions cannot be obtained in anv finite order o IG. 1. Clusters of localized holes are modeled by removing
n y the bonds connecting the spins to the rest of the system. The

neive perturbation theory, because of the singular effecidditional bonds inside the disconnected areas do not contribute
of a marginally bound (zero-energy) spin-wave stateo the interaction between hole clusters.
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f—)—f—o—)—f-/ Ry By large S, bgt which we expect to be a reliable method
BRI A IR for extracting the long distance physics fér= 2 even
foheg oty ractg & ol -

I ) Aoy t-y I A—y Ay for § = 1/2, since already ind = 2 AF order is very
LA PR P P robust [8]. In order to make contact with the perturbative
folf o f=/=] for =17 results discussed below, we calculate the LSW correction

FIG. 2. A stripe of holes forming an antiphase domain wall isto the ground-state energy in the presence of localized
modeled as a line of weak bonds in a perfect AF. stripes or holes at arbitrary. The exact ground-state
energy can be calculated as a coupling constant integral
this limit, although the cluster self-energy could depend or®f the expectation value of the perturbation Hamiltonian
the interactions between the fictitious, disconnected spingising the Feynman-Hellman formula, or, in the LSW
We start with the simplest case of strongly localized holes@pproximation, expressed as the functional determinant
for which H' consists of the sum over the exchange inter- 1 R R
actions connecting the designated hole sites in a cluster to —E) = 5 Tr (ng* —Ing°). (4)

the nearest-neighbor sites surrounding it. One exceptionqjhe latter can be rewritten as a coupling-constant integral
eometry which we treat differently is a stripe which is si- X ' i
g y y P of the diagonal part of the exact LSW Green'’s function

multaneously an antiphase domain wall in the AF order. A
4 p F) G*, as we shall see below.

) O G

Such a stripe can be treated [5], as shown in Fig. 2, effed . ) L

tively as a wall ofbondswith altered exchange coupling, h LSW theory for Stl’lpeﬁ.—AS a fII’Sf[ appllcatlort; of LSW

so that we work in the proper Hilbert space from the begin-t eory, we rec(cj)mlpute the m_ter_actlo_n entlergy eéw_een two

ning; here naie perturbation theory in powers afyields stripes oriented along theaxis ind = 2. In an obvious
mixed representation, labeled by the conserved wave

gualitatively correct generic results. . ; s
Casimir energy of stripes—We begin by considering vector k, parallel to the stripes and the lattice position

the interaction energy between two stripes of static holes® In the dfwec’;:onGﬁ):erpgndlcular tcf)' the stripes, the Dyson
this turns out to be the simplest problem becausafer 1 €duation for the GF reduces to a finite sum,
the region between the two stripes is cut off from its ., A0 A0 A
surroundings, and, according to a very general argument (@, k) = Grw(@, ky) + A Z Gix Grw> (O

l

originally due to Casimir [6], the interaction energy must , . .
fall off as £ ~ —r—“. To be more explicit, if we take wherei labels the vertical lines of sites connected by the

the stripes to be perfectly reflecting, the perpendiculaive@k bond representing the effect of the stripes, and the
component of the spin-wave’s momentum in the region of/NPerturbed GFs are given explicitly by

Width r bgtween the stripes is discretely_quantized, WhiCh,QO | D Fo || Tese()50(0))  (Trse(1)s50(0))
modifies its vacuum energy. Then the distance-dependefr F. D (T,5:(7)50(0))  (T,5:(7)s0(0)) |’

part of the energy per unit hyperarea can be expressed as f

the difference (6)
Ak (R where the operators, = by + b).¢, 5 = bl + brig
@) = Z f(zﬂ)d—1< ) >_ rEe, are defined on the bond&,r + %) in terms of the

k,=mn/r

_ _ . Holstein-Primakoff boson operatofg, b!. As for the
where/iwy is the spin-wave energy, arg. is the vacuum  problem of a quantum particle in the presence of a finite
energy density of the infinite lattice. The summation,number of point scatterers, the solution of Eq. (5) involves

performed with the Poisson formula, gives the inversion of only a finite matrix, and the functional
dk hwp 5, determinant (4) can be rewritten in the convenient form,
EF=r Z f - e A
m#0 2wyt 2 F = _Ef ax’ dkydw Zlé)\’ _ GO|” 7)
__cfsarnrasnl ooy g 2 Jo A 4w 4
o 22d 77d/2T(d /2) ’ ’ with integrations over the coupling constantthe zero-

C . : ; _ temperature Matsubara frequeney and the conserved
which is proportional to the spin-wave velocity(/iw; = morﬁentumk along the st?ipeswalong with the finite
y l

c|kl; in linear spin-wave approximation [7] = JS//d), summation over the stripe index

since only small momenta contribute to the large-distance The matrix elements of the pure crystal GF (6) in the

asymptotics of the interaction energy. This result is uni-_ . : : L .
versal: it depends on the number of acoustic modes anr(]jlxed representation are g|ve_n explicitly by the integrals
their speed but not on the form of the spectrum at high enD ,(w, k) = D(—w,ky), Filw, k) = F(—w, k),

ergies or the specific boundary conditions.

Linear spin-wave (LSW) theorsIn more general Few, ky) = f dky cOSk, 2”‘ 2w SInk, Phex
circumstances we need to compute the interactions from 4w w® + €
a more microscopic approach. For this purpose, we D(w. k) = ] dky 1 — 7y, COSky pikex (8)
adopt LSW theory which is quantitatively accurate for ey 4 w2+ € ’
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where vy, = [cogk,) + codk,)]/2 and €; =1 — ;.
For the case of only two antiphase stripes separated by the 102 F \: ~
distancer = |x, — x|, the coupling-constant integration

) ) o, 107§
(7) can be performed analytically, with the result g .,
E f dow dk, g1t
JS g2 §10° ¢
A= Do+ nD.2 — _ 2 8146 [
< 3 In | b n r|2 Ij-"o2 uNilg ©) g0 -
el [A~1 = Dol? — | Fol 107 F o 2 RV
, : (@R ) — - '%
The matrix elements of the bare spin-wave GF (6) are 108 [ 153282ty ——— A:}o‘
small atr — o, sofor all A < 1, an asymptotic expression 1 5 4 s 16 32 61 128
for the interaction energy can be obtained by expanding distance
EQ. (9) in powers off,, D,; to leading order we obtain FIG. 3. The LSW Casimir energy of two stripes in units of
JS A2 JS2(A%/S) from Eq. (9). TheA = 0 line indicates the pertur-
F=- 7] bative result. The solid lines show the calculated asymptotic
r behavior atr — o0 at intermediate values of.

[240/\(1 —A) + 3v2[51 — 102 + 67)\2]:|‘ (10)

1024 (1 — A)2[2 — (2 = V2)AP . . . . .
like the stripes we just considered, but also for solitary

Tge_na:j/eb p(?rtu;batlve erP"S rf:_)r this energy can begoles or bigger hole clusters. As a second example, we
obtained by further expanding this expression to seconfl,nsiger explicitly the interactions between two isolated

order inA: holes. The Hamiltonian of a single hole can be expressed
JS A? 153 _ as a sum of terms with different symmetries with respect
A—0 _ 5
) = 4 [2048 Wﬁ} + 00 (A1) 1 the point group [9], and we find that in arbitrary

At A = 1, however, the expression (10) diverges, becausglmensmn, a zero-energy, .totally smietrlc bound state
, i ! eémerges at the same critical value= 1, so that the
the denominator of the argument of the logarithmin Eq. (9)

has a zero at the poinb =k, = 0. It is this zero, corresponding spin-wave scattering amplitude diverges

. o : t small frequencies. Thus, while for any< 1, the
identified as the zero-energy spin wave state bound to eac . .

. Co - . .. interaction between two holes has the same asymptotic
stripe, which is ultimately responsible for the modification

of the asymptotic form of the interaction energy. ASbehawor as the leading order perturbative expression,

discussed later, the existence of such a state is related JS A2 |:(d2 - DI'd + %)r(%)} 12)
, (12

. . f —_
to the change in 'ghe structure _of the Hilbert space as the Lpert 2d+1 (zw)ddl/ZF(ﬂ +2)
clusters become isolated at this value Xpfsuch a state 2

exists near a hole cluster of any geometry, and it cannofor A = 1 the asymptotic form of the interaction is

be eliminated by corrections due to spin-wave interactions L dt1
or to the holes’ mobility. In our calculation, we account FA=l = _ JS I'd =)' (=) (13)
for this zero-energy state by solving the scattering problem r2d=1 |\ odgd /g r(%) ’

near each stripe or hole cluster exactly. o ] - ]

obtained by re-evaluating the interaction energy, startingublattices, holes with opposite spins) and holes at even

with the complete expression (9). Using the |0ng_distancéeparat.ions (same sublattice, holes with the same spin).
asymptotics of the components (8) of the GF, we obtain Marginally bound states and the proper way to do

to leading order inl /r perturbation theory—We return now to the issue of
the failure of nare perturbation expansion in powers of
EA=1(p) = JS [ dkdo In[1 — ¢ 2k+209"] A. For a hole cluster of arbitrary geometry the Dyson
2r2 (2m)? equation [Eq. (5) for the case of stripes] gives bound

which leads to the urj/i\iersal Casimir result (3) evaluate@tates when
atd = 2 andc = JS/+/2. We have also investigated the AQ N T
crossover from the perturbative expressions (10),(11) at detlgr"’”(w) oA 1 =0, (14)
small values of) to the universal form (3) ab = 1 by  where the two-component GF (6) is calculated for each
integrating the exact LSW energy (9) numerically. Thepair of bonds present in the perturbation Hamiltonfh
results are shown in Fig. 3, along with the correspondings specified in Eq. (1). Ad = 1, where the artificially
asymptotic expressions. introduced spins become disconnected, they acquire the
LSW theory for isolated holes-Zero-energy spin- freedom to rotate with respect to the rest of the system,
wave bound states and the associated divergence of théhich reveals itself as a zero-energy spin-wave state
perturbation series happen not only for extended object®calized on these spins. Because of the continuity of the
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GF in Eq. (14), this implies the existence of a soft spin-hole clusters or stripes in a uniform AF, this energy is uni-
wave mode coupled to the holes, which is responsible foformly attractive and generally falls off with distance as
the divergence of the spin-wave scattering amplitudes off ~ r~2¢*1 andE ~ r~¢, respectively. The interaction
the hole cluster at small frequencies, and also provideis quantitatively weak; for two holes in the = 1/2 AF

the singularity required to modify the Casimir interaction the interaction between next-nearest-neighbor holes is less
energy obtained perturbatively. than10~2J. However, because the interaction falls slowly

We checked this argument by computing the eigenwith distance, it is important for an analysis of the stabil-
values of the matrix — Gr"i_r‘(w = () for several hole ity of static charge-ordered structures in systems lacking
cluster geometries, includingj those shown in Fig. 1. Inlong-range Coulomb repulsion. It has been conjectured
agreement with the prediction, there are exactly two zer3,10] that phase separation is a ubiquitous feature of
eigenvalues for the clusters with only one disconnectedightly doped antiferromagnets, and that consequently
group of spins, one for each spin wave branch, and therthere is always a first-order transition separating the un-
are four such eigenvalues for the geometry in the secondoped and doped states. Evidence in support [11] and in
example in Fig. 1, where the two spins of the cluster areconflict [4,12] with this conjecture has been obtained from
disconnected from each other. All other eigenvalues araumerical studies of small-size systems. Phase separation
positive, implying that the perturbation expansion is freehas been shown to occur [13,14] in the largdimit of
of singularities forA < 1. Within the same approach, the Hubbard and-J models, and in the mean-field spiral
we have also considered the effect of virtual hops of lesstates of the largev ¢-J model [15]. The present re-
strongly localized holes, which induce additional AF ex-sults offer strong additional support for the validity of this
change couplings between the spins in the neighborhoaotbnjecture. Specifically, we claim that because of this
of the hole. Once again, the zero-energy spin-wave boun@asimir-like interaction, any static ordered state of neutral
state persists regardless of the strengths of these additiorf@les will be thermodynamically unstable with respect to
interactions. phase separation at small enough doping.
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