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Electronic Properties of the Trellis-Lattice Hubbard Model: Pseudogap and Superconductivity
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We study the electronic states of the two-dimensional frustrated coupled ladder (trellis lattice) Hub-
bard model, which is a theoretical model of the superconducting material Sr142xCaxCu24O41. Tem-
perature dependence of the density of states and magnetic susceptibility are discussed by using the
fluctuation exchange method, which is applied to this model for the first time. At half filling, a large
pseudogap appears in the density of states at higher temperatures. Moreover, thed-wave supercon-
ductivity appears at lower temperatures, where the pseudogap is well developed. These behaviors
have similarities to the under-doped high-Tc cuprates. [S0031-9007(98)06461-8]

PACS numbers: 71.27.+a, 71.10.Fd, 74.72.Jt
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After the discovery of high-Tc superconductors
(HTSC), various copper-oxide compounds have be
investigated intensively. In 1996, Sr142xCaxCu24O41
was added to the list of a new type of superconducto
For x ­ 13.6, the superconducting transition temperatu
(Tc) is about 12 K under high pressures,P , 3 GPa
[1]. In Sr142xCaxCu24O41, doped holes move on the
two-dimensional Cu (dx22y2) network, connected byp
orbitals of O. The structure of the Cu network is calle
trellis lattice, which is a frustrated coupled ladders in tw
dimension as shown in Fig. 1. On the other hand,
HTSC the carrier moves on the square lattice Cu netwo
For x ­ 0 the system is a Mott insulator, which is rep
resented by theS ­ 1y2 spin Hamiltonian on the trellis
lattice. Experimentally, it has a singlet ground state wi
a spin gap consistent with the theoretical predictions [
For x . 0, hole carriers are introduced into the trelli
lattice, and the resistivity decreases asx increases. For
x ­ 11.5, the resistivity shows an anisotropic 2D Ferm
liquid behavior (ra, rc ~ T2, rayrc & 15) for T . Tc

under the optimum pressure,P ­ 4.5 GPa [3].
Electronic properties of a single ladder Hubbard mod

(or t-J model) have been studied intensively by man
authors. For example, by exact diagonalization stu
[4], density matrix renormalization group method [5
resonating-valence-bond (RVB) mean-field theory [6
bosonization technique [7], quantum Monte Carlo (QMC
simulations [8,9], and others. According to these studi
it has been shown that the ground state of a single lad
has an instability towards ad-wave superconductivity.
Nonetheless, thermodynamic properties of the tw
dimensional trellis lattice Hubbard model, whic
corresponds to Sr142xCaxCu24O41, has not been studied
so far. For this model, a perturbation treatment wi
respect toU is valid at least up to a moderate positiveU,
which is not the case for 1D systems. Recent perturbat
renormalization group study with respect to the inte
ladder coupling andU reports that the 2D Fermi liquid
region would be realized for realistic parameters [10].

In this Letter, we study electronic properties of th
trellis lattice Hubbard model by using the fluctuatio
0031-9007y98y80(25)y5619(4)$15.00
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exchange (FLEX) method. Here, we study the metal
state at half filling as the first step, since the frustratin
interladder hoppingt0 stabilizes the paramagnetic metalli
state for moderateU . 0. As the temperature decrease
a pseudogap appears in the density of states (DOS) be
some characteristic temperatureT0, and the uniform
magnetic susceptibilityx also begins to decrease below
T0. Successively, ad-wave superconductivity occurs a
a critical temperatureTc. We find that Tc ø T0 and
the pseudogap is well developed atTc. These non-Fermi
liquid behaviors of our model, brought by the large sp
fluctuations, are also characteristic properties of the HTS
in the small doping region.

The Hubbard Hamiltonian in real space is shown b
Fig. 1. The unit cell of this lattice consists of two
Cu sites (A,B). We have integrated out the Op-orbital
degrees of freedoms.t and t0 are the hopping parame-
ters for the intraladder processes and interladder on
respectively. It is reasonable to assume thatjtj ¿ jt0j
in Sr142xCaxCu24O41 because the Cu-O-Cu bond angl
is close to 180± within each ladder, but nearly 90±

between ladders.U is the on-site Coulomb repulsion.
In this Letter, we putt ­ 21 and t0 ­ 20.15, which
is consistent with the recent band calculation [11]. Th
noninteracting band widthD is given by D ­ 6jtj 1

4jt0j ­ 6.6. Figure 2 shows the two Fermi surfaces, bo
are electronlike and open orbits.

In the present study we use the FLEX method, whic
is a kind of self-consistent perturbation theory wit

FIG. 1. Trellis lattice Hubbard model. The length oft bonds
andt0 bonds are 1 and1y

p
2, respectively.
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FIG. 2. One-half of the Brillouin zone. Fermi surfaces at ha
filling are shown by the solid lines forU ­ 0 and by the dashed
lines for U ­ 2.9. In both cases,t ­ 21, t0 ­ 20.15, and
T ­ 0.02.

respect toU. The FLEX method has advantages fo
handling large spin fluctuations. It has been applied
HTSC by many authors, and various non-Fermi liqui
behaviors observed in HTSC are reproduced well [12
15]. Though it is an approximation, it has been show
that the imaginary time Green’s function obtained by th
FLEX agrees well with the QMC result for the square
lattice Hubbard model with moderateU [12]. In our
calculation, both the thermal Green’s function and th
self-energy have a2 3 2 matrix form, i.e., Gabsk, end
and Sabsk, end, where a, b ­ A or B. The Dyson
equation is written as

hĜsk, endj21 ­ hĜ0sk, endj21 2 Ŝsk, end , (1)

whereĜ0sk, ed is the unperturbed Green’s function. The
self-energy is given by

Sabsk, end ­ T
X
q,l

Gabsk 2 q, en 2 vld ? U2

3

∑
3
2

x̂ s2dsq, vld 1
1
2

x̂ s1dsq, vld

2 x̂0sq, vld
∏

ab

, (2)

x̂ s6dsq, vld ­ x̂0 ? h1̂ 6 Ux̂0sq, vldj21, (3)

x0
absq, vld ­ 2T

X
k,n

Gabsq 1 k, vl 1 endGbask, end ,

(4)

whereen ­ s2n 1 1dpT and vl ­ 2lpT , respectively.
The k summation is taken in the first Brillouin zone,
shown in Fig. 2. We solve Eqs. (1)–(4) self-consistently
choosing the chemical potentialm so as to keep the
total electron number constant. We use 4096k-points
and ,512 2048 Matsubara frequencies forT $ 0.02.
(jtj ­ 1.)

Now, we show the results of the present FLEX calcu
lations. Figure 3(a) shows the DOSrsvd as a function
of energy for variousU, and Fig. 3(b) shows the DOS at
m as a function ofU, at T ­ 0.02 in both cases. Here-
after we takem as the origin of energy. It should be
noted that our model is particle-hole asymmetric whe
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FIG. 3. (a) The DOS as a function of energy for sever
U $ 0. (b) The DOS atm (solid line) and the Stoner factor
aS (dashed line) as a function ofU, at T ­ 0.02.

t0 fi 0. By definition, the DOS is given byrsvd ­
s22ypd

P
k Im GAAsk, v 1 i0d, andGAAsk, v 1 i0d is

obtained through numerical analytic continuation from
GAAsk, end by N-point Padé approximation [16].

We see in Fig. 3 that a V-shape pseudogap arou
m grows monotonously asU increases. This is very
different from the results obtained by the dynamical me
field theory since the DOS atm does not change by
the latter method. Based on the extrapolation from t
normal state, the metal-insulator (MI) transition may tak
place aroundU ­ Uc , 3.5. By neglecting the vertex
corrections, the Stoner factor of the present modelaS is
defined as

aS ­ max
k

hU ? fxAAsk, v ­ 0d 1 jxABsk, v ­ 0djgj ,
(5)

which is given ats0, pd in case of half filling. aS , 1 is
satisfied at least forU # 2.9 in the FLEX approximation,
which means there is no magnetic ordering. On t
other hand, in the RPA calculation without the sel
consistency condition,aS $ 1 for U $ U0

N ­ 1.4. In
the FLEX calculation, the DOS atm begins to decrease
monotonously forU $ U0

N , which may be interpreted
that large quantum fluctuations prevent the magne
instability by making a pseudogap. AsU is increased
further, we find that thed-wave superconductivity occurs
for U $ 2.9, where the system is close to the magnet
critical point,aS , 0.99.
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We determineTc by solving the linearized Eliashberg equation with respect to the singlet-pairing order param
fabs2k, end ­ 1fbask, end,

lfabsk, end ­ 2T
X
q,m

X
a0,b0

Vabsk 2 q, en 2 emdGaa0 sq, emdGbb0s2q, 2emdfa0b0sq, emd ,

V̂ sk, vld ­
3
2

U2x̂s2dsk, vld 2
1
2

U2x̂ s1dsk, vld 1 U , (6)
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where Tc is given by the condition thatl ­ 1. We
find that Tc ø 0.02 for the present set of parame
ters. To identify the symmetry of the supercon
ductivity the nearest neighbor pairing function
[DAA0 ­ Re

P
k fAAsk, ien ! 0d expsikyd and DAB ­

Re
P

k fABsk, ien ! 0d expsikxd] are calculated (see
Fig. 1.) We have found thatDAA0DAB , 0 and
jDABjyjDAA0 j ­ 1.4, which means that ad-wave type
superconductivity is realized. We have also looked at
triplet-pairing solution [fabs2k, end ­ 2hfabsk, endjp]
by solving the corresponding linearized Eliashberg equ
tion, but theT

triplrt
c is always lower thanT

singlet
c . It has

been confirmed thatt0 dependence ofTc is very weak.
Even at half filling, the superconducting state is stab
against magnetic ordering, which is consistent with th
fact that the trellis lattice spin system has the gapful sp
singlet ground state.

Figure 4(a) shows the DOS as a function of energy f
variousT , and Fig. 4(b) the DOS atm as a function ofT ,
for U ­ 2.9 in both cases. As the temperature decreas

FIG. 4. (a) The DOS as a function of energy for sever
T $ 0.02. (b) The DOS atm (solid line) and the Stoner factor
aS (dashed line) as a function ofT (U ­ 2.9).
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the V-shape pseudogap aroundm grows monotonously
below the characteristic temperature,T0 , 0.4. The size
of the V-shape pseudogap, measured from the wid
between the two peaks, isDpg , 2. Interestingly,Dpg

is about 5 times larger thanT0 for the present set of
parameters. AtTc ø 0.02, thed-wave superconductivity
occurs as was discussed in the preceding paragraph.

The pseudogap behavior in our model, calculated
the FLEX method, has close relationship to the sp
fluctuations. It is a characteristic feature of the prese
model that the pseudogap behavior is observed for a w
region of parameters,U or T . Similarly, the square lattice
Hubbard model at half filling also shows the pseudog
behavior as a precursor of the MI transition in the FLE
study [15]. However, a clear pseudogap develops o
at close vicinity of the magnetic critical point, wher
s1 2 aSd21 ¿ Os100d. We find that the critical region
is much wider for the trellis lattice than for the squar
lattice. Moreover, superconductivity is not realized in th
square lattice model at half filling prevented by magne
ordering.

Now, we investigate the temperature dependen
of the magnetic susceptibilities. In Fig. 5, we sho
the uniform magnetic susceptibility (x) and the local
magnetic susceptibility of the nearest neighbor sit
in a ladder (xAA0 , xAB). They are derived, neglecting
the vertex corrections, as follows:x ­ limk!0 mB 3

hx s2d
AA sk, 0d 1 x

s2d
AB sk, 0dj, xAA0 ­ mB

P
k x

s2d
AA sk, 0d 3

expsikxd, and xAB ­ mB
P

k x
s2d
AB sk, 0d expsikyd. In

Fig. 5, we see thatx shows a maximum aroundT0 , 0.4,
which corresponds to the temperature of the pseudo
formation (see Fig. 4). Moreover, bothxAA0 and xAB

FIG. 5. The uniform magnetic susceptibilityx and the local
magnetic susceptibility of the nearest neighborsxAA0 and xAB,
as a function ofT (U ­ 2.9). We putmB ­ 1.
5621
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FIG. 6. k dependence of the diagonal part of the self-energ
SAAskx , ky , v ­ 0d.

grow rapidly as the temperature decreases, which mea
the increase of short range singlet correlations at low
temperatures. To be precise, for the calculation of corr
lation functions, the vertex corrections are indispensab
to satisfy conservation laws [17]. In general, the Ston
factor aS defined by Eq. (5) is slightly overestimated
especially at low temperatures [14]. In the same wa
the obtainedxAA0 and xAB at lower temperatures would
be overestimated, although the qualitative behavior
expected to be the same.

Next, we discuss the origin of the pseudogap behavio
Figure 6 showsSAAsk, v ­ md at T ­ 0.02 along theG

point to theS point (see Fig. 2). One remarkable featur
is that thek dependence of the real part is large at the Ferm
surface, which reduces the quasiparticle effective ma
On the other hand, itsv dependence is rather moderate
Another remarkable point is that the absolute value of th
imaginary part is much larger than the temperature.
this sense, the normal state just aboveTc is an incoherent
metallic state. These two characters are the origin of t
pseudogap behavior of our model.

It is also interesting to discuss the shape of the Ferm
surfaces. Figure 2 shows the Fermi surfaces atT ­
0.02 for U ­ 0 and U ­ 2.9. They are defined by
Re Gabsk, v ­ md ­ 0. Although the position does not
change so much, the dispersion is drastically changed d
to the interaction, which may have intimate relation t
various non-Fermi liquid behaviors of the present mode
For U ­ 2.9, the nesting feature of the Fermi surfaces i
enhanced clearly. It means that the effective interladd
coupling t0p is renormalized to a smaller value by the
correlation effect. In other words, the hopping process
between ladders are suppressed in the interacting case.
point out that the nesting tendency of the interacting Ferm
surface is also observed in the square lattice model [13]

Finally, we discuss some experimental results o
Sr142xCaxCu24O41. The angle resolved photoemission
experiments [18] show the absence of DOS atm at
T ­ 130 K. This is consistent with the pseudogap forma
tion predicted by the present work since the pseudog
survives the doping into the present model [19]. More
over, the enhancement of anisotropy of the resistivity
5622
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low temperatures experimentally observed [3] may b
explained in terms of the renormalization of the effectiv
t0p. Another consequence of the large pseudogap f
mation derived by the present work is that the electron
states will be unstable against the localization effect
impurities, or the CDW transition. In fact, at low tem
peratures good metallic states are realized experiment
only in the high-doping region [1,3]. This sensitivity
to impurity scatterings may be the reason of lowTc in
Sr142xCaxCu24O41, compared with the HTSC.

In summary, we have studied low temperature ele
tronic properties of the trellis lattice Hubbard model a
half filling by using the FLEX method, for moderateU
(U , 2.9). As the temperature is lowered, a pseud
gap emerges in the DOS suppressing magnetic orderin
with increasing short range singlet correlations. AsT
is lowered further, we find ad-wave superconductivity
at Tc ø 0.02 in the present model. The large pseudo
gap formation seems to reduceTc, in spite of the strong
short range singlet correlations. On the other hand, in t
square lattice model, magnetic instability prevents the o
currence of superconductivity at half filling. It is remark
able that the geometry of the trellis lattice makes the
pseudogap properties more explicit than in the square
tice model.
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