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We study thermal transport in a one-dimensional quantum wire connected to reservoirs. Despite
the absence of electron backscattering, interactions in the wire strongly influence thermal transport.
Electrons propagate with unitary transmission through the wire and electric conductance is not affected.
Energy, however, is carried by bosonic excitations (plasmons) which suffer from scattering even on
scales much larger than the Fermi wavelength. If the electron density varies randomly, plasmons
are localized andharge-energy separationccurs. We also discuss the effect of plasmon-plasmon
interaction using Levinson’s theory of nonlocal heat transport. [S0031-9007(98)06399-6]

PACS numbers: 71.10.Li, 72.15.Jf, 71.27.+a, 71.45.—d

In the Fermi liquid theory of thermoelectric transport, since the scattering properties of the electrons (which
both charge and energy are carried by fermionic quasidetermine the transfer of charge) are in general quite
particles [1]. This manifests itself in a universal re- different from the scattering properties of the plasmons
lation between the electric conductivity and thermal (responsible for the transfer of energy). In this paper we
conductivityx, known as the Wiedemann-Franz (WF) law study this distinct difference by considering situations
(kg =h =1), in which the dc electric conductance is not affected

« 2 by interaction in contrast to the thermal conductance.
— =35 (1)  Specifically we consider a one channel LL with spatially
ol 3e varying density, which is connected to two reservoirs as it

The validity of Eq. (1) has been confirmed in the case!S shown in Eig. 1. If the spatial variation related to these
of arbitrary impurity scattering [2] and in the presence ofinhomogeneities occurs on a length scale much larger than
electron-electron interactions [3] within the Fermi liquid the Fermi wavelengthr, electrons willnot suffer any
approach. backscattering The electric dc conductance will therefore
At low temperatures, in conductors of small size, phasebe given by the universal valug = e*/27. However,
coherent electron propagation dominates transport. Mes@lasmons with wavelengths much larger thap will
scopic contributions to thermoelectric coefficients in thesuffer backscattering. Under these circumstances the
diffusive regime are quite significant [4]. The thermoelec-thermal conductance is strongly affected by interactions.
tric coefficients of a ballistic quantum point contact have The Hamiltonian which describes such an inhomo-
been studied experimentally [5] and theoretically using #Jeneous electron liquid can be written as [1H]=
scattering approach [6—8]. In this case, the observed viof dx H (x), where
lations of the WF law can be attributed to the strong en- p? 1 ?
ergy dependence of the scattering matrix. Hx) = 2mn(x) + 3[‘/0 + ;"(x)}(axm‘)z' ()
Electron-electron interactions in low-dimensional sys- )
tems may lead to non-Fermi liquid behavior. In thisHere, u(x) and p(x) are the displacement of the elec-
context transport properties of quantum wires are of conion liquid and the conjugate momentum, respectively,
siderable current interest [9]. Theoretically these systemgatisfying[u(x), p(x')] = ié(x — x'). The local average
are studied in the framework of the Luttinger liquid (LL) lectron concentration ia(x). Furthermore,V; is the
model [10]. Revived interest in the transport in LLs wasintéraction strength (the zero-momentum Fourier com-
triggered by the work of Kane and Fisher [11]. The effectPonent of the interaction potential). The connection of
of interaction on the electric conductance crucially depends

on the way in which the quantum wire is connected to the~—__ . d ' :
measuring leads (reservoirs) [12]. More recently thermal \ M/
transport in a LL was considered [13] and deviations from T1 E LL : Tr

the Fermi liquid relation, Eq. (1), were predicted. /‘AJ\’\
The low energy excitations of an interacting one- b >> 2
dimensional (1D) system are long wavelength denSIWZIG. 1. The 1D wire, connected adiabatically to two reser-

osc_:illations (plasmons) which have bosonic 'CharaCtervoirs kept at different temperatures. The wire has some inho-
This has drastic consequences for thermoelectric transporhogeneities on a scale which is much larger than
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a quantum wire of lengthd to reservoirs is modeled each mode contributes independently to the energy flux.
by a space-dependent interacti®i(x) [Vo(x) = Vo if A similar approach cannot be applied to determine the
0 < x < d and zero otherwise] [12,15]. For later use weelectric current, as the charge is transported through the
define the parametey = (1 + Vy/mvp)~ /2, character- sample via a complicated superposition of plasmon modes.
izing the interaction strength in the wire. We further- Now we are in a position to calculate the average en-
more taken(x) = nyp = mvp/a in the reservoirs (i.e., ergy current. This quantity is space-independent because
for x <0 or x > d). Using the continuity equation of current conservation, hence we calculate it, say, for
aJe(x) + 9,H (x) = 0, the energy currentz(x) canbe x — . We substitute the appropriate asymptotics from
expressed in terms af(x) and p(x), (5) into (7), then perform the Gibbs average of the an-

1 w2 ticommutator in (3) with respect to the Hamiltonian (6).
Je(x) = ——m[Vo + 7n(x)}{p(x),8x(nu)}, (3)  Asa result we find
where {---,---} denotes the anticommutator. We will _ 1 [x 2 _
show that the calculation of the average energy current ) 27 Jo dolto[Tm(o) = n(@)],  (8)

amounts to the solution of a well defined scatteringwheren () is the Bose function of reservoir. This
. o o )
problem in analogy to the well known Landauer-Buttlkerresult holds as long as electrons are not backscattered

approach for quantum transport in noninteracting electro%y inhomogeneities. In the linear response regime, when

systems [16]. the temperature differencAT between the reservoirs

To j[h|s end, we diagonalize the .Hamllt_onlan (2) USINg;q vanishingly small, the thermal conductance is readily
a basis of scattering statés ,(x) which satisfy the wave evaluated to be

equation
—j _ 2 4 1 ” w? )
(bk,a wk(bk,a(x)» ( ) K = ? dwﬁltwl s (9)

wherew; is the energy of the given mode and 8 0 sinft (8w /2)

A ) 5 where B is the inverse temperature/7. For noninter-

h =)o (Vo/m + m>n(x)/m?)dqn(x). acting electrons|z,,| = 1, this expression reduces to the
The indexa = r, [ labels the states incident from the right well known resultk = 7T /6. Equation (9) shows that
and left reservoir, respectively, with wave vecfor The  inhomogeneities strongly affect thermal transport in an in-

scattering states have asymptotics teracting quantum wire, even in the absence of any elec-
bra(x) = e + ry e ® forx — —oo, tron backscattering. This is essentially the analog of the
i Kapitza boundary resistance [17]. Below we study the
= lye for x — oo} behavior ofK, Eqg. (9), in two relevant limits.
bi,(x) =ty e for x — —oo, ) _(i) Th_e _simplest si'Fuation occurs when an int_ergcting
ik . .\ it wire of finite length with a constant electron densityis
=e = ro(ta/15,)e for x — oo, connected adiabatically to two noninteracting reservoirs.

wherer,, andt,, are the reflection and transmission am-In this case the solutions of Eg. (4) inside the wire are
plitude, respectively. We emphasize th#t, describes plane waves, with momentugk. The plasmon transmis-
plasmon wavegather than electronic excitations. The di- sion coefficient can be calculated explicitly; it is strongly
agonalized Hamiltonian is given by frequency dependent with characteristic frequengygd
+ + due to the mismatch of momenta at= 0 and x = d.
H = (1/2)Zf dkwi(bgabra + biabia).  (6)  aAga result,K will be suppressed below its noninteracting
“ value. The Lorentz numbdr = K/GT = 27K /T as
Here, the operators and b’ obey the Bose commuta- 5 function of temperature and interaction strength is plot-
tion relation [bk,a,bg,’a,] = 84.06(k — k'). The dis- ted in Fig. 2. In the low-temperature limit, the Lorentz
placement field and its conjugate momentum can be&umber attains its noninteracting value, = 72/3¢?

expressed as (since the zero frequency transmission coefficient equals
1 [ Qi) unity) and decreases with increasing temperature and in-
plx) = Zj; dk?\/T teraction strength. Notwithstanding the fact that a de-
“ . + crease ofL is a genuine feature of the system, the actual
X [ra(X)bra = ¢f o (X)bral, quantitative suppression depends on the specific choice of
the space dependence of the interaction strength. Note,
* [ finally, the profound difference between our results and
u(x) = Zf dk m those obtained in [13]. For an infinitely long interact-
a -0 k . " ing wire without reservoirs, the electric conductance is
X [bra®)bra + & o()bral,  (7)  renormalized [11]. However, the thermal conductance is

where O (x) = mn(x)w,. At this point we want to unaffected by interactions and an enhanced Lorentz num-
stress that the above formulation is applicable becaudeer signals the breakdown of Fermi liquid theory [13].
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FIG. 3. The behavior of the Lorentz number and the thermal

conductance is sketched for the case in which the wire is
isordered. The saturation & at some valuek, is related

o the localization of the high-frequency plasmons.

FIG. 2. The Lorentz number for an ideal wire attached to
reservoirs is plotted as a function of the temperature and th
interaction strength.

In the presence of reservoirs, the electric conductance %Sstsh?npltﬁzmrzrr:qgiazgsof t\r/:iasry (:ffgrrenéca;tgvr?nw'gf?'isr;_
unrenormalized [12] but the thermal conductance is su homogeneities relaxes the mom%nriurﬁ but does r?ot lead to
pressed, leading to a suppressiorLof 9

(i) Even in the best samples, random variations Ofthermal equilibrium. This is established by plasmon inter-
electron density on scales, r?mcﬁ larger than\, are actions which, in lowest order, are described by the cubic

unavoidable. Plasmons, therefore, propagate in a randomam”toman [10]

medium and, depending on their energy, can be localized,, _ 1 [ p* _ 77_2 [ 3
We anticipate that in some temperature range charge anlc?[lnt 2 dx mn(x) 0 (nu) 6m dx(dxmou)”.
energy are spatially separatadhérge-energy separatijpn (11)

In order to model the randomness, we decompose theh for th | . b lculated
electron density as(x) = no + dn(x) where the random The rate for three-plasmon scattering can be calculate

component has a normal distribution with variance using the golden rule. Special care is needed, however,
in this case. Since the dispersion relation is lineak,n

(8n(x)dn(y)) = n(2)5<x - y)_ momentum and energy .co'ns'e'rvation are simultaneogsly
Ip satisfied, hence the rate is infinite. In the presence of im-

We calculated the average plasmon transmission coeffRurity scattering it can be regularized, because a state with

cient with the help of the invariant embedding techniquediVen energyw correspond; to a wave pack%t Wity =
developed in Ref. [18]. The decay of the plasmon wavef@/vr and & width((5k)%) ~ [8/UFTD(?’£|1- Using
inside the interacting wire is governed by the length scaldn® broadened dispersien. = velkl/g + itp (vrk/g),

5 s 2 we find the rate associated with spontaneous decay of a
v T v v
fo = —"mpl0) == 5~ (10) Plasmon
8 8 Vy Ipw 1 (3 + 2) 2
h introduced the lifetime for impurity scatteri = s (12)
where we introduced the lifetime for impurity scattering (@) 162 mve Ip

7p(w). Equation (10) was derived using the golden rule _ _ _ _
in Ref. [14]. The transmission coefficient asymptotically Interactions are important for plasmons with energies

decays as larger than the cross-over frequeney ~ vy/\/dAr,
It 2 ~ e/ since they experience interactions while diffusing over
@ distances of the order of the length of the wite The
for d > £,. At low enough temperatured; < w; =  ratio (w;/w})* ~ (Vo/vr)*lp/Ar should be much larger

272} /g%1pV3Ed)'/?, the thermal plasmons propagatethan unity. This, together with the conditidtsk)?) <
ballistically. In the opposite limit’ > w;, localization (k)*> for the wave packet discussed above, implies that
of high-frequency plasmons occurs and the thermal con(-/\F/lD)l/2 < Vo/vr < 1.
ductance rapidly saturates to some constant v&iyeas The scattering approach of thermal transport, resulting
sketched in Fig. 3. in Eq. (8), applies when both reservoirs are kept at a tem-
A finite plasmon lifetime is not only caused by scat- perature smaller tham;. At temperatures larger than,
tering off inhomogeneities. The nonzero curvature oflocal equilibrium tends to be established. The difference
the single electron spectrum leads to interactions betwedretween these two regimes can be distinguished, e.g., by
plasmons. The effect of these two scattering mechanisnnsidering the nonlinear response to a large temperature
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differenceAT between the reservoirs. Using the scatter-actions, which provides a mechanism for redistribution of
ing approach Eq. (8) one finds energy over the plasmon spectrum.
N ; " We thank Ya. M. Blanter, K. Samokhin, and espe-
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