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Blue phases are stable phases with crystalline packing of interwoven topological defects i
nematic liquid crystals. We argue that chiral nematics with appropriate surfactants are li
form blue phases for a wide range of parameters. We derive the transition curve for
emulsified blue phases and find that the required low surface tension is within the accessib
of surfactants. These emulsified blue phases provide possible routes to photonic band-gap
[S0031-9007(98)06450-3]
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It is known that there are liquid crystalline phases—t
blue phases (BP)—that have crystalline structures w
lattice constants comparable to the wavelength of lig
[1–4]. The striking opalescence of these phases led
the first observation of a liquid crystalline phase just ov
a century ago [5]. These phases occur over only a v
limited range of temperature which is related to the lar
elastic energy associated with the topological defects
disclinations—that occur in these phases [6–8]. Th
distinct blue phases have been found experimentally
12]. The crystalline structures of BP I and II can b
understood as a periodic packing of these disclinat
cores. If the disclination cores and the liquid crystal a
viewed as different subphases each subphase is con
ous throughout the system, this is an interpenetrating
continuous phase [13–15]. However, blue phases h
only small variations in the optical dielectric constan
Therefore [3] it is not expected that known blue phas
should have photonic band gap.

Stable emulsions in which two incompatible fluids, e.
oil and water, are mixed using a surfactant have also b
known for a long time. These have smaller characteris
length scales and often they are not ordered: the mixt
is maintained by entropy and fluctuations in the structu
[16–18]. If both phases are isotropic, it is difficult to se
how there can be order on scales as long as the wavele
of light as the typical interaction lengths are of the ord
of a molecular size—around 2 nm for low molecul
weight surfactants and somewhat larger for polymers.
appropriate choice of phases, or by polymerizing one ph
and replacing the other phase using supercritical extrac
should create very different optical dielectric constants
different regions of the system.

We argue below that if a surfactant can be found that
sufficiently low (but previously realized) surface tensio
and in addition certain other properties, then an emuls
of a chiral liquid crystalline phase and an isotropic flu
will form with a lattice constant comparable to the wav
length of light and which can be controlled by changin
the chirality of the liquid crystal. This length scale is co
0031-9007y98y80(25)y5603(4)$15.00
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trolled not by specific long-range interactions, but rath
by the chirality and the effective interactions mediated
the boundary conditions and the slowly changing direc
of the liquid crystal. Polymerizing the liquid crystalline
phase and other appropriate post-processing will then pl
sibly result in a photonic band gap material—a material
which light with a range of frequencies cannot propaga
in any direction [19]. The formation of such an emulsio
and photonic band gap materials are of considerable sc
tific and applied interest.

Blue phases are known to appear in chiral systems w
nematic order. The nematic liquid crystals of interest
us are those in which the long axes of rodlike molecul
all align locally parallel to a specific direction, “the di
rector.” It is known that this director, in the presence
chirality, rotates, leading to cholesteric phases. For su
ciently large chirality, sufficiently close to the isotropic
nematic phase transition temperature, this tendency
twist results in blue phases in which the director twis
more or less rapidly and in different directions in differen
parts of the sample [3]. BP have been treated theoretica
within a Landau-Ginzburg-like free-energy approximatio
[20,21]. More appropriately for our purposes, they ha
been treated as phases in which disclinations form spon
neously [6–8]. Disclinations are topological defects; th
nematic director rotates by 180± along any path encircling
a disclination line. To reduce the energy, the molecu
alignment tends to zero at the disclination cores. Th
results in a negative free energy contribution from th
bend-twist term in the elastic energy. Meiboomet al. [6]
pointed out the importance of this term to blue phase
The elastic energy employed by these authors consist
two terms. The first term is associated with the elas
energy for the nematic directorn:

F1 ­
1
2

Z
dV fKss= ? nd2 1 Ktsn ? = 3 n 1 qod2

1 Kbsn 3 = 3 nd2g , (1)

where Ks, Kt, and Kb are the positive splay, twist, and
bend elastic constants. The chiral pitch of the liqu
© 1998 The American Physical Society 5603
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crystal P ­ 2pyqo can be controlled around visible
wavelengths without difficulty. The second term is a
sociated with the bend-twist energy:

F2 ­
1
2

Z
dV fsKt 1 K24d= ? fsn ? =dn 2 ns= ? ndg g ,

(2)

whereK24 is the bend-twist elastic constant. WhenF2 is
integrated over the disclination core, the surface term do
not vanish and instead contributes2pk which stabilizes
the defects. This assumes the one constant approxima
i.e., k ­ K24 ­ Kb ­ Kt ­ Ks. Thus the resultant free
energy per unit length of the disclination for the blu
phase is written as

FM ­ aDT r2 1 2prs 1
pk
4

log
R
r

2 pk , (3)

where the first term is the core-isotropy energy pena
comprising the latent-heat related coefficienta and the
degree of subcooling from the isotropic-cholesteric tra
sition temperatureDT , the second term is the interfacia
energy between the isotropic and the nematic liquid cry
tals, and the third is the elastic energy associated with
disclination, which has an inner radiusr and an outer ra-
dius R, taken to be the lattice constant or the pitch of th
chiral nematic. Minimizing the free energy with respec
to r, Meiboomet al. concluded the temperature range fo
blue phases is at most a few degrees.

This free energy changes when an emulsion is cons
ered. The region near the core of a disclination has re
tively high free energy and is mostly likely to be replace
by the emulsified isotropic fluid. The surfactant-mediate
surface energy must be modeled differently. We will a
sume planar anchoring, i.e., the nematic director at t
surface is always in the plane of the surface. For the int
facial energy we adopt the phenomenological membra
model of Helfrich [22]. We use a Monge representatio
[17] for the surface function of the membrane in a cylin
drical coordinate asu ­ r 2 hsu, zd and the unit nor-
mal vector of the membrane is=u ­ r̂ 2

1
r huû 2 hz ẑ

where the magnitude of=u is approximated as unity due
to the nearly flat presumption. In Helfrich’s expressio
for the free energy, the most essential contributions to t
free energy, to the lowest order, are the surface tensi
the surface rigidity, and the membrane asymmetry whi
is known as the spontaneous curvature. The energy
to be modified to comply with the coupling between th
director tensor from the liquid-crystal continuum and th
curvature tensor of the membrane. Surfaces between
tinct phases tend to curve towards one of the phases [1
e.g., if the surfactant is oriented so that the portion ne
to the “water” has a larger area than that next to the “o
then the surface will tend to curve towards the oil. If on
of these phases has orientational order it is necessary
take this into account in calculating the tendency to curv
Symmetry arguments show that the interfacial energy
given by
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Fs ­
Z

dSfs 1 l's=2u 2 nn: ==ud 1 lksnn: ==ud

1 ks=2ud2g 1 . . . . (4)

Heres is the effective surface tension; : indicates a dou
ble dot product, andk is a bending modulus of the mem-
brane. Several such bending moduli exist, including, e.g
the modulus corresponding to Gaussian curvature [16,2
The distinction between them, like a more general deriv
tion of the membrane free energy, would be importan
only in a more precise treatment. It is also noted that th
last term of the above integration is scale invariant. Th
tendency of the surface to curve is described by two co
stants,l' andlk: negativel' means the surface lowers
its free energy by curvingtowardsthe isotropic fluid per-
pendicular to the director; negativelk means the surface
lowers its free energy by such curving parallel to the d
rector. To illustrate a possible mechanism for generatin
differences between thel’s we consider a surfactant con-
sisting of a rigid block and semiflexible tails that dissolv
in and align with the nematic liquid crystal. Attached to
the rigid block are one or more side chains roughly pe
pendicular to the block that dissolve in the isotropic flui
phase. There will then be more oil in any surfactant mole
cule in directions parallel to than perpendicular to the d
rector. Thus the free energy will be lower if the surfac
curves away from the oil parallel to the director. Con
sequently, this surfactant membrane is likely to favor
configuration with negativelk 2 l'. Thetotal tendency
to curve is controlled (roughly) by the ratio of the effec
tive areas of the parts of the surfactant that dissolve
the oil and water and so can be controlled independent
There are only heuristic guidelines in manipulating phys
cal properties of surfactant membranes even in isotrop
fluids. Our example is only one possible scenario. Fu
ther exploration of this topic will be required. Note (as
seen below) we believe that large negativelk is required
for blue phase emulsions. It is convenient to include th
surface-effective elastic constants in the surface free e
ergy. Integration by parts confirms thatK24 1 Kt can be
included as a negative contribution tolk.

First consider structures that vary in three dimen
sions, e.g., bicontinuous blue phases or phases contain
spheres, characterized by a single length-scalea (the lat-
tice constant). The resultanta-dependent free energy per
unit volume of the liquid crystal from Eqs. (1), (2), and
(4) has the form:

F

fq2
oKt

­
1
â

sŝ fs 2 fPd 1
1
â2

sl̂' f' 1 l̂k fk

1 K̃s fs 1 K̃b fb 1 ftd 1
1
â3

sk̂ fkd , (5)

wheref is the volume fraction of the liquid crystal, and
the rest of the dimensionless (tilded) coefficients and va
ables areã ­ aqo , s̃ ­ syKtqo, l̃' ­ l'yKt , l̃k ­
lkyKt, K̃s ­ KsyKt, K̃b ­ KbyKt, and k̃ ­ kqoyKt .
Here f ’s are dimensionless integrals over the structur
and for favorable structures we expectjfj & 1. Note that
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fs , fs, fb, ft , andfk, as integrals of positive functions,
are all positive semidefinite. The chiral termfP can be al-
ways made positive by choosing the correct chirality. Th
signs of bothl’s and f' and fk can be either positive
or negative. The elastic constants of liquid crystals a
aboutkBTy, where, is about the molecular dimension
Therefore, the magnitudes of theK̃ ’s are about unity. The
value ofk will vary within a range from about 100kBT for
a rigid lipid membrane to about 1kBT with modification
by additives such as cosurfactants [16,23], in which ca
k̃ is the order of,qo —less than 0.01. The value of the
l’s will depend on the molecular conformations and inte
actions among the amphiphiles, and we expect thatjl̃'j

is typically less than unity, and̃lk (including the effect
of K24) is not too far from21. Note that the magnitude
of Ktqo is about1022 dyneycm which is likely an upper
bound for the surface tension if blue phases are to for
Emulsification failure occurs when the free energy is le
negative than that of the separated phases or2fKtq2

o .
As this is the absolute minimum for the elastic energ
we conclude that the contributions from the surface co
pling terms (associated withl’s) must be negative enough
to sustain a stable blue-phase-like microemulsion. Ho
ever, these contributions cannot be too large; if theã22

term is negative it will drive the system to a structure wit
a small characteristic length,a , ,—independent of chi-
rality. ThereforeF yfq2

oKt must be less than butO (1).
Structures that vary in one dimension, e.g., lamella

are easily seen to be unfavorable. Structures that vary
two dimensions, e.g., dispersed prisms with length scalr
containing a noncontinuous phase in a continuous pha
can be analyzed as in Eq. (5) above. Suppose that
liquid crystal director can be taken to be constant a
the prism axis is parallel to it. This implies that the
length scale of the prism is small compared to the pitc
It is thus clear that the “best” prism is a cylinder. A
water containing cylinder has free energyF ­ 2pssr 1

l' 1 kyrd and a liquid crystal containing cylinder has
F ­ 2pssr 2 l' 1 kyrd where r is now the radius
of the cylinder. The best value forr is

p
kys and

the lowest free energy per length isF ­ 2ps2
p

sk 2

jl'jd. Therefore ifr ­
p

kys # P and jl'j . 2
p

ks

a blue phase will not form, rather the emulsion wi
consist of small radius tubes within a majority phas
If r $ P, then our assumption that the liquid crysta
director is constant is invalid; effectively two-dimensiona
water prisms are impossible without suppressing t
twist; effectively two-dimensional twisted liquid-crysta
containing double-twist cylinders are possible. In an
case, if jlj & k and r $ P the energy associated with
an effectively two-dimensional emulsion is of the sam
order,lyP per distance, as that of a blue-phase emulsi
(kyP2 per volume). In consequence, ifr $ P we expect
that, at least for approximately equal volume fractions
nematic and isotropic fluid, a three-dimensional emulsi
is favored over a two-dimensional one.
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Bicontinuous emulsions can be formed with appropria
selections of surfactants, cosurfactants, and salinity,
by lowering the surface tension and bending mod
and adjusting the tendency to curve, e.g.,l’s. For
microemulsions of isotropic fluids the effect of membra
fluctuation is important [16,24–26]; however, such a
effect is suppressed when the surface undulations
coupling with the liquid crystals. Thus, our system
enthalpically controlled and the characteristic length
controlled by the pitch of the chiral nematics.

Detailed calculations for various possibilities regardin
the geometry of the emulsion and its crystalline packi
are difficult. Here we estimate the range of stab
emulsified blue phases by performing a calculation simi
to that of Meiboomet al. with a cylindrical disclination
core containing isotropic fluid. We will assume that th
director around a cylindrical disclination core of radiusr
has the formn ­ coss 3w

2 d ŵ 2 sins 3w

2 d f2 sinusrdr̂ 1

cosusrdẑg whereẑ is along the axis of the core,r̂ is along
the radial direction, andusrd is a variational function.
This is consistent with planar anchoring at the surface
the disclination (u ­ 0) and with the structure usually
ascribed to disclinations in blue phases far from t
core [13] (u ­ py2). In the one constant approximatio
and making the assumptions of Ref. [6], the free ene
difference between the emulsified blue phase and
cholesteric phase with separated isotropic fluid, per u
length of this disclination, is

F ­ 2p

∑
rs 1

1
2

sl' 1 lkd 1 0.381k

∏
1

1
4

pk log

µ
R
r

∂
1

k

r
, (6)

and must be less than zero for the blue phase to
stable. Comparing Eq. (6) with Eq. (3), note that th
explicit temperature dependence disappears, replaced
contribution from the surface coupling. The temperatu
dependence in Eq. (6) is much weaker so that the te
perature range for stable blue phases is expected to
much larger. The optimal radius of the isotropic core is

rp ­
k

16s

∑
1 1

µ
1 1

128ks

pk2

∂1y2∏
. (7)

Introducing rp back to Eq. (6) and settingR ­ 2pyqo

andF ­ 0, we obtain the transition curveµ
rpqo

2p

∂
­ exp

∑
3.048 1

4
k

slk 1 l'd

1

µ
1 1

128ks

pk2

∂1y2∏
. (8)

Below the transition curve, there is a window for th
volume fraction f within which the emulsified blue
phase is stable. Note that the sum ofl’s (the effect
of the spontaneous curvatures) is crucial not only
balancing the free energy and deciding the stable pha
but also in defining the working regime for experiment
5605
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accessibility. Ifksyk2 is very small, the transition curve
can be expressed

s # sp Ù­ 7 3 1024kqo expf24slk 1 l'dykg . (9)
As kq0 , 1022 dyneycm and s can be made of order
1022 –1023 dyneycm this calculation suggests thatlk

must be of order21.3k to 21.9k for a blue phase to
form. As mentioned before, theK24 term is ascribed to
the surface coupling and will contribute of order2k to the
l’s. It seems reasonable that a similar contribution from
the surface can be achieved with appropriate surfactan
and additives.

We believe that blue-phase-like structures are als
possible iflk is positive. In this case viewing the blue
phase as being made of nematic double twist cylinders
more productive. It is easy to see that the free energy
such cylinders is lowered by positivelk.

It is important to note that there is considerable
frustration in any bicontinuous emulsion of a nemati
and an isotropic fluid. In particular, it is topologically
impossible for the director to have the direction that th
curvature would prefer everywhere, or for there to be n
surface defects “boojums” in the director. For lyotropic
liquid crystals, there is a theoretically predicted twist grai
boundary (TGB) phase driven by chiral membranes [27
In a complete investigation of the phase diagram, on
should consider all possible geometries of the emulsio
[28], topological defects [8,29–31] (e.g., TGB), entropic
effects [26,32], etc.

Our analysis strongly suggests that it is possible t
make self-assembling blue-phase-like phases from em
sions of chiral nematics, isotropic liquids, and surfactant
This requires conditions previously achieved in bicontinu
ous microemulsions of isotropic fluids: low surface ten
sions, appropriate bending moduli, and a small intrins
curvaturejl'j. Above we assumed the director at the
surface is in the plane of the surface. We do not be
lieve blue phases can form if this director is along th
surface normal. However, if this director makes an ang
to the surface, blue-phase emulsions may form; this ma
actually decrease the frustrations in the plane. The
are additional, less stringent requirements on ratios
thermodynamic parameters. We believe that either low
molecular-weight surfactants or polymer surfactants wit
relatively low rigidity will satisfy the above requirements.
Such phases may be further processed to yield photon
band-gap materials.
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