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Thermodynamics of the Glassy State: Effective Temperature
as an Additional System Parameter

Th. M. Nieuwenhuizen
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A system is glassy when the observation time is much smaller than the equilibration time. A
unifying thermodynamic picture of the glassy state is presented. Slow configurational modes are in
quasiequilibrium at an effective temperature. It enters thermodynamic relations with the configurational
entropy as a conjugate variable. Slow fluctuations contribute to susceptibilities via quasiequilibrium
relations, while there is also a configurational term. Fluctuation-dissipation relations also involve the
effective temperature. Fluctuations in the energy are nonuniversal, however. The picture is supported
by analytically solving the dynamics of a toy model. [S0031-9007(98)06195-X]

PACS numbers: 64.70.Pf, 75.10.Nr, 75.40.Cx, 75.50.Lk
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Thermodynamics is an old but powerful subject. Afte
the invention of the steam machine it was needed f
understanding their optimal efficiency. It applies to
wide variety of systems, ranging from ideal gases to bla
holes. Equilibrium thermodynamics is a well understoo
subject. Important contributions were made by Carno
Clausius, Kelvin, Boltzmann, and Gibbs.

Thermodynamics for systems close to equilibrium wa
worked out in the middle of this century. Applications ar
systems with heat flows, electric currents, and chemic
reactions. A basic assumption is the existence of loc
thermodynamic equilibrium, and the task is to calcula
the entropy production. Important contributions wer
made by de Donder, Prigogine, de Groot, and Mazur.

Thermodynamics for systems far from equilibrium ha
long been a field of contradiction and confusion. A
typical application is a window glass. A cubic micron
of glass is not a crystal; it is an undercooled liqui
which has fallen out of equilibrium. In a glassy system
the relaxation timeteqsTd of the slow or so-calleda
processes has become larger than the observation ti
while the fast orb processes are still in equilibrium.
Waiting long enough might bring the system back to it
equilibrium state. In glasses one often assumes the Vog
Tamman-Fulcher lawteq , expfAysT 2 TK dg. In many
other systems one encounters an Arrhenius lawteq ,
expsAyT d. As we shall demonstrate on a toy model, suc
systems display the same glassy behavior.

We shall consider glassy transitions for liquids a
well as for random magnets. The results map on
each other by interchanging volumeV , pressurep,
compressibility k ­ 2≠ ln Vy≠p, and expansivity
a ­ ≠ ln Vy≠T , by magnetizationM, field H, sus-
ceptibility x ­ s1yNd≠My≠H, and “magnetizability”
a ­ s21yNd≠My≠T , respectively.

A glass forming liquid exhibits near the glass transitio
smeared discontinuities in quantities such as the heat
pacity Cp, the expansivity, and the compressibility. Thi
defines a smeared glass transition lineTgspd or pgsT d,
with behavior similar to continuous phase transitions o
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classical type, i.e., with specific heat exponenta ­ 0.
Since the 1920s quite some attention has been paid to
troduce a thermodynamic description; see, e.g., [1–3].
was investigated, in particular, whether the discontinuit
satisfy the two Ehrenfest relations (the analogs for seco
order transitions of the Clausius-Clapeyron relation of
first order transition), and whether the Prigogine-Def
ratio [see Eq. (23)] equals unity. Very recently we ha
explained the experimental observations [4].

A state that slowly relaxes to equilibrium is characte
ized by the time elapsed so far, the “age” or “waitin
time.” For glassy systems this is of special relevance.
spin glass experiments nontrivial cooling-heating cyc
can be described by an effective age [5]. One thus ch
acterizes a nonequilibrium state by three parametersT ,
H, or p, and the aget or the cooling rateÙT ­ dTydt.
For thermodynamics a more suitable third variable is t
effective temperatureTestd, introduced half a century ago
by Tool [6,7]. Te fi T will describe the best quasiequi
librium the a processes could reach so far; it follows
simple cases by equatingteqsTed ­ t.

For a set of smoothly related cooling experimentsTistd
at fields Hi one may express the effective temperatu
as a continuous function:Te,istd ! TesT , Hd. This sets
a surface insT , Te, Hd space that becomes multivalue
if one first cools, and then heats. To map out t
whole space many sets of experiments are needed, e.g
different cooling rates. Thermodynamics amounts to gi
for a certain class of systems, universal relations betw
state variables at nearby points in this space.

Within this framework some new results were obtain
for a spin glass model with one step of replica symme
breaking [4,8,9]; such models are related to syste
without disorder that have one, and only one, divergi
time scale. The fast and slow modes do not ha
only their own temperature, they also have their ow
entropy: the entropy of equilibrium processesSep
and the “configurational” or “information” entropy o
“complexity” I , respectively. The total entropy is
S ­ Sep 1 I . Previous results can be summarized
© 1998 The American Physical Society
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setting dQ ­ TdSep 1 TedI . In the course of time
the system will satisfysT 2 TeddI $ 0, as required by
the second law. In combination with the first law, th
thermodynamic relations can then be represented as

dU ­ TdSep 1 TedI 1 dW , (1)

F ­ U 2 TSep 2 TeI , (2)

dF ­ 2SepdT 2 I dTe 1 dW , (3)

wheredW ­ 2pdV for liquids and2MdH for magnets.
Equation (1) immediately leads to the formCp ­ C1 1

C2≠Tey≠T jp used in practice [2,6,10].
Out of equilibrium the Maxwell relation between

UsssTstd, t, Hddd ! UsssT , TesT , Hd, Hddd and M is, of course,
not satisfied; however, the above implies that its violatio
is related to the change of configurational entropy:

≠U
≠H

1 M 2 T
≠M
≠T

­

√
Te 2 T

≠Te

≠T

!
≠I

≠H

1 T
≠Te

≠H
≠I

≠T
. (4)

Here we wish to add to this scheme the nonequilibriu
susceptibilities. We will derive the results in a toy mod
with fields Ha and magnetizationsMa (a ­ 1, 2). As
could be guessed fromMa ; MasssT , TesT , Hd, Hddd, there
appear two terms:

xab ;
1
N

≠Ma

≠Hb

É
T

­ xfluct
ab std 1 xconf

ab std . (5)

First there is the expected fluctuation contribution

xfluct
ab std ­

kdMastddMbstdlfast

NT std
1

kdMastddMbstdlslow

NTestd

2
1
N

≠Ma

≠Te

Ç
T ,H

≠Te

≠Hb

Ç
t

. (6)

Notice that fast and slow processes again enter with th
own temperature while the third term is small. Sinc
Te fi T , there occurs a new, configurational term

xconf
ab ­

1
N

≠Ma

≠Te

É
T ,H

≠Te

≠Hb

É
T

. (7)

It originates from the difference in the system’s structu
for cooling experiments at nearby fields [11]. Suc
universal relations would not hold for energy fluctuation

We shall also see in the toy model that the corre
tion functionCabst, t0d ­ s1yNd kdMastddMbst0dl and the
response functionGabst, t0d ­ s1yNddMastdydHbst0d sat-
isfy the fluctuation-dissipation relation

≠Cabst, t0d
≠t0

­ Test0dGab st, t0d (8)

in the aging regime, while in the equilibrium or short
time regime T replacesTe. This has been confirmed
numerically for a soft sphere glass [12]. Equation (
is consistent with (6): in performing

Rt
0 Gabst, t0d dt0 one

uses that≠t 0C changes much faster thanTest0d, allowing
one to replaceTest0d by Testd in the aging regime, and by
T in the equilibrium regimet0 ø t.
e
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Note that the ratio≠t0CyG depends on time. The
situation with constantTe is well known from mean-field
spin glasses [13]. However, this time independence is
artifact of the mean-field approximation [9].

Finally, one estimates scaling in the aging regime
two-time quantities as

Cst, t0d ø C

"
t 2 t0

teqsssTest0dddd

#
ø C

√
t 2 t0

t0

!
­ C

√
t
t0

!
,

(9)

showing immediately the familiartyt0 scaling; there may
be logarithmic scaling corrections.

The full picture [Eqs. (1)–(9)] shows that slow mode
are at a quasiequilibrium atTe. As in a plasma, slow and
fast modes equilibrate at their own temperature.

In a number of simple models there occurs a dynami
glassy state when cooling nearT ­ 0. If there is only
one time scale, there remain only slow processes in
frozen phase (onlya, no b processes). This implies tha
U has no explicit dependence onT , and thatSep ­ 0.

In order to corroborate our statements, we conside
toy model involving free spherical spins

P
S2

i ­ N. The
Hamiltonian contains two parts, a “self-interaction” ter
involving quenched random fieldsGi ­ 6G with average
zero, and a coupling to an external fieldH

H ­ 2

NX
i­1

GiSi 2 H
NX

i­1

Si . (10)

In terms of the “staggered” magnetizationMs ;
s1yGd

P
i GiSi one simply hasH ­ 2GMs 2 HM.

In equilibrium at low T the internal energy reads
UeqyN ­ 2K 1

1
2 T , the entropySeqyN ­ 1

2 lnseTyKd,
the magnetizationsMeqyN ­ HyK 2

1
2 HTyK2, and

Ms; eqyN ­ GyK 2
1
2 GTyK2, whereK ;

p
G2 1 H2.

This model gets glassy behavior when it is subje
to Monte Carlo dynamics with parallel update, whic
couples the spins dynamically. The time evolution c
be solved exactly, since it maps closely on the dynam
for uncoupled harmonic oscillators, introduced by Bonill
Padilla, and Ritort [14], when extended to include a fiel

Per time step1yN one makes parallel Monte Carlo
moves, Si ! S0

i ­ Si 1 riy
p

N , with Gaussian noise
havingkril ­ 0 andkr2

i l ­ D2. Next one makes a globa
rescaling of the length of the spins in order to keP

S0 2
i ­ N . This leads to the final update

S0
i ­ Si 1

rip
N

2 Si

X
j

√
rjSj

N
p

N
1

r2
j

2N2

!
1 · · · . (11)

Denoting H by E, it is simple to calculate the joint
transition probability ofx ; E0 2 E andy ; M 0 2 M,

psx, y j E, Md ­ psx j Edpsy j x, E, Md , (12)

where both factors are Gaussian. In terms of

´ ­ K 1
E
N

; m ­
M
N

;

m̃ ­ m 2
H
K

1
H
K2

´ ,
(13)
5581
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the centers of the Gaussians are

x0 ­
1
2

D2sK 2 ´d;

y0 ­ 2
Hx
K2

2 m̃
D2K2 2 2Kx 1 2x´

2´s2K 2 ´d
,

(14)

while their variances read

Dx ­ D2´s2K 2 ´d; Dy ­
D2G2

K2
2

D2K2m̃2

´s2K 2 ´d
,

(15)

respectively. Following Metropolis, a moveE0 ­ E 1 x,
M 0 ­ M 1 y is accepted with probabilityW sbxd, where
W ­ 1 if x , 0, while W ­ exps2bxd if x . 0. The
dynamics is now fully specified. The average energ
evolves according to a closed equation for´std [14],

d´

dt
­

Z `

2`
dx W sbxdxpsxj´d . (16)

We find that the average magnetization satisfies similar

dm
dt

­
Z `

2`
dx W sbxdy0psx j ´d . (17)

At low T there occur Arrhenius laws for the equi-
librium relaxation times viz.teq ; t

sEd
eq ­ 1

2 bAt
sMd
eq ­

spAy64T d1y2 expsAyT d with A ; D2Ky8, responsible for
nonequilibrium behavior in typical cooling procedures.

We first consider the situation atT ­ 0. Starting from
a random initial condition, the system will slowly evolve
towards the ground state. It is this evolution that w
now wish to capture within a thermodynamic framework
EquatingUstd ­ UeqsTe, Hd leads to [14]

Testd ø
A

ln 2ty
p

p 1 ln ln 2ty
p

p
. (18)

As asserted above, the sameTe is obtained via the relax-
ation time:t ­ teqsssT̃estdddd ! T̃estd ­ Testd 1 O sT 2

e d.
In equilibrium it holds thatm̃ ­ 0. The resultm̃ ,

1yt , exps2beAd proves that the magnetization very
closely follows its quasiequilibrium valuemeqsTe, Hd.

To test the thermodynamics we need the configuration
entropy. It is defined as the logarithm of the number o
states leading toUst, Hd ­ UeqsTe, Hd. SinceSint ­ 0 it
simply holds thatI ­ SeqsssTestd, Hddd. We can now verify
the relationdU ­ TedI 2 MdH 2 MsdG. At constant
H and G it is valid, because one has replacedT ! Te

in energy and entropy. Then one can take the differen
of two evolution experiments at two nearbyH ’s. The
relation remains satisfied sinceMstd ø MeqsTe, Hd. The
modified Maxwell relation (4) is also obeyed. Finally on
can changeH in the course of time. Theñm ø HTeyK2

as long as≠Hstdy≠Testd ø bestdHstdD2. This is a mild
condition. If H is changed quicker, or if it goes to
zero too rapidly, the system will not be able to reach
quasiequilibrium described byTe alone.

We have also considered the fluctuation formula. The
are too lengthy to be reproduced here. We found
5582
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kdM2l
N

­
G2Te

K3 2
G2T2

e

2K4 1 O sT3
e d

kdH 2l
N

­ 2
K2kdH dMl

HN
­

T3
e

A
.

(19)

The latter two relations imply thatG2kdM2
s l ø

H2kdM2l ø 2GHkdMdMsl. Since there are no
fast processes, it immediately follows that the quasieq
librium relation (5) is satisfied for all four cases, to
leading order inTe. In contrast, forMa ! H , Ha ! b

or be the corresponding relations are violated.
The two-time correlation functionsCabst, t0d and

response functionsGabst, t0d exhibit related behavior.
These functions decay asCabst, t0d ­ Cabst0, t0dhst0dyhstd
with hstd ­ expsbeAd , tsln td2 and satisfy the
fluctuation-dissipation relation (8) for any nonzer
value ofH andG [15]. (For the oscillator model at zero
field these relations were derived in [14].)

Now we consider a cooling experiment from hig
temperatures. A glass transition will occur when th
cooling time scaleTyj ÙT j becomes comparable to the
equilibration time scaleteqsssTestdddd. Let us assume that
it happens at a low temperatureTg ø A, so at an
exponential time scaletg ­ teqsTgd , expbgA. This
will imply that the width of the transition region is
small: DTg , T 2

g yA ø Tg. Assuming in that region
a nonlinear cooling process of the formT std ­ s1 2

Q̃dTg 1 Q̃t21
eq std, we derive from (16)

≠Te

≠T
­

T 2 Te

Q̃

t0
eqfTg 1 sT 2 TgdyQ̃g

teqsTed
. (20)

This equation is similar to but different from earlie
proposals [6,10], and might be universal for narrow glas
transitions. It covers three cases: (a)Q̃ . 1, normal
cooling towards or in the glass; (b)0 , Q̃ , 1, cooling
in a glassy state so slowly that equilibrium is achieve
later; (c)Q̃ , 0, heating up in the glassy state. Th
apparent specific heatc ­ 1

2 ≠Tey≠T decreases if cooling
is not too slow. In a heating experiment it is negativ
but it produces nearTg the well known overshootc .

1
2 ,

with height and shape depending solely onQ̃.
In a cooling experiment from largeT Eq. (20) yields

initially Testd ­ T std, up to exponential corrections,
describing thermodynamic equilibrium at the instant
neous temperature. Below the glass transition regi
one hasTe ø Tg 1 sT 2 TgdyQ̃ ø t21

eq std. This agrees
with (18) and shows that the actual temperature and
cooling history are irrelevant: to leading order the energ
just evolves as if the system had been quenched to z
temperature, and aged there. It can be checked that
relations linear inTe remain as atT ­ 0, thus supporting
the picture (1)–(9).

This solution allows us to check the Ehrenfest re
lations along the glass transition lineHgsT d in cool-
ing procedures (̃Q . 1). Below the transition region
one hasc ­ 1y2Q̃, a ­ Hy2K2Q̃, and x ­ G2yK3 2

sHy2K2d≠Tey≠H. Comparing with the paramagnet an
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using that along the transition line the equalityTe ­
T implies that≠Tey≠T 1 s≠Tey≠Hd sdHgydTd ­ 1, we
find that the jumps ina andx satisfy the first Ehrenfest
relation

Da ­ Dx
dHg

dT
. (21)

Until very recently, it was widely believed that this
relation is violated at the glass transition. We pointe
out that experimentalists had inserted some short-tim
value of x or k [4], like the “zero-field-cooled” (ZFC)
susceptibilityxZFC, i.e., the first term ofxfluct in Eq. (6).
In spin glasses with one step replica symmetry breaki
xZFC is strictly smaller than thex of the paramagnet
[16]. In the present model, there are nob processes,
so xZFC even vanishes. On the other hand, the lon
time or field-cooled valuexFC ­ xfluct is continuous
at Tg. The correct discontinuity,Dx ­ 2xconf arises
from Eq. (7). As Da ­ s≠my≠Ted s≠Tey≠T 2 1d, this
explains in detail why the first Ehrenfest relation i
satisfied automatically [4].

It was also shown in [4] that the modified Maxwel
relation (4) leads to the modified second Ehrenfest relati

DC
NTg

­ Da
dH
dT

1
1
N

µ
1 2

≠Te

≠T

∂ µ
≠I

≠T
1

dHg

dT
≠I

≠H

∂
.

(22)

We can now verify that it is also satisfied. The new la
term needed for validity beyond equilibrium.

The Prigogine-Defay ratio may be expressed as

P ;
DCDx

NTgsDad2
­ 1 1

1
NDa

µ
1 2

≠Te

≠T

∂
dI

dH
. (23)

The definition looks as an equilibrium relation, an
it was shown thatP must be larger than unity for
mechanical stability [2]. This was based, however, o
the invalid assumption of thermodynamic freezing of a s
of unspecified order parameters. The equivalent relati
P ­ sDCyNTgDaddTgydH allows P , 1 if dTgydH,
which depends ondQ̃ydH, and is small enough. We
realized that already in the classic experiment of Reha
and Oels [17] on the glass transition in atactic polystyren
there occurs a valueP ­ 0.77 [4]. In our present
model P ­ sK2yHTgddTgydH becomes less than unity
wheneverdtgydH is positive. This condition occurs in
half of the smoothly related sets of cooling trajectories.

In conclusion, we have proposed a unifying thermod
namic picture of the glassy state. It does not apply
ideally slow experiments, but to conditions that are typ
cally met. As in a plasma, slow and fast modes equi
brate at their own temperature. On long-time scales a
under mild conditions, global thermodynamical quantitie
like the energy and volume or magnetization(s), go
quasiequilibrium values at a certain effective temperatu
Testd. Slow fluctuations contribute to susceptibilities with
factor 1yTe. For cooling trajectories at two nearby ex
d
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ternal fields (pressures), the difference of the magnetiza
tion (volume) involves the usual fluctuation susceptibility
(compressibility), and a new structural contribution that
arises from the difference in effective temperatures. Cor
relation and response functions exhibittyt0 scaling, and
satisfy a fluctuation-dissipation relation involvingTe.

We have verified our picture in the glassy phase o
the low-temperature dynamics of an exactly solvable toy
model that contains two external fields. We expect tha
the fields may also stand for other “mechanical” forces
such as pressure or chemical potential.

The picture has the right signs to be valid for a class o
glassy systems. For verifying it in glass forming liquids it
is desirable to map out the full (T , Te, p)-space by cooling
experiments, and to check that against aging experiment
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