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Thermodynamics of the Glassy State: Effective Temperature
as an Additional System Parameter
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A system is glassy when the observation time is much smaller than the equilibration time. A
unifying thermodynamic picture of the glassy state is presented. Slow configurational modes are in
quasiequilibrium at an effective temperature. It enters thermodynamic relations with the configurational
entropy as a conjugate variable. Slow fluctuations contribute to susceptibilities via quasiequilibrium
relations, while there is also a configurational term. Fluctuation-dissipation relations also involve the
effective temperature. Fluctuations in the energy are nonuniversal, however. The picture is supported
by analytically solving the dynamics of a toy model. [S0031-9007(98)06195-X]
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Thermodynamics is an old but powerful subject. Afterclassical type, i.e., with specific heat exponent= 0.
the invention of the steam machine it was needed foince the 1920s quite some attention has been paid to in-
understanding their optimal efficiency. It applies to atroduce a thermodynamic description; see, e.g., [1-3]. It
wide variety of systems, ranging from ideal gases to blackvas investigated, in particular, whether the discontinuities
holes. Equilibrium thermodynamics is a well understoodsatisfy the two Ehrenfest relations (the analogs for second
subject. Important contributions were made by Carnotprder transitions of the Clausius-Clapeyron relation of a
Clausius, Kelvin, Boltzmann, and Gibbs. first order transition), and whether the Prigogine-Defay

Thermodynamics for systems close to equilibrium wagatio [see Eq. (23)] equals unity. Very recently we have
worked out in the middle of this century. Applications are explained the experimental observations [4].
systems with heat flows, electric currents, and chemical A state that slowly relaxes to equilibrium is character-
reactions. A basic assumption is the existence of localkzed by the time elapsed so far, the “age” or “waiting
thermodynamic equilibrium, and the task is to calculatetime.” For glassy systems this is of special relevance. In
the entropy production. Important contributions werespin glass experiments nontrivial cooling-heating cycles
made by de Donder, Prigogine, de Groot, and Mazur.  can be described by an effective age [5]. One thus char-

Thermodynamics for systems far from equilibrium hasacterizes a nonequilibrium state by three parametys,
long been a field of contradiction and confusion. AH, or p, and the age or the cooling ratel' = dT/dt.
typical application is a window glass. A cubic micron For thermodynamics a more suitable third variable is the
of glass is not a crystal; it is an undercooled liquid effective temperaturg, (¢), introduced half a century ago
which has fallen out of equilibrium. In a glassy systemby Tool [6,7]. T, # T will describe the best quasiequi-
the relaxation timer.q(7) of the slow or so-called librium the « processes could reach so far; it follows in
processes has become larger than the observation timsimple cases by equating,(7,) = t.
while the fast or processes are still in equilibrium.  For a set of smoothly related cooling experimefitg)
Waiting long enough might bring the system back to itsat fields H; one may express the effective temperature
equilibrium state. In glasses one often assumes the Vogeds a continuous functiort, ;(t) — T.(T,H). This sets
Tamman-Fulcher law., ~ exdA/(T — Tx)]. Inmany a surface in(T, 7., H) space that becomes multivalued

other systems one encounters an Arrhenius tayw~  if one first cools, and then heats. To map out the
explA/T). As we shall demonstrate on a toy model, suchwhole space many sets of experiments are needed, e.g., at
systems display the same glassy behavior. different cooling rates. Thermodynamics amounts to give,

We shall consider glassy transitions for liquids asfor a certain class of systems, universal relations between
well as for random magnets. The results map ontatate variables at nearby points in this space.
each other by interchanging volum®&, pressurep, Within this framework some new results were obtained
compressibility « = —dInV/dp, and expansivity for a spin glass model with one step of replica symmetry
a =9dInV/oT, by magnetizationM, field H, sus- breaking [4,8,9]; such models are related to systems
ceptibility xy = (1/N)oM/oH, and “magnetizability” without disorder that have one, and only one, diverging
a = (—1/N)oM/aT, respectively. time scale. The fast and slow modes do not have

A glass forming liquid exhibits near the glass transitiononly their own temperature, they also have their own
smeared discontinuities in quantities such as the heat centropy: the entropy of equilibrium processe%,
pacity C,,, the expansivity, and the compressibility. This and the “configurational” or “information” entropy or
defines a smeared glass transition liig p) or p,(T),  “complexity” I, respectively. The total entropy is
with behavior similar to continuous phase transitions of§ = S., + I. Previous results can be summarized by
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setting dQ = TdS., + T.dI. In the course of time Note that the ratiod,C/G depends on time. The
the system will satisfi{T — T,)dI = 0, as required by situation with constant, is well known from mean-field
the second law. In combination with the first law, the spin glasses [13]. However, this time independence is an
thermodynamic relations can then be represented as  artifact of the mean-field approximation [9].

dU = TdSe, + T.dI + aw, 1) Fin_aIIy, one _e;timates scaling in the aging regime of
two-time quantities as
FZU_TSeP_TeI» (2) C( /)~C t— ¢ th_tl _CL
dF = —SepdT — 1dT, + aw, ©) rO=C ey | T\ ) T\ )
wheredW = —pdV for liquids and—MdH for magnets. (9)
Equation (1) immediately leads to the for@, = C; +  showing immediately the familiar/:' scaling; there may
C,dT,./dT|, used in practice [2,6,10]. be logarithmic scaling corrections.

Out of equilibrium the Maxwell relation between  The full picture [Egs. (1)—(9)] shows that slow modes
U(T(t),t,H) — U(T,T.(T,H),H) and M is, of course, are at a quasiequilibrium &;,. As in a plasma, slow and
not satisfied; however, the above implies that its violationfast modes equilibrate at their own temperature.

is related to the change of configurational entropy: In a number of simple models there occurs a dynamical
glassy state when cooling ne@r= 0. If there is only
14 + M — T% = (Te - T aT@)ﬂ one time scale, there remain only slow processes in the
oH T oT )oH frozen phase (only, no 8 processes). This implies that
aT, o1 U has no explicit dependence @h and thatS., = 0.
9H oT (4) In order to corroborate our statements, we consider a

Here we wish to add to this scheme the nonequilibriun{oy model involving free spherical spijs S7 = N. The
susceptibilities. We will derive the results in a toy model Hamiltonian contains two parts, a “self-interaction” term
with fields H, and magnetizations/, (« = 1,2). As involving quenched random field§ = =*T" with average
could be guessed fromt, = M,(T,T.(T,H), H), there ~ Z€ro, and a coupling to an external fieid

appear two terms: Y Y
pp }[:_ZF,'S,'_HZS,‘. (10)
_ i M, — o fluct conf 5 i=1 i=1
Xab = Xab () + xap" (). (5) ] i L
N 0Hy |, In terms of the “staggered” magnetizatioM, =
First there is the expected fluctuation contribution (1/T) 3, T:S; one simply hasH = —T'M, — HM.
In equilibrium at low T the internal energy reads
OM (1) Mp(t))sas OM (1) Mp(1))siow
Xop<(r) = < (13/T(t;( Dtast | ¢ (1\)/T (tb)( Do Ueyy/N = —K + %T, the entropySeq/N = %In(eT/K),
| am o7 ¢ the magnetizationsM.q/N = H/K — %HT/Kz, and
_ = % e | . (6) My.eq/N =T/K — 3TT/K? whereK = VT2 + HZ.
N 9T, \ru 9Hp It This model gets glassy behavior when it is subject

Notice that fast and slow processes again enter with thetp Monte Carlo dynamics with parallel update, which
own temperature while the third term is small. Sincecouples the spins dynamically. The time evolution can
T. # T, there occurs a new, configurational term be solved exactly, since it maps closely on the dynamics
conf 1 M, T, . for u_ncoupled harmonic oscillators, introdu_ced by Borjilla,

Xab N T, |, oH, |, : @) Padilla, and Ritort [14], when extended to include a field.

- . . , Per time stepl/N one makes parallel Monte Carlo

It originates from the difference in the system’s structure,, (v oc ¢ _, ¢/ — 5. + ri/J/N, with Gaussian noise

for cooling experiments at nearby fields [11]. SUChhavingkr»; _ Oland<;i-2> =1A2. Next one makes a global

universal relations would not hold for energy quctuations.resca"né of the Ienlgth of the spins in order to keep
We shall also see in the toy model that the correla~- ¢/2 _ ; -

tion functionC,p (1, 1) = (1/N) (3M,(1)5M, (")) and the 2>/ — V- This eads to the final update

2
response functio,, (z,¢') = (1/N)éM,(t)/SH"(¢') sat- §l =g 4+ i _ SZ( rjS; + " ) + ... (12)
i l ! 2N2 '

isfy the fluctuation-dissipation relation JN NN
9Cap(t, 1) _ T,(t)G oy (1, 1)) (8)  Denoting H by E, it is simple to calculate the joint
at! ' transition probability ofc = E’ — Eandy = M' — M,

in the aging regime, while in the equilibrium or short- .
time regimeT replacesT,. This has been confirmed ple.y|E.M) = p(xl]?)p(ylx,E,M), (12)
numerically for a soft sphere glass [12]. Equation (8)where both factors are Gaussian. In terms of

is consistent with (6): in performingy G, (t,1') dt' one _ x4+ E _ M

uses that,,C changes much faster than(¢/), allowing &= N’ " N’

one to replacd’, (') by T,(¢) in the aging regime, and by _ H H (13)
T in the equilibrium regime’ =~ 1. m=m— oot g,
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the centers of the Gaussians are (om?) _ T’1, _ I’T¢ + O(T))
1 N K3 2K* ¢ (19)
%o = 5 AAK = e); (83> _ KXN8H M) T}
__Hx A’K? — 2Kx + 2xe (14) N HN A
YO= Tk T T 0K — ) The latter two relations imply thatl'*(6M2) =

H*8M?* ~ —TH(6M&M,). Since there are no
fast processes, it immediately follows that the quasiequi-
_OATE AP librium relation (5) is satisfied for all four cases, to
K2 e2K — g)’ leading order irT,. In contrast, foM, — H , H, — B
(15) or Be the corresponding relations are violated.

The two-time correlation functionsC,,(z,¢') and
respectively. Following Metropolis, amov& = E + x,  response functionsG,,(¢,#') exhibit related behavior.
M' = M + y is accepted with probability (8x), where  These functions decay &, (¢, t') = C.» (¢, t)h(t')/h(t)

W =1if x <0, while W = exp(—Bx) if x> 0. The with #&(r) = expB.A) ~ t(In7)> and satisfy the
dynamics is now fully specified. The average energyiuctuation-dissipation relation (8) for any nonzero

while their variances read

A, = A’e(2K — ¢&); A,

evolves according to a closed equation £6r) [14], value ofH andT [15]. (For the oscillator model at zero
de [~ field these relations were derived in [14].)
i W(Bx)xp(xle). (16) Now we consider a cooling experiment from high

. o I .. temperatures. A glass transition will occur when the
We find that the average magnetization satisfies similarly ~_* : .
cooling time scaleT/|T| becomes comparable to the

dm _ foo dx W(Bx)yop(x | €). (17) equilibration time scalerqq(7.(¢)). Let us assume that
dt —o it happens at a low temperaturg, < A, so at an
At low T there occur Arrhenius laws for the equi- €xponential time scale, = 7q(T,) ~ expB,A. This
librium relaxation times vizze, = rég) _ %,BArgc‘f) _ will imply that the width of the transition region is

small: AT, ~ T;/A < T,. Assuming in that region
a nonlinear cooling process of the forifi(z) = (1 —
O)T, + Q7 (1), we derive from (16)

(mA/64T) 2 exp(A/T) with A = A2K /8, responsible for
nonequilibrium behavior in typical cooling procedures.
We first consider the situation &t = 0. Starting from

a random initial condition, the system will slowly evolve 0T, T — T, T[Ty + (T — T,)/0]

towards the ground state. It is this evolution that we 9T 0 Teq(Te) (20)
now wish to capture within a thermodynamic framework.__ . . ) .
EquatingU(r) = Ueq (T, H) leads to [14] This equation is similar to but different from earlier

proposals [6,10], and might be universal for narrow glassy

T,(t) = A ) (18) transitions. It covers three cases: @1)> 1, normal
In2t//m + Inin2t//m cooling towards or in the glass; ()< @ < 1, cooling
As asserted above, the saffieis obtained via the relax- in a glassy state so slowly that equilibrium is achieved
ation timer = 7¢q(T.(t)) — T.(t) = T.(t) + O(T?). later; (c)Q < 0, heating up in the glassy state. The
In equilibrium it holds thatim = 0. The resulti ~ apparent specific heat= %aTe/aT decreases if cooling
1/t ~ exp(—B.A) proves that the magnetization very is not too slow. In a heating experiment it is negative,
closely follows its quasiequilibrium valu@.y (7., H). but it produces nedf, the well known overshoat > %

To test the thermodynamics we need the configurationakith height and shape depending solely®@n
entropy. It is defined as the logarithm of the number of In a cooling experiment from larg€ Eq. (20) yields
states leading t&/ (¢, H) = Ueq(T,, H). SinceSi,, = 0it  initially T.(t) = 7(¢), up to exponential corrections,
simply holds thatl = S.(T.(z), H). We can now verify describing thermodynamic equilibrium at the instanta-
the relationdU = T.d1 — MdH — M dI'. Atconstant neous temperature. Below the glass transition region
H and T it is valid, because one has replacéd— T, one hasl, = T, + (T — T,)/0 = qul(l‘). This agrees
in energy and entropy. Then one can take the differencwith (18) and shows that the actual temperature and the
of two evolution experiments at two nearldy’'s. The cooling history are irrelevant: to leading order the energy
relation remains satisfied sindé(r) =~ M.,(T.,H). The just evolves as if the system had been quenched to zero
modified Maxwell relation (4) is also obeyed. Finally onetemperature, and aged there. It can be checked that all
can changé in the course of time. Thef <« HT,/K*>  relations linear irf, remain as af” = 0, thus supporting
as long as9H(¢)/9T.(t) < B.(t)H(t)A%. Thisis a mild the picture (1)—(9).
condition. If H is changed quicker, or if it goes to  This solution allows us to check the Ehrenfest re-
zero too rapidly, the system will not be able to reach dations along the glass transition linH,(7) in cool-

quasiequilibrium described g, alone. ing procedures Q:Q >1). Below the transition region
We have also considered the fluctuation formula. Theywne hasc = 1/20, a = H/2K*Q, and y = I'’/K> —
are too lengthy to be reproduced here. We found (H/2K?*)dT,/oH. Comparing with the paramagnet and
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using that along the transition line the equalify =  ternal fields (pressures), the difference of the magnetiza-
T implies thatoT,/oT + (9T./0H) (dH,/dT) = 1, we  tion (volume) involves the usual fluctuation susceptibility
find that the jumps inx and y satisfy the first Ehrenfest (compressibility), and a new structural contribution that

relation arises from the difference in effective temperatures. Cor-
dH relation and response functions exhibit’ scaling, and
Aa = Ay d_Tg (21)  satisfy a fluctuation-dissipation relation involvifdg.

We have verified our picture in the glassy phase of
Until very recently, it was widely believed that this the low-temperature dynamics of an exactly solvable toy
relation is violated at the glass transition. We pointedmodel that contains two external fields. We expect that
out that experimentalists had inserted some short-timghe fields may also stand for other “mechanical” forces,
value of y or « [4], like the “zero-field-cooled” (ZFC) such as pressure or chemical potential.
susceptibility yzrc, i.e., the first term ofy """ in Eq. (6). The picture has the right signs to be valid for a class of
In spin glasses with one step replica symmetry breakinglassy systems. For verifying it in glass forming liquids it
xzrc is strictly smaller than they of the paramagnet is desirable to map out the full'( ., p)-space by cooling
[16]. In the present model, there are i processes, experiments, and to check that against aging experiments.
S0 yzrc even vanishes. On the other hand, the long- The author thanks J. Groeneveld, J. Jackle, P.G.
time or field-cooled valugyrc = x™* is continuous Padilla, F. Ritort, and M. Sellitto for discussion, and the
at T,. The correct discontinuityAy = — " arises  Newton Institute (Cambridge, U.K.) for hospitality.
from Eq. (7). AsAa = (dm/dT,)(0T./0T — 1), this
explains in detail why the first Ehrenfest relation is
satisfied automatically [4].
It was also shown in [4] that the modified Maxwell
relation (4) leads to the modified second Ehrenfest relation[1] |. prigogine and R. DefayChemical Thermodynamics
Longmans, Green and Co., New York, 1954).
Ac_dd 1 <1 _ an)(g L 4H, ﬂ) 2] I(Q.O.gDavies and G.O. Jones, Adv. Ph2$370)(1953).
NT, dr N oT J\oT dT oH [3] C.A. Angell, Science267, 1924 (1995).
(22) [4] Th. M. Nieuwenhuizen, Phys. Rev. Le#t9, 1317 (1997).
[5] F. Lefloch, J. Hammann, M. Ocio, and E. Vincent,
We can now verify that it is also satisfied. The new last Europhys. Lett18, 647 (1992).

term needed for validity beyond equilibrium. [6] A.Q. Tool, J. Am. Ceram. So@9, 240 (1946).
The Prigogine-Defay ratio may be expressed as [7] It has been supposed that an effective pressure or field
should also be introduced. It is not needed here.
= ACAy { + 1 <1 B aTe>dI 23 [8] Th.M. Nieuwenhuizen, Phys. Rev. Left4, 3463 (1995);
- NT,(Aa)? o NAa oT JdH (23) cond-mat/9504059.

[9] Th. M. Nieuwenhuizen, J. Phys. 81, L201 (1998).
The definition looks as an equilibrium relation, and[10] V.P. Petrosian, Russ. J. Phys. Ché®, 183 (1995).
it was shown thatll must be larger than unity for [11] Such aterm was anticipated. M. Goldstein [J. Phys. Chem.
mechanical stability [2]. This was based, however, on 77, 667 (1973)] notices thaly.s depends more strongly
the invalid assumption of thermodynamic freezing of a set ~ ©On the pressure of formatiop than on the one remaining
of unspecified order parameters. The equivalent relation ~ &fter partial release of pressure. —J. Jackle [J. Phys.
Il = (AC/NT,Aa)dT,/dH allows I < 1 if dT,/dH, Condens. Matterl, 267 (1989), Eqg. (9)] then assumes
which depends onlQ/dH, and is small enough. We that for infinitely slow coolingp is the only additional

- ! ) . system parameter, and argues that; — Ax = Axy +
realized that already in the classic experiment of Rehage a)lln V/ag — Aa dT,/dp ar?dl‘[ _ AT;<T/AKK> 1. “r

and Oels [17] on the glass transition in atactic polystyreneflz] G. Parisi, Phys. Rev. Let?9, 3660 (1997).
there occurs a valudl = 0.77 [4]. In our present [13] J.P. Bouchaud, L.F. Cugliandolo, J. Kurchan, and M.
model Il = (K>/HT,)dT,/dH becomes less than unity Mézard, Physica (AmsterdanZP6A, 243 (1996), review
wheneverdt, /dH is positive. This condition occurs in that in mean-field spin glasses the fluctuation-dissipation
half of the smoothly related sets of cooling trajectories. ratioX(,+') = TG(t,1')/9,C(t,1') simplifies toX(z,1') =

In conclusion, we have proposed a unifying thermody- ~ X(C(z,7'),#') = X(0,') — const. AsT.(t') = T/X(0,t')
namic picture of the glassy state. It does not apply to ~ governs our physics, the dependence of oux cannot be
ideally slow experiments, but to conditions that are typi- ggi‘:tgl‘;ss?:'?;lgiezxfoo?g;ﬁg!ct'g‘;t;%"’gelg]the mean-field
g?(ill%le inhe'ibr\so:/r\;nateprfsmai slow and fas_t_modes eqU|I|-H.4] L.L. Bonilla, F.G. Padilla, and F. Ritort, Physica (Ams-

perature. On long-time scales an

. . . - terdam) A (to be published); e-print cond-mat/9706303.
under mild conditions, global thermodynamical quantltlesﬂS] If T or H vanishes, the model becomes to0 poor.

like the energy and volume or magnetization(s), 9o tq16] At H# = 0 one hasyzrc = B(1 — gra), While yrc =
quasiequilibrium values at a certain effective temperature ~ g[1 — (1 — x,)gga] matchesypy = 8 atx; = 1.

T,(r). Slow fluctuations contribute to susceptibilities with [17] G. Rehage and H.J. Oels, High Temp.-High Prés&45
factor 1/T,. For cooling trajectories at two nearby ex- (1977).
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