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The elastic strain field of a dislocation is highly affected by nearby dislocations. The effects
dislocation-dislocation interactions on elastic energy and core structure are analyzed using a ne
self-consistent method to apply periodic boundary conditions on unit cells containing dislocati
Local density functional theory on hydrogen terminated clusters is used to gauge the effects of
range elastic fields on the core structure of the90± partial in silicon. It is shown that the single and
double period structures of this core are very close in energy, and that the structure adopted pro
depends on the environment in which the dislocation is located. [S0031-9007(98)06362-5]
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Many physical properties characteristic of condense
matter are determined by one dimensional topological d
fects. An example is dislocations, which are responsib
for plastic behavior. In semiconductors, dislocations als
affect the electronic properties, so they have impact
device performance as well. Since the electronic lev
positions depend strongly on the arrangement of atom
and bonds in the dislocation cores, the electronic stru
ture is intimately coupled to the core structure. Prese
knowledge regarding the atomic arrangement in disloc
tion cores primarily comes from computer simulations.

In a very recent Letter, Bennettoet al. [1] introduced
a new period doubled structure for the90± partial
dislocation in silicon. This structure was found to b
energetically favorable over the ordinary single perio
reconstruction. As in many of the recent theoretic
papers on dislocations in silicon [2–5], they rely on th
supercell approach using the quadrupole arrangem
introduced by Biggeret al. [6]. In this current paper, a
general and self-consistent method to construct unit ce
containing dislocations will be introduced. Furthermore
the dislocation interaction effects introduced by period
boundary conditions will be investigated. Finally, the
relative stabilities of the double period (DP) and th
single period (SP) structure of the90± partial will be
investigated. Notably, it will be shown that the relative
stability of these structures is highly influenced by nearb
dislocations, thus is very sensitive to the long-range ela
tic field. This is indeed not the case for the historicall
important problem about the relative stability betwee
reconstructed and unreconstructed90± partials [7–18].

The introduction of dislocations in a lattice changes th
topology of the whole system, which in turn prevents on
from characterizing the defect as a local perturbation in
more or less perfect lattice, as is usually possible for po
defects. There exist short-range forces acting in the co
region which tend to constrict it and a long-range elast
field which favors a wide core [19,20]. The structure of
dislocation core is thus determined by a balance betwe
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these two effects, and due to the long-range nature of
elastic field the dislocation should ideally be embedded
an infinite elastic medium.

Practically, a theoretical study of dislocations is re
stricted to a finite and relatively small number of uniqu
atoms. There are two approximate methods that art
cially represent the embedding in an infinite medium. Th
first is the cluster method, where a finite cluster surroun
ing the defect is constructed, and the second is the u
cell method [21], where an infinite superlattice of defec
is formed by periodic boundary conditions.

The strength of the cluster method lies in its ability t
treat an isolated defect. Here, all translational symme
is destroyed, which implies that the electronic structu
information is limited to a set of discrete levels. Clus
ter calculations suffer from problems with the cluster te
mination. First, surface atoms associated with dangli
bonds give rise to levels in the fundamental gap. Th
problem may be circumvented by saturating the dangli
bonds with hydrogen atoms. This method is reliable
calculating structures and dynamical properties of sem
conductors and their defects [22,23]. Unfortunately th
terminating hydrogen atoms interact strongly with stat
at the valence and conduction band edges which art
cially enlarge the gap. The second problem associa
with the cluster termination involves the problem of how
the long-range elastic field should be included. Thus,
is difficult to simulate the embedding of the cluster in a
elastic medium in a self-consistent manner.

The use of periodic boundary conditions has the a
vantage that the defect-surface interaction is replaced
a defect-defect interaction at a larger distance. In ad
tion, the dislocations are embedded in an infinite elas
medium, since all atoms may respond to the elastic fie
The disadvantages to this approach are, first, that it
quires the sum of the Burgers vectors in the unit cell to
zero, since, otherwise, the elastic strain energy of the cr
tal would be infinite. Second, it introduces interaction
between an infinite number of dislocations. This will, t
© 1998 The American Physical Society



VOLUME 80, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 22 JUNE 1998

l

r
s

e
-
d

t
-

s

,

l

-

FIG. 1. In (a), an edge dislocation dipole is translated so th
alternating tilt grain boundaries are formed. If the translatio
vectors are changed, a lattice of dislocation quadrupoles m
be generated (b).

some extent, affect calculated results, especially if the u
cell is small. Increasing the number of unique atoms,
greater computing power will allow, will eliminate all of
the problems for the unit cell approach.

While, in principle, periodic repetition of unit cells
should eliminate uncertain surface effects, there has b
a historical problem with matching the boundaries
a cell with its neighboring cells [21,24–27]. Bigge
et al. [6] identified this problem to be due to grain
boundaries generated when the unit cells are periodica
repeated as in Fig. 1(a). They adopted a solution p
posed by Heggie [28], generating a lattice of dislocatio
quadrupoles as in Fig. 1(b). By placing the dislocatio
of the quadrupole exactly symmetrically within the un
cell, a smaller cell containing only a dislocation dipol
was constructed. This dislocation quadrupole method h
been extensively used [2–5].

This leads to the first scope of this work, which is t
determine a general and self-consistent way to constr
unit cells containing dislocations. Our method avoid
all of the problems with boundary mismatch, withou
restricting to a quadrupole arrangement. Thus, it will b
shown that misfit at the cell borders is due only to a
incorrect treatment of the periodicity and not due to th
grain boundaries.

A general dislocation can be constructed as in Fig.
see, e.g., Ref. [29]. First, a closed curveC within the
crystal, or an open curve terminating on the surface
both ends, is considered. The curve is not necessa
planar. Then a sensej is ascribed to the curve, and a
cut along any simple surfaceA bounded by the lineC is
made. The lineC becomes a dislocation line of Burger
vectorb if, over the surfaceA, material

dV ­ 2b ? dA (1)

is inserted (ifdV is negative, material is removed), an
the surface on the negative side of the cut is displaced
b relative to the positive side. Afterwards, the materi
on both sides of the cut are rejoined, so the surfaceA is
perfect again. The result is a pure line defect, which
the dislocation lineC.

The strain displacement is left intact at the time
rewelding, but afterwards the medium is allowed to com
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to internal equilibrium. The resulting strain pattern is that
of the dislocation characterized jointly by the boundary
curveC and the Burgers vectorb.

In a crystal, the Burgers vector must generally be equa
to a lattice vector in order that the rewelding process
will maintain the crystallinity of the material. Such
dislocations are called perfect. If the Burgers vector is
not equal to a lattice vector, they are called imperfect, o
partial, dislocations. These partial dislocations are alway
associated with stacking faults.

When the unit cell method is used, the final structure
must be translation invariant. Then the above procedur
must be done in a way that satisfies the symmetry re
quirements. Thus, the dislocations must be introduce
simultaneously in every unit cell, so the final equilib-
rium structure is determined by the periodic arrangemen
of dislocations. The translational vectors of the superlat
tice should be taken from the final equilibrium structure.
As a first approximation, they may be calculated from the
translational vectorsci of the starting unit cell, the surface
cut A, and the Burgers vectorb. Before the dislocations
are introduced, the translational vectorsci of the super-
cells are given as linear combinations of the primitive
translational vectorsai of the crystal lattice. When the
dislocations are introduced, the new translational vector
c0

i of the supercell are given byc0
i ­ ci 1 Dci, where by

inspectionDci is found to be

Dci ­ 2b
Z

A

ci ? dA
jc1 ? sc2 3 c3dj

. (2)

When the final equilibrium structure is determined by the
Keating potential [30], Eq. (2) is found to be exact.

The only defects introduced in the crystal are, as noted
the dislocations and for partials an additional stacking
fault at the cutA. Therefore, there will never be problems
with lattice mismatch at the cell borders, if the periodicity
is taken into account in the manner described. This is in
contrast to the conclusions drawn by Biggeret al. [6].

How does the elastic energy vary when the globa
dislocation pattern is changed at a fixed dislocation
density? In order to answer this question, the 1024
atom unit cell shown schematically in Fig. 3 is used.
Here, L ­ 32a

p
3y8 ø 106 Å, D ­ 16ay

p
3 ø 50.2 Å,

and the thickness of the cell isay
p

2, which is a
single period of a30±y90± partial dislocation. The lattice

FIG. 2. A dislocation loop along the pathC with Burgers
vectorb.
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FIG. 3. A projection of the unit cell on the (110) plane. The
x direction is in thef112g direction of the underlying lattice,
andy is in thef111g direction.

constant of silicon isa ­ 5.431 Å. The x direction is
in the f112g direction of the underlying lattice andy
is in the f111g direction. A dislocation dipole of90±

partials is introduced in the cell in the way described. Th
partials are separated by an intrinsic stacking fault alon
the planar cut.

The global dislocation pattern is changed by varying th
width w of the stacking fault, and by adding translation
T to c2. These translations must be translation vectors
the silicon lattice in order to maintain the crystallinity.
Furthermore, they must be perpendicular toc1 3 c3,
since, otherwise, the volume is changed. These chang
to the global dislocation pattern do not affect the averag
dislocation density in the crystal. The actual shape of th
unit cell is, of course, arbitrary, as long as it covers th
whole space once and only once when translated by line
combinations ofc1, c2, andc3.

The elastic energy is calculated by the Keating potenti
[30], since this potential accurately reproduces the elas
constants. When the dislocation dipole is introduced
the unit cell defined by the vectorsci , it is distorted
by Dci, as described above. Eight different widthsw
of the stacking fault, ranging fromw ­ Ly8 ø 13.3 Å
to w ­ 3Ly4 ø 79.8 Å, are used. The width is, in
principle, confined to the interval0 # w # L. If w ­ 0
or w ­ L, the elastic energy is zero. This is easily
understood for the first case since no defect is introduc
in the cell. Whenw ­ L, the dislocations annihilate with
the dislocations in the neighboring cells. Therefore, th
generates a dislocation-free material containing an arr
of infinite intrinsic stacking faults. The elastic energy fo
this case is zero, since the Keating potential does not gi
any stacking fault energy. This, in turn, means that th
elastic energy as a function ofw is symmetric about the
maximum atw ­ Ly2.

When the stacking fault widthw is fixed, the global
minimum in the elastic energy must be found by varyin
the translationT . Figure 4 shows the elastic energy o
the cell as a function ofT , for the eight different ribbon
widths. The tilt grain boundary configuration [Fig. 1(a)
is generated whenT ­ nL, where n is an integer,
and the quadrupole configuration [Fig. 1(b)] is generate
5570
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when T ­ sn 1
1
2 dL and w ­ Ly2. The minimum in

the elastic energy is found whenT ­ nL, i.e., in the
tilt grain boundary configuration, for all ribbon widths.
The quadrupole configuration is the structure with th
largest elastic strain energy. The tilt grain boundar
configuration is favored by 1.15 eV whenw ­ Ly2. This
energy gain is the driving force behind grain boundar
formation in real materials. The global effect on the
elastic energy is independent of the dislocation cor
structure.

So far, only edge dislocation dipoles have been studie
If the dislocation dipole is of screw character, then th
global energy minimum is found in the quadrupole con
figuration, contrary to the edge dislocations. Thus there
a fundamental difference in the interaction between scre
dislocations on the one hand and between edge disloc
tions on the other. This difference can even be seen b
elasticity theory [29], but the actual effects in a periodic
defect structure are difficult to calculate.

Does the difference in elastic strain affect the cor
structure? To answer this question, the relative energ
between the DP [1] and the SP reconstruction of th
90± partial in silicon is calculated on different global
dislocation patterns. The elastic energy differenceEDP 2

ESP is determined by the Keating potential on the 1024
atom unit cell. The number of atoms in the cell is,
of course, doubled for the double period structure. Th
energy difference varies smoothly whenT is changed.
The SP structure is favored by 4 to18 meVyÅ. This is in
contrast to the result found by Bennettoet al. [1]. If the
height of the unit cell is reduced toD ­ 7ay

p
3, forming

a 488-atom cell, the variation inEDP 2 ESP is reinforced.
In this case, the tilt grain boundary configuration favor
the SP structure by30 meVyÅ, and in the quadrupole
configuration, which is not the global energy minimum
structure, the DP structure is favored by5 meVyÅ. These
calculations show that the result obtained by Bennett

FIG. 4. The elastic energy of the 1024-atom unit cell, con
taining a dipole of90± partial dislocations, as a function of the
translationT . The different curves show the energy for cells
where the stacking fault widths arew ­ 1
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et al. might be an effect of their choice of unit cell,
since the core energy is very sensitive to the dislocatio
interaction, especially when the unit cell is small.

In real silicon, a90± partial, together with a30± partial
and a stacking fault, is the dissociation product of
perfect 60± dislocation. The experimental width of this
ribbon is about50 Å. Moreover, the dislocation density
N is N ø 109 cm22 in deformed samples, compared with
N ø 1012 cm22 for the 1024-atom unit cell above. This
means that the unit cell approach is uncertain because
both the high dislocation density and the interactions wi
dislocations of the wrong type. In order to clarify the
situation, a local density functional (LDF) method is use
on hydrogen terminated clusters containing a90± partial.
The cluster construction starts with the introduction of
dissociated60± dislocation in a giant cylinder, containing
about 8000 atoms per repeat distancesay

p
2 d of the

dislocation. This dissociated dislocation consists of
50 Å wide intrinsic stacking fault, bounded by one30±

and one90± partial. This means that the90± partial is
located in a realistic environment. Since it is not feasib
to treat this whole defect byab initio methods, an initial
relaxation is made using the bond charge model [31
During this relaxation, the surface atoms of the cylinde
are fixed at the positions given by elasticity theory
Finally, clusters containing up to 486 atoms around th
90± partial are generated from this relaxed structure.

These clusters are then used in the LDF calculation
During the LDF relaxation, the surface Si atoms are fixe
at the positions determined by the bond charge model,
order to simulate the long-range elastic field. The resu
of these calculations is that the DP structure is favore
by about 11 meVyÅ. This is in agreement with Ben-
netto et al. [1], who used96y192-atom unit cells in the
quadrupole arrangement; however, the energy differen
is 7 times smaller than their value of79 meVyÅ. On the
other hand, if all atoms in the cluster, including surfac
atoms, are allowed to relax, the SP structure is energe
cally favored by21 meVyÅ. This again shows that the
type of core reconstruction (SP or DP) of the90± partial
is sensitive to changes in the long-range elastic field.

This paper has shown that dislocation interaction
are of great importance, even for the core structur
A new and self-consistent method is introduced fo
the application of periodic boundary conditions. Usin
ab initio LDF theory on clusters and the Keating potentia
on unit cells, it has been shown that the DP and S
structures of the90± partial core are very close in energy
and that the structure adopted by the core probab
depends on the environment in which the dislocation
located.
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