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The elastic strain field of a dislocation is highly affected by nearby dislocations. The effects of
dislocation-dislocation interactions on elastic energy and core structure are analyzed using a new and
self-consistent method to apply periodic boundary conditions on unit cells containing dislocations.
Local density functional theory on hydrogen terminated clusters is used to gauge the effects of long-
range elastic fields on the core structure of #0é partial in silicon. It is shown that the single and
double period structures of this core are very close in energy, and that the structure adopted probably
depends on the environment in which the dislocation is located. [S0031-9007(98)06362-5]

PACS numbers: 61.72.Bb, 61.72.Lk

Many physical properties characteristic of condensedhese two effects, and due to the long-range nature of the
matter are determined by one dimensional topological deelastic field the dislocation should ideally be embedded in
fects. An example is dislocations, which are responsibl@n infinite elastic medium.
for plastic behavior. In semiconductors, dislocations also Practically, a theoretical study of dislocations is re-
affect the electronic properties, so they have impact omstricted to a finite and relatively small number of unique
device performance as well. Since the electronic levehtoms. There are two approximate methods that artifi-
positions depend strongly on the arrangement of atomsially represent the embedding in an infinite medium. The
and bonds in the dislocation cores, the electronic strucfirst is the cluster method, where a finite cluster surround-
ture is intimately coupled to the core structure. Presening the defect is constructed, and the second is the unit
knowledge regarding the atomic arrangement in dislocaeell method [21], where an infinite superlattice of defects
tion cores primarily comes from computer simulations. is formed by periodic boundary conditions.

In a very recent Letter, Bennettt al. [1] introduced The strength of the cluster method lies in its ability to
a new period doubled structure for thg0° partial treat an isolated defect. Here, all translational symmetry
dislocation in silicon. This structure was found to beis destroyed, which implies that the electronic structure
energetically favorable over the ordinary single periodinformation is limited to a set of discrete levels. Clus-
reconstruction. As in many of the recent theoreticalter calculations suffer from problems with the cluster ter-
papers on dislocations in silicon [2-5], they rely on themination. First, surface atoms associated with dangling
supercell approach using the quadrupole arrangemebbnds give rise to levels in the fundamental gap. This
introduced by Biggeet al. [6]. In this current paper, a problem may be circumvented by saturating the dangling
general and self-consistent method to construct unit cellbonds with hydrogen atoms. This method is reliable in
containing dislocations will be introduced. Furthermore,calculating structures and dynamical properties of semi-
the dislocation interaction effects introduced by periodicconductors and their defects [22,23]. Unfortunately the
boundary conditions will be investigated. Finally, the terminating hydrogen atoms interact strongly with states
relative stabilities of the double period (DP) and theat the valence and conduction band edges which artifi-
single period (SP) structure of thg0° partial will be  cially enlarge the gap. The second problem associated
investigated. Notably, it will be shown that the relative with the cluster termination involves the problem of how
stability of these structures is highly influenced by nearbythe long-range elastic field should be included. Thus, it
dislocations, thus is very sensitive to the long-range elass difficult to simulate the embedding of the cluster in an
tic field. This is indeed not the case for the historically elastic medium in a self-consistent manner.
important problem about the relative stability between The use of periodic boundary conditions has the ad-
reconstructed and unreconstrucf8d partials [7—18]. vantage that the defect-surface interaction is replaced by

The introduction of dislocations in a lattice changes thea defect-defect interaction at a larger distance. In addi-
topology of the whole system, which in turn prevents onetion, the dislocations are embedded in an infinite elastic
from characterizing the defect as a local perturbation in anedium, since all atoms may respond to the elastic field.
more or less perfect lattice, as is usually possible for poinThe disadvantages to this approach are, first, that it re-
defects. There exist short-range forces acting in the corguires the sum of the Burgers vectors in the unit cell to be
region which tend to constrict it and a long-range elastizero, since, otherwise, the elastic strain energy of the crys-
field which favors a wide core [19,20]. The structure of atal would be infinite. Second, it introduces interactions
dislocation core is thus determined by a balance betwedpetween an infinite number of dislocations. This will, to
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T+ to internal equilibrium. The resulting strain pattern is that
of the dislocation characterized jointly by the boundary
T 0+ curveC and the Burgers vectdr.
In a crystal, the Burgers vector must generally be equal
T to a lattice vector in order that the rewelding process
will maintain the crystallinity of the material. Such
T dislocations are called perfect. If the Burgers vector is
@) (b) not equal to a lattice vector, they are called imperfect, or
FIG. 1. In (a), an edge dislocation dipole is translated so thapartial, dislocations. These partial dislocations are always
alternating tilt grain boundaries are formed. If the translationassociated with stacking faults.
vectors are changed, a lattice of dislocation quadrupoles may \When the unit cell method is used, the final structure
be generated (b). must be translation invariant. Then the above procedure
must be done in a way that satisfies the symmetry re-
some extent, affect calculated results, especially if the uniﬁuirements_ Thus, the dislocations must be introduced
cell is small. Increasing the number of unique atoms, asimultaneously in every unit cell, so the final equilib-
greater computing power will allow, will eliminate all of rium structure is determined by the periodic arrangement
the problems for the unit cell approach. of dislocations. The translational vectors of the superlat-
While, in principle, periodic repetition of unit cells tice should be taken from the final equilibrium structure.
should eliminate uncertain surface effects, there has bees a first approximation, they may be calculated from the
a historical problem with matching the boundaries oftranslational vectors; of the starting unit cell, the surface
a cell with its neighboring cells [21,24—27]. Bigger cut A, and the Burgers vectds. Before the dislocations
et al. [6] identified this problem to be due to grain are introduced, the translational vectarsof the super-
boundaries generated when the unit cells are periodicallyells are given as linear combinations of the primitive
repeated as in Fig. 1(a). They adopted a solution protranslational vectora; of the crystal lattice. When the
posed by Heggie [28], generating a lattice of dislocationdislocations are introduced, the new translational vectors

quadrupoles as in Fig. 1(b). By placing the dislocationse; of the supercell are given by} = ¢; + Ac;, where by
of the quadrupole exactly symmetrically within the unit inspectionAc; is found to be

cell, a smaller cell containing only a dislocation dipole ¢; - dA
was constructed. This dislocation quadrupole method has Ac; = —b m . 2
been extensively used [2—5]. _ AR A _

This leads to the first scope of this work, which is to When the final equilibrium structure is determined by the
determine a general and self-consistent way to constru¢t€ating potential [30], Eq. (2) is found to be exact.
unit cells containing dislocations. Our method avoids The only defects introduced in the crystal are, as noted,
all of the problems with boundary mismatch, without the dislocations and for partials an additional stacking
restricting to a quadrupole arrangement. Thus, it will befult at the cuid. Therefore, there will never be problems
shown that misfit at the cell borders is due only to anwith lattice mismatch at the cell borders, if the periodicity
incorrect treatment of the periodicity and not due to thelS taken into account in the manner described. This is in
grain boundaries. contrast to the conclusions drawn by Biggeral. [6].

A general dislocation can be constructed as in Fig. 2; How does the elastic energy vary when the global
see, e.g., Ref. [29]. First, a closed cur@ewithin the dislocation pattern is changed at a fixed dislocation
crystal, or an open curve terminating on the surface a#€nsity? In order to answer this question, the 1024-
both ends, is considered. The curve is not necessariltom unit cell shown schematically in Fig. 3 is used.
planar. Then a sensg is ascribed to the curve, and a Here, L = 32ay3/8 = 106 A, D = 16a/+/3 ~ 502 A,
cut along any simple surface bounded by the linec is ~ and the _thlcknesso ofothe cell ia/2, which is a
made. The lineC becomes a dislocation line of Burgers Single period of 80°/90° partial dislocation. The lattice
vectorb if, over the surfacet, material

8V =—b - dA 1)

is inserted (if6V is negative, material is removed), and
the surface on the negative side of the cut is displaced by
b relative to the positive side. Afterwards, the material
on both sides of the cut are rejoined, so the surfads
perfect again. The result is a pure line defect, which is
the dislocation lineC.

The strain diSplacement is left intact at the time OfF|G 2. A dislocation |00p a|0ng the path‘ with Burgers
rewelding, but afterwards the medium is allowed to comevectorb.
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y Copm e } when T = (n + 3)L and w = L/2. The minimum in
]_’x 1 . the elastic energy is found whef = nL, i.e., in the
r | T ; tilt grain boundary configuration, for all ribbon widths.
‘_j—_' i The quadrupole configuration is the structure with the
€y largest elastic strain energy. The tilt grain boundary

configuration is favored by 1.15 eV when= L/2. This
energy gain is the driving force behind grain boundary
_____________________ formation in real materials. The global effect on the
L W elastic energy is independent of the dislocation core
! | structure.
FIG. 3. A projection of the unit cell on the (110) plane. The So far, only edge dislocation dipoles have been studied.
x direction is in_the[112] direction of the underlying lattice, If the dislocation dipole is of screw character, then the
andy is in the[111] direction. global energy minimum is found in the quadrupole con-
figuration, contrary to the edge dislocations. Thus there is
constant of silicon isa = 5.431 A. The x direction is a fundamental difference in the interaction between screw
in the [112] direction of the underlying lattice angd  dislocations on the one hand and between edge disloca-
is in the [111] direction. A dislocation dipole 0b0° tions on the other. This difference can even be seen by
partials is introduced in the cell in the way described. Theelasticity theory [29], but the actual effects in a periodic
partials are separated by an intrinsic stacking fault alonglefect structure are difficult to calculate.
the planar cut. Does the difference in elastic strain affect the core
The global dislocation pattern is changed by varying thestructure? To answer this question, the relative energy
width w of the stacking fault, and by adding translationsbetween the DP [1] and the SP reconstruction of the
T to c,. These translations must be translation vectors 090° partial in silicon is calculated on different global
the silicon lattice in order to maintain the crystallinity. dislocation patterns. The elastic energy differeAgp —
Furthermore, they must be perpendicular d¢p X ¢3,  Esp is determined by the Keating potential on the 1024-
since, otherwise, the volume is changed. These changesom unit cell. The number of atoms in the cell is,
to the global dislocation pattern do not affect the averagef course, doubled for the double period structure. The
dislocation density in the crystal. The actual shape of thenergy difference varies smoothly whé&his changed.
unit cell is, of course, arbitrary, as long as it covers theThe SP structure is favored by 418 meV/A. Thisis in
whole space once and only once when translated by lineaontrast to the result found by Bennetbal. [1]. If the
combinations ot, ¢,, andes. height of the unit cell is reduced ®© = 7a/+/3, forming
The elastic energy is calculated by the Keating potentiah 488-atom cell, the variation ifipp — Esp is reinforced.
[30], since this potential accurately reproduces the elastitn this case, the tilt grain boundary configuration favors
constants. When the dislocation dipole is introduced irthe SP structure by0 meV/A, and in the quadrupole
the unit cell defined by the vectors, it is distorted configuration, which is not the global energy minimum
by Ac;, as described above. Eight different widths structure, the DP structure is favored byneV/A. These
of the stacking fault, ranging fromr = L/8 ~ 13.3 A calculations show that the result obtained by Bennetto
to w=3L/4 ~79.8A, are used. The width is, in
principle, confined to the interv@l=w =< L. Ifw =20
or w = L, the elastic energy is zero. This is easily 2sE T =TT T
understood for the first case since no defect is introduced :
in the cell. Whenw = L, the dislocations annihilate with 7F
the dislocations in the neighboring cells. Therefore, this i
generates a dislocation-free material containing an array
of infinite intrinsic stacking faults. The elastic energy for Py
this case is zero, since the Keating potential does not give O
any stacking fault energy. This, in turn, means that the
elastic energy as a function af is symmetric about the
maximum atw = L/2. T T T T T
When the stacking fault widthw is fixed, the global 4 0 4 8 1216 20 24 28 3236
minimum in the elastic energy must be found by varying Translation T (in unfts of L/32)
the translation?. Figure 4 shows the elastic energy of i 4. The elastic energy of the 1024-atom unit cell, con-
the cell as a function of’, for the eight different ribbon taining a dipole 000° partial dislocations, as a function of the
widths. The tilt grain boundary configuration [Fig. 1(a)] translation7. The different curves show the energy for cells
is generated wherl = nL, where n is an integer, Where the stacking fault widths ave = ¢, -, ;, =, %, 7, 2,
and the quadrupole configuration [Fig. 1(b)] is generatedde, in units of L, defined in Fig. 3.

)

Energy (eV)
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