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Intermittency in Passive Scalar Advection
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A Lagrangian method for the numerical simulation of the Kraichnan passive scalar model is
introduced. The method is based on Monte Carlo simulations of tracer trajectories, supplemented by
a point-splitting procedure for coinciding points. Clean scaling behavior for scalar structure functions
is observed. The scheme is exploited to investigate the dependence of scalar anomalies on the scaling
exponent¢ of the advecting velocity field. The three-dimensional fourth-order structure function is
specifically considered. [S0031-9007(98)06331-5]

PACS numbers: 47.27.Eq, 05.40.+j, 47.10.+¢g

The Kraichnan model of passive scalar advection by drajectories [13]. For structure functions of finite order
self-similar Gaussian white-in-time velocity field [1] is by only a finite number of tracer particles is needed. The
now a paradigm for intermittency in turbulent systems. lIttracer trajectories are easy to simulate and the calcula-
was shown by Kraichnan [2] that, for advecting velocity tion at each time step only involves a small number of
fields which are white-in-timed correlated), the equal- random vectors, basically, differences of velocities, rather
time correlation functions of the scalar filddobey closed than the whole velocity field. Furthermore, working with
equations of motion. In his 1994 paper [1] he used thighe tracers naturally allows one to measure the scaling of

remarkable property and the so-called “linear ansatz” tQhe structure functionggﬁ)(r) = {[6(r) — 6(0)]*") vs the
predict the scaling exponents of the nth order scalar ntegral scald. of the forcing. Physically, this means that
structure functions, for all space dimensiond =2 and  the passive scalar variance injection rate (which equals its
for all velocity scaling exponent8 = & = 2. The pre-  (jssipation rate) and the separatiomre kept fixed while
dicted{,’s areanomalousfor example2{, — {4 > 0;in the integral scald is varied. In an anomaly-free theory,
other words, the scaling exponents cannot be predicted ky.g., of the Kolmogorov 1941 type, nothing should change
dimensional analysis. Hence, the flatness of scalar incren inertial-range statistical quantities. Anomalies will here
ments over a distancegrows r%~>% asr — 0, a phe-  pe measured directly through the scaling dependende on
nomenon referred to as “intermittency” [3]. The linear of the structure functions.

ansatz was revisited via fusion rules in Ref. [4], and its gSpecifically, let us consider the passive scalar equation
validity in the limit £ — 0 was questioned in Ref. [5]. 5

A different approach was developed in Refs. [6-8] in 90(r.0) + v(r.1) - VO(r.1) = «V70(r.1) + f(r.1).
which anomalous scaling has its roots in the zero modes (1)

(solutions of the unforced problem) of the closed exac

equations satisfied by the scalar correlations [9]. Theii:Or tge Kraychnag moddel [f[l]’ the velocn)t/) f%[rr]]dhthe forcing
determination for correlation functions with more than&'® aussian independent processes, bo omogeneous,

two or three points presents a daunting task which hagtatio_na.ry, isotrppic, and Whitg-in-time. The velocity ‘$

so far received solutions only via perturbation theory.s'elf's"m'l"’1r (no.lnfrared CUt.Oﬁ IS ngeded hor assume(_:l in

Three limits have been identified for the Kraichnan modelCY" procedure); the correlations of its increments are given

Larged’s [6], small £’s [7], and ¢’s close to the Batche-

lor limit & = 2 [8,10]. The first two expansions are regu- (v, (r,1) vg(r,0)) — (va(r,t) v5(0,0))

lar, while for the third one the relevant small parameter

should be,/2 — &. (This is due to the preservation of the = rﬁ[(g +d— 10,5 — ¢ ra;ﬁ }5(1). 2

collinear geometry in the Batchelor limit, leading to an an- r

gular nonuniformity in the perturbation analysis [8,10].) As for the forcing,(f(r,) f(0,0)) = F(r/L) (), where
Numerical simulations have up to now been based on th&'(r/L) is nearly constant for distancesmaller than the

direct integration of the passive scalar partial differentialintegral scald. and decreases rapidly fer> L.

equation and have been limited to two dimensions [11,12]. When the molecular diffusivityx is simply ignored,

Although the predictions of the linear ansatz appear comand 6 is assumed to vanish in the distant pastr at

patible with such simulations, it should be noted that such-T, Eq. (1) can be recast &ir,r) = ft,T f(r(s),s)ds,

calculations are highly delicate. To wit, the difficulty of with the Lagrangian trajectory defined by the stochastic

observing forS, the known asymptotic scaling [1]. differential equationdr(s) = v(r(s),s)ds and the final
Our aim here is to propose a different numerical stratcondition r(z) = r. Using the Wick rule to calculate

egy based on the Monte Carlo simulation of LagrangiarGaussian averages over the forcing, the scalar correlations
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can be expressed as averages of time integrals @fer  where((W,)a(s) (W;)5(s")) = 8;j6436(s — s') andr; is

the statistics of Lagrangian trajectories. Furthermorethe position at the (final) time. It can be checked
zero-mode ideas suggest the universality of the scalinthat the2nth order scalar correlation functions given by
exponents with respect to the choice Bf It is then (3), with r; and ¢ interpreted as Eulerian coordinates,
convenient to consider the step functibn= 1 for r = L. satisfy Kraichnan’s closed equations (for details, see
andF = 0for r > L. (The fact that its Fourier transform Refs. [14,15]).

is not positive definite is not relevant for the sequel as it The Lagrangian method defined by (3) and (4) is numeri-
actually amounts to taking a complex forcing function.)cally implemented as follows. Because of homogeneity
The scalar correlations have then very simple expressionenly differences in positions and velocities matter, and we
e.g., for the second- and the fourth-order correlations irtan work with2n — 1 particles for the moments of order

the stationary state, 2n. The2nth order structure functiofi,, requiresn + 1
. configurations of such particles. For exampfe(r) =
0(r1) 0(r2)) =Tz 5 (3)  2[(62) — (6(r)6(0))]. Since the velocity field is white-in-
(0(r1) 0(r2)0(r3)0(rs)y = (THTL + TAETE + TETR) . . time, equations such as (4) could present the well known

Ito—Stratonovich ambiguity [16] which is, however, ab-

Here, Ti, is the (random) amount of time that two Sentas aconsequence of incompressibility. The tracer po-
particles starting at; andr, and moving backwards in sitions are updated using the classical Euler-Ito scheme
time spend with their mutual distande, (s) — ro(s)] <  Of order 1/2 [16]. Thus, during the time intervals
L, and (e), denotes the average over the Lagrangiarthe Lagrangian positions for each configuration of trac-
trajectory statistics. Expressions similar to (3) are easilyers(ri)a (i = 1,...,2n — landa = 1,...,d) are shifted
derived for higher order correlations. Note that we carPy VAs[(X;)a + (Yi)al. Here,(X;), and(Y;), are two
exchange backward and forward motion in time sincesets of(2n — 1)d Gaussian random variables chosen in-
according to (2), the statistical properties mfand —v  dependently at each time step and with the appropriate
are the same. correlations. For example, usimg — ry,...,rp, — r; as

In the limit x — 0 this procedure, which ignores dynamical variables, we havgX:):(X»)3) = ([v'(r2) —
molecular diffusion, is actually correct as long as allv'(r)hi[v'(r3) — v/'(r)]s) and((Y1)i(Y2)1) = 2«. (The
pointsr; are distinct. However, if we, e.g., put = r» v’ field has no time dependence and the same spatial corre-
we find that(62), given by (3) is incorrect: it diverges 7 lations as the field.) Individual realizations are stopped
asT — . With coinciding points, the correct procedure When all the interparticle distances become larger than
is the point splitting: the tracer particles must be initially 10 times the largest integral scale of interésk,. The
separated by a small distanc&e), and the value of the number of realizations needed for the results reported be-
correlation function for coinciding points is given by the low is from one to several millions. The diffusivity is
limit e — 0. This is finite for any¢ < 2 because, even chosen such that the diffusive time at the dissipation scale,
for € — 0, the particles reach ad(1) separation in a 1>/« = k?~9/¢ is small compared to the inertial time
finite time, on account of the Halder nonsmooth nature™ (scalg> .
of the velocity field (see, e.g., Ref. [14] for this important A severe test for the Lagrangian method is provided by
property of what may be termed a “Richardson walk”). |tthe second-order structure functidh, whose expression

is then easily checked théd?) coincides with the known IS known analytically [1]. Its behavior being nonanoma-
value atk = 0 of the analytical solution [1] and that for lous, a flat scaling i should be observed. The structure

& = 2 its divergence is logarithmic i@, as it should be functionsS, measured by the Lagrangian method is shown
in the Batchelor regime. in Fig. 1 for ¢ = 0.6 andd = 3 (all structure functions

In our simulations, the point-splitting operation is mostare plotted in log-log coordinates). The measured slope is
conveniently implemented by keeping a nonvanishingl0 > and the error on the constanti%. (These figures
amount of “molecular noise.” By this we understand thatare typical also for other values gf studied.) Two re-
the different particles, in addition to being swept along bymarks are in order. First, it follows from the analytic so-
the velocity field, are undergoinipdependenBrownian lution that the constant-ifi-behavior holds for all < L,
motions with a small diffusivityx. This Brownian dif- including in the dissipative region. Physically, this corre-
fusion is relevant only for interparticle distances smallersponds to the fact that, asmoves down in the dissipative
than the dissipation scale = O(x!/¢). The correspond- region, the energy flux becomes smaller and smaller, but
ing stochastic equations of motion for the casémfracer ~ still remains independent of. Second, the asymptotic

particles are scaling for L < r goes over into the scaling foig?),
) namely,L>~¢; the transition to the constant-inbehavior
dri(s) = v(ri(s),s)ds + V2« Wi(s)ds, aroundr = L is very sharp, on account of the step func-
P =1 n tion chosen forF'. o
v We applied our method to the determination of
ri(t)=r;, (4) the anomalies for the fourth-order structure function
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FIG. 1. The 3D second-order structure functisnvs L for
£ = 0.6. The separatiom = 2.7 X 1072, the diffusivity x =
1.115 X 1072, and the number of realizations4s5 X 10°.

Integral scale L

Sa(r;L) < r?2(L/r)*~% in three dimensions.
results are summarized in the curve of the anomalousrror bars in Fig. 5.

correction2{, — 4 vs & presented later in Fig. 5. The

Integral scale L

realizations is8 X 10°.

FIG. 3. Same curve as in Fig. 2 fgr= 0.9. The parameters
are r =27 X 1072, k =44 X 107, and the number of

The octaves ratios), whose fluctuations give the conservative

The dot-dashed line in Fig. 5 is the first-order perturba-

three plots ofSs vs L in Figs. 2, 3, and 4 indicate tive prediction(4/5)¢, obtained in Ref. [7]. The dashed
that the Lagrangian simulations require more and moréine is a fit of the formay + by¥2 with y =2 — &
computational effort wherg is decreased from 2 to 0. (the parameters are = 0.06 and b = 1.13), showing
This is due mainly to the fact that the three correlationthat the data are compatible with an expansion/m.

functions appearing in the expressionSgfhave dominant
contributions scaling a&2?-¢ and L2~¢, but they are
both canceled in the combination giving,. Making

Note that a terme ,/y is ruled out by the Holder in-
equality &, = 24 = 2y [17].
that the crossing of the curve in Fig. 5 with the mono-

It is interesting to note

the subdominant contribution o, to emerge requires tonically decreasing (i) linear ansatz prediction occurs
stronger and stronger cancellations @slecreases. For around¢ = 1. This is the point farthest from the two
all the cases reported the scaling is quite clean, as aldonits ¢ = 0 and ¢ = 2 which both have strongly non-
confirmed by the analysis of local scaling exponents (orlocal dynamics, suggesting a possible relation between
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FIG. 2. The 3D fourth-order structure functiafy vs L for
& = 0.2. The separatiom = 2.7 X 1072, the diffusivity x =

8
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FIG. 4. Same curve as in Fig. 2 fgr= 1.75. The parame-
ters arer = 2.7 X 1072, k = 1072, and the number of realiza-
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FIG. 5. The anomal2{, — ¢ for the fourth-order structure
function in the three-dimensional Kraichnan model.

deviations from the linear ansatz and locality of the inter-
actions [20].

We finally note that the two main ingredients of the
method reported here have, in fact, a wider range of
applicability than the determination of anomalies for the
Kraichnan model. First, the Lagrangian tracer method
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