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A Lagrangian method for the numerical simulation of the Kraichnan passive scalar mod
introduced. The method is based on Monte Carlo simulations of tracer trajectories, supplemen
a point-splitting procedure for coinciding points. Clean scaling behavior for scalar structure func
is observed. The scheme is exploited to investigate the dependence of scalar anomalies on the
exponentj of the advecting velocity field. The three-dimensional fourth-order structure functio
specifically considered. [S0031-9007(98)06331-5]
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The Kraichnan model of passive scalar advection by
self-similar Gaussian white-in-time velocity field [1] is by
now a paradigm for intermittency in turbulent systems.
was shown by Kraichnan [2] that, for advecting velocit
fields which are white-in-time (d correlated), the equal-
time correlation functions of the scalar fieldu obey closed
equations of motion. In his 1994 paper [1] he used th
remarkable property and the so-called “linear ansatz”
predict the scaling exponentszn of the nth order scalar
structure functionSn for all space dimensionsd $ 2 and
for all velocity scaling exponents0 # j # 2. The pre-
dictedzn ’s areanomalous,for example,2z2 2 z4 . 0; in
other words, the scaling exponents cannot be predicted
dimensional analysis. Hence, the flatness of scalar inc
ments over a distancer grows~ rz422z2 asr ! 0, a phe-
nomenon referred to as “intermittency” [3]. The linea
ansatz was revisited via fusion rules in Ref. [4], and i
validity in the limit j ! 0 was questioned in Ref. [5].
A different approach was developed in Refs. [6–8] i
which anomalous scaling has its roots in the zero mod
(solutions of the unforced problem) of the closed exa
equations satisfied by the scalar correlations [9]. The
determination for correlation functions with more tha
two or three points presents a daunting task which h
so far received solutions only via perturbation theor
Three limits have been identified for the Kraichnan mode
Larged’s [6], small j’s [7], andj’s close to the Batche-
lor limit j  2 [8,10]. The first two expansions are regu
lar, while for the third one the relevant small paramete
should be

p
2 2 j. (This is due to the preservation of the

collinear geometry in the Batchelor limit, leading to an an
gular nonuniformity in the perturbation analysis [8,10].)

Numerical simulations have up to now been based on t
direct integration of the passive scalar partial differenti
equation and have been limited to two dimensions [11,12
Although the predictions of the linear ansatz appear co
patible with such simulations, it should be noted that su
calculations are highly delicate. To wit, the difficulty of
observing forS2 the known asymptotic scaling [1].

Our aim here is to propose a different numerical stra
egy based on the Monte Carlo simulation of Lagrangia
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trajectories [13]. For structure functions of finite orde
only a finite number of tracer particles is needed. T
tracer trajectories are easy to simulate and the calcu
tion at each time step only involves a small number
random vectors, basically, differences of velocities, rath
than the whole velocity field. Furthermore, working wit
the tracers naturally allows one to measure the scaling
the structure functionsS

sLd
2n srd  kfusrd 2 us0dg2nl vs the

integral scaleL of the forcing. Physically, this means tha
the passive scalar variance injection rate (which equals
dissipation rate) and the separationr are kept fixed while
the integral scaleL is varied. In an anomaly-free theory
e.g., of the Kolmogorov 1941 type, nothing should chan
in inertial-range statistical quantities. Anomalies will her
be measured directly through the scaling dependence oL
of the structure functions.

Specifically, let us consider the passive scalar equati

≠tusr, td 1 ysr, td ? = usr, td  k=2usr, td 1 fsr, td .

(1)

For the Kraichnan model [1], the velocity and the forcin
are Gaussian independent processes, both homogene
stationary, isotropic, and white-in-time. The velocity i
self-similar (no infrared cutoff is needed nor assumed
our procedure); the correlations of its increments are giv
by

kyasr, td ybsr, 0dl 2 kyasr, td ybs0, 0dl

 rj

∑
sj 1 d 2 1ddab 2 j

rarb

r2

∏
dstd . (2)

As for the forcing,kfsr, td fs0, 0dl  FsryLd dstd, where
FsryLd is nearly constant for distancesr smaller than the
integral scaleL and decreases rapidly forr ¿ L.

When the molecular diffusivityk is simply ignored,
and u is assumed to vanish in the distant past att 
2T , Eq. (1) can be recast asusr, td 

Rt
2T fsssrssd, sddd ds,

with the Lagrangian trajectory defined by the stochas
differential equationdrssd  ysssrssd, sddd ds and the final
condition rstd  r. Using the Wick rule to calculate
Gaussian averages over the forcing, the scalar correlati
© 1998 The American Physical Society
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can be expressed as averages of time integrals ofF over
the statistics of Lagrangian trajectories. Furthermor
zero-mode ideas suggest the universality of the scal
exponents with respect to the choice ofF. It is then
convenient to consider the step functionF  1 for r # L
andF  0 for r . L. (The fact that its Fourier transform
is not positive definite is not relevant for the sequel as
actually amounts to taking a complex forcing function
The scalar correlations have then very simple expressio
e.g., for the second- and the fourth-order correlations
the stationary state,

kusr1d usr2dl  kTL
12lL ; (3)

kusr1d usr2dusr3dusr4dl  kTL
12TL

34 1 T L
13TL

24 1 TL
14TL

23lL .

Here, TL
12 is the (random) amount of time that two

particles starting atr1 and r2 and moving backwards in
time spend with their mutual distancejr1ssd 2 r2ssdj ,

L, and k≤lL denotes the average over the Lagrangia
trajectory statistics. Expressions similar to (3) are eas
derived for higher order correlations. Note that we ca
exchange backward and forward motion in time sinc
according to (2), the statistical properties ofy and 2y
are the same.

In the limit k ! 0 this procedure, which ignores
molecular diffusion, is actually correct as long as a
points ri are distinct. However, if we, e.g., putr1  r2

we find thatku2l, given by (3) is incorrect: it diverges~ T
asT ! `. With coinciding points, the correct procedur
is the point splitting: the tracer particles must be initiall
separated by a small distanceOsed, and the value of the
correlation function for coinciding points is given by the
limit e ! 0. This is finite for anyj , 2 because, even
for e ! 0, the particles reach anOs1d separation in a
finite time, on account of the Hölder nonsmooth natu
of the velocity field (see, e.g., Ref. [14] for this importan
property of what may be termed a “Richardson walk”).
is then easily checked thatku2l coincides with the known
value atk  0 of the analytical solution [1] and that for
j  2 its divergence is logarithmic ine, as it should be
in the Batchelor regime.

In our simulations, the point-splitting operation is mos
conveniently implemented by keeping a nonvanishin
amount of “molecular noise.” By this we understand th
the different particles, in addition to being swept along b
the velocity field, are undergoingindependentBrownian
motions with a small diffusivityk. This Brownian dif-
fusion is relevant only for interparticle distances small
than the dissipation scaleh  Osk1yjd. The correspond-
ing stochastic equations of motion for the case of2n tracer
particles are

drissd  ysssrissd, sddd ds 1
p

2k ÙWissd ds ,

i  1, . . . , 2n ,

ristd  ri , (4)
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whereks ÙWidassd s ÙWjdbss0dl  dijdabdss 2 s0d andri is
the position at the (final) timet. It can be checked
that the2nth order scalar correlation functions given b
(3), with ri and t interpreted as Eulerian coordinate
satisfy Kraichnan’s closed equations (for details, s
Refs. [14,15]).

The Lagrangian method defined by (3) and (4) is nume
cally implemented as follows. Because of homogene
only differences in positions and velocities matter, and
can work with2n 2 1 particles for the moments of orde
2n. The2nth order structure functionS2n requiresn 1 1
configurations of such particles. For example,S2srd 
2fku2l 2 kusrdus0dlg. Since the velocity field is white-in-
time, equations such as (4) could present the well kno
Ito–Stratonovich ambiguity [16] which is, however, ab
sent as a consequence of incompressibility. The tracer
sitions are updated using the classical Euler–Ito sche
of order 1y2 [16]. Thus, during the time intervalDs
the Lagrangian positions for each configuration of tra
erssrida (i  1, . . . , 2n 2 1 anda  1, . . . , d) are shifted
by

p
Ds fsXida 1 sYidag. Here,sXida and sYida are two

sets ofs2n 2 1dd Gaussian random variables chosen i
dependently at each time step and with the appropr
correlations. For example, usingr2 2 r1, . . . , r2n 2 r1 as
dynamical variables, we haveksX1d1sX2d3l  kfy0sr2d 2

y0sr1dg1fy0sr3d 2 y0sr1dg3l and ksY1d1sY2d1l  2k. (The
y0 field has no time dependence and the same spatial co
lations as they field.) Individual realizations are stoppe
when all the interparticle distances become larger th
10 times the largest integral scale of interestLmax. The
number of realizations needed for the results reported
low is from one to several millions. The diffusivityk is
chosen such that the diffusive time at the dissipation sc
h2yk ~ ks22jdyj , is small compared to the inertial time
~ sscaled22j.

A severe test for the Lagrangian method is provided
the second-order structure functionS2, whose expression
is known analytically [1]. Its behavior being nonanom
lous, a flat scaling inL should be observed. The structur
functionS2 measured by the Lagrangian method is sho
in Fig. 1 for j  0.6 and d  3 (all structure functions
are plotted in log-log coordinates). The measured slop
1023 and the error on the constant is3%. (These figures
are typical also for other values ofj studied.) Two re-
marks are in order. First, it follows from the analytic so
lution that the constant-in-L behavior holds for allr , L,
including in the dissipative region. Physically, this corr
sponds to the fact that, asr moves down in the dissipative
region, the energy flux becomes smaller and smaller,
still remains independent ofL. Second, the asymptotic
scaling for L ø r goes over into the scaling forku2l,
namely,L22j; the transition to the constant-in-L behavior
aroundr  L is very sharp, on account of the step fun
tion chosen forF.

We applied our method to the determination
the anomalies for the fourth-order structure functio
5533
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FIG. 1. The 3D second-order structure functionS2 vs L for
j  0.6. The separationr  2.7 3 1022, the diffusivity k 
1.115 3 1022, and the number of realizations is4.5 3 106.

S4sr ; Ld ~ r2z2 sLyrd2z22z4 in three dimensions. The
results are summarized in the curve of the anomalo
correction2z2 2 z4 vs j presented later in Fig. 5. The
three plots of S4 vs L in Figs. 2, 3, and 4 indicate
that the Lagrangian simulations require more and mo
computational effort whenj is decreased from 2 to 0.
This is due mainly to the fact that the three correlatio
functions appearing in the expression ofS4 have dominant
contributions scaling asL2s22jd and L22j , but they are
both canceled in the combination givingS4. Making
the subdominant contribution ofS4 to emerge requires
stronger and stronger cancellations asj decreases. For
all the cases reported the scaling is quite clean, as a
confirmed by the analysis of local scaling exponents (
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FIG. 2. The 3D fourth-order structure functionS4 vs L for
j  0.2. The separationr  2.7 3 1022, the diffusivity k 
0.247, and the number of realizations is15 3 106.
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FIG. 3. Same curve as in Fig. 2 forj  0.9. The parameters
are r  2.7 3 1022, k  4.4 3 1024, and the number of
realizations is8 3 106.

octaves ratios), whose fluctuations give the conservati
error bars in Fig. 5.

The dot-dashed line in Fig. 5 is the first-order perturba
tive predictions4y5dj, obtained in Ref. [7]. The dashed
line is a fit of the formag 1 bg3y2 with g  2 2 j

(the parameters area  0.06 and b  1.13), showing
that the data are compatible with an expansion in

p
g.

Note that a term~
p

g is ruled out by the Hölder in-
equality z4 # 2z2  2g [17]. It is interesting to note
that the crossing of the curve in Fig. 5 with the mono
tonically decreasing (inj) linear ansatz prediction occurs
aroundj  1. This is the point farthest from the two
limits j  0 and j  2 which both have strongly non-
local dynamics, suggesting a possible relation betwe
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FIG. 4. Same curve as in Fig. 2 forj  1.75. The parame-
ters arer  2.7 3 1022, k  1029, and the number of realiza-
tions is1.5 3 106.
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FIG. 5. The anomaly2z2 2 z4 for the fourth-order structure
function in the three-dimensional Kraichnan model.

deviations from the linear ansatz and locality of the inte
actions [20].

We finally note that the two main ingredients of th
method reported here have, in fact, a wider range
applicability than the determination of anomalies for th
Kraichnan model. First, the Lagrangian tracer metho
appears more flexible than the integration of the pass
scalar partial differential equation. The latter permi
in principle measurement of all the observables a
somehow corresponds to an infinite number of trac
particles. Changing their number according to whic
specific correlation function is being investigated seem
however, to be more economic and convenient and sho
also be of interest for analyzing the advection by mo
realistic flow. Second, considering the scaling behavi
vs the integral scaleL, rather than vs the separationr,
could be useful in many situations where the injectio
rate can be controlled; this includes the simulation
Navier–Stokes flow with white-in-time forcing. Such a
procedure presents the advantage of giving direct acc
to the scaling exponent anomalies, which are quantitat
measurements of intermittency.
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[7] K. Gawȩdzki and A. Kupiainen, Phys. Rev. Lett.75, 3834

(1995).
[8] B. I. Shraiman and E. D. Siggia, C.R. Acad. Sci. Ser.

321, 279 (1995).
[9] Closures for the nonlinear Navier–Stokes equation ca

also lead to anomalous scaling via “fluxless” solutions
such as those found in dimensiond close to two [U. Frisch
and J. D. Fournier, Phys. Rev. A17, 747 (1978)].

[10] B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett.77, 2463
(1996).

[11] R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. Let
75, 240 (1995).

[12] A. L. Fairhall, B. Galanti, V. S. L’vov, and I. Procaccia,
Phys. Rev. Lett.79, 4166 (1997).

[13] Using Monte Carlo simulations of Lagrangian trajectorie
was proposed independently by O. Gat, I. Procaccia, a
R. Zeitak; see, e.g., cond-math/9803190.

[14] D. Bernard, K. Gaw¸edzki, and A. Kupiainen, cond-math/
9706035 [J. Stat. Phys (to be published)].

[15] M. Chertkov, Phys. Rev. E55, 2722 (1997).
[16] P. E. Kloeden and E. Platen,Numerical Solution of

Stochastic Differential Equations(Springer, Berlin, 1992).
[17] Similar Hölder inequalities rule out a

p
g term for all

the structure functionskjusrd 2 us0djpl with p . 2. No
such constraint exists forkfusrd 2 us0dg3l, considered in
Refs. [18,19]; hence, the presence of an absolute val
strongly affects the scaling behavior.

[18] E. Balkovski, G. Falkovich, and V. Lebedev, Phys. Rev
E 55, R4881 (1997).

[19] O. Gat, V. L’vov, and I. Procaccia, Phys. Rev. E56, 406
(1997).

[20] R. H. Kraichnan (private communication).
5535


