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Quantum Dynamical Manifestation of Chaotic Behavior in the Process of Entanglement
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Manifestation of chaotic behavior is found in an intrinsically quantum property. The entanglement
process, quantitatively expressed in terms of the reduced density linear entropy, is studied for the
N-atom Jaynes-Cummings model. For a given energy, initial conditions are prepared as minimum
uncertainty wave packets centered at regular and chaotic regions of the classical phase space. We find
for short times a faster increase in decoherence for the chaotic initial conditions as compared to regular
ones, which have oscillatory increase. [S0031-9007(98)06398-4]

PACS numbers: 05.45.+b, 03.65.Bz, 32.80.Qk

Classical Hamiltonian chaos is mostly studied in sys-Coherence loss has been important both theoretically and
tems possessing 2 degrees of freedom. The investigati@xperimentally in various fields, ranging from the detec-
of the quantum counterparts of such systems is heavilyion of gravitational waves to models in quantum optics
based on their spectral properties and eigenfunctions [1]6]. The linear entropy, given by Eq. (2), has been used
with a considerable amount of work concerning also quanto study characteristic decoherence time scales in systems
tum dynamical properties, e.g., dynamical localization [2].such as a harmonic oscillator coupled to a heat bath—
Much less effort, however, has been dedicated to study theuch in use in condensed matter physics—as well as the
connection between quantum dynamical entanglement afaynes-Cummings model with importance in quantum op-
parts of a larger system and chaos [3]. It has recentlyics and ion trap problems [7].
been proposed that the rate of entropy production can be Recently much attention has been given to the spih-
used as an intrinsically quantum test of the chaotic versu3aynes-Cummings Model (JCM) in the context of cav-
regular nature of the evolution [4]. In the present Letter,ity QED experiments [8]. Decoherence properties in an
we present a demonstration of this general point in théntegrable situation have been measured [9]. Here, we
specific case of th&/-atom Jaynes-Cummings model. explore the connection between chaos and entanglement,

Let us assume that a quantum system is composed @& explained above, by investigating in theatom JCM,
two interacting subsystems. In order to study possibldiow decoherence is affected by the presence of nonin-
effects of the underlying chaotic dynamics in the processegrable interactions. This model, for which the nonin-
of entanglement of the subsystems, we must have sontegrable situation will probably become experimentally
measure of the coherence loss of one of the subsysteneccessible in the near future [10,11], can be viewed as a
A measure of entanglement between two subsystensubsystem oV two-level atoms coupled to a single-mode
can be given by the linear entropy or the idempotencyadiation field. In this example we show that the behavior
defect (or purity) of the subsystem of interest [5]. Thisof the linear entropy of the atomic subsystem is strongly
can be calculated after evaluating the reduced densityorrelated with the nature of the underlying classical mo-
operator for the corresponding subsystem of interest (salyon in the following sense: Two wave packets with

subsystem 2) the same average energy, centered at regular and chaotic
p2(t) = Tri{lg () (P (D)} . (1) points in the classical phase space, exhibit very different
From this operator we obtain the linear entropy as followsshort time behaviors for the entanglement process. The
8(t)=1— Trz{pg(t)}. (2) reason to choose th&-atom JCM, besides experimen-

In these equationky(z)) is the full quantum state of the tal application, is the fact that it has been extensively
system and Trmeans the trace over the variables of sub-explored since its conception by Tavis and Cummings
systemi (1 or2). This quantity is clearly zero for the case [12]. Chaotic behavior has been found semiclassically
where the subsystems are in pure nonentangled states. Asthe non-rotating-wave approximation (NRWA) [13].
we are especially interested in the entanglement proce&tatistical properties of the quantum spectrum have been
and not in the effect of statistical mixtures, we consideranalyzed by several authors [14] and also scars of periodic
only initially pure and nonentangled states. Having cho-orbits in Husimi distributions [15]. The connection be-
sen an initially separable state, as the time evolves we exween quantum and classical properties can be made only
pectd(r) to become nonzero as a result of the interactionif the number of atoms is large enoughi & 3). There-
How fast it grows tell us how fast subsystem 2 suffersfore, the study performed here will hagé = 9, to make
decoherence due to the entanglement with subsystem 4ure that we are treating a semiclassical regime.
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The correspondence of the quantum dynamical evolu- 5.0 - . " -
tion and the classical phase space is made through the
choice of the initial state. Given a point in the classical
phase space, we construct the corresponding quantum ini- 30} .
tial conditions
[ (0)) = Iw) ® |v), 3 Lol ]
where|w) stands for an S(2) coherent state anfd ) for
a bosonic one [16] &
lwy = (1 + ww) /" |7, —J), (4) L0y I
|U> _ e*m‘;/Zeva+ |O>, (5)
with [17] 3.0 ¢ 1
4
- P1 21(]1 =, (6)
_ _5.0 1 1 Il L
‘/14J (pi + 4i) 50 30 10 1.0 3.0 5.0
V=5 (p2 +iqa), (7) %

] ) ] FIG 1. Poincaré section for the spin degree of freedom
|7, —J) being the state with spist andJ, = —J, and|0)  (section with g, = 0.0 and p, > 0.0) in the resonant case
being the harmonic oscillator ground state. The full initial (e = wo = 1), energy E = 8.5, J = 9/2 in a nonintegrable
state|(0)) is evolved by the quantum Hamiltonian case G = 0.5andG’ = 0.2). The marks represent the various

choices for the center of the coherent states: filled circles for

G regular i.c. and filled triangles for chaotic i.c.
H=wata+ e, + —aly +a’J-) g g
V2J
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where the first term corresponds to the energy of th
free single-mode quantized field with frequeneyy,
described by the creation (annihilation) operatofs(a);
the second term corresponds to the energy of Nhe

2J atoms with energy separatioie (i = 1 hereafter).
The last two terms correspond to the interaction energ

+

(@ Ty + al_), @8) the quantum coherent states to be (_evolveql: i.c. belonging
to stable islands are marked as filled circles, whereas
éhe chaotic ones are marked by filled triangles. Figure 2
exhibits the corresponding curves of the exact calculation
of 8(¢). Note that the regular situation is dominated by
a single frequency at short times [see Fig. 2(a)]. The
chaotic situation reveals a comparatively much faster
increase in decoherence. We have observed moreover

between the atomic system with the single-mode field.h"’.1t these two aspects in_terpolgte smoothly'(F.ig. 3) in
The second interaction term is the one responsible fogomg_from I.c. hear pgrlod|c orbits to i.c. well inside the
the nonintegrability of the model. We then choose theChaotIC Sea, thus havmg no sharp border bgtv_veen chaos
atomic system as our subsystem of interest and analyze i@d regularity. The existence of a plateau is interesting

: . : d persists for much longer times (we have checked the
Sscgg'e(rg)r?ce process calculating the linear entropy glveggses shown in Fig. 3 up to~ 1000). We believe this

o be essentially related to the finiteness of the Hilbert

The classical Hamiltonian corresponding to Eqg. (8) ca ) .
P g a. (&) pace of the spin degree of freedom. In our calculation we

be written as a nonlinearly coupled 2 degrees of freedo

function [18] ave2J + 1 = 10 states. The initial state corresponds
w0, 5 ) e 5 ) to a coherent state given in Eq. (4), so that there is an
H(q1,p1,q2.p2) = > (p; +q3) + Y (pi + a7 occupation probability for all states, concentrated around
> > the center of the packet. As dynamics takes place, the
\/4J = (pi + q1) relative population of the various available states tends
—el Nz to the one with an equal probability on the average.

% (G e ) 9 Th.is conjecture_ is_ supported by the following r_1umerica|
+P1P2 -N4q2), (®)  evidence: As/ is increased. the value of(¢) attained at
whereG- = G * G'. the plateau increases accordingly.

In Fig. 1 we show a Poincaré section of the classical The main general aspects of decoherence and its
counterpart for the spin degree of freedom, defined byelation to chaotic behavior from this particular example
the sectiory, = 0 in the four-dimensional phase space soare the following: First, it is based on a quantity
that every time a trajectory pierces this section with>  (linear entropy) that can be measured in any composite
0 the corresponding poirty;, p;) is plotted. In this figure system; second, if there is an appropriate classical analog
we marked the initial conditions (i.c.) used as centers opresenting soft chaos we can think that semiclassically the
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FIG. 3. Transition from regular to chaotic i.c. for the same

parameters as in Fig. 2 with i.c. given by, = 0.0,p; =

—1.0,¢q> = 0.0, p, = 5.724 343) for the chaotic upper curve,

os | - ) . (g1 = 0.0, p; = —2.0,¢, = 0.0, p, = 6.084884) for the “in-

) A AN termediary” dotted curve, an¢y, = 0.0,p, = —3.577,¢> =

i b 0.0, p, = 5.221772) for the regular lower curve.
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than 1 degree of freedom (antiresonant term in the present

case) should enhance decoherence. Moreover, even for

a weak antiresonant term, an appropriate choice of the

amplitude and phase of the atomic coherent state guided

by the classical phase space chaos enables one to decrease

or enhance decoherence.

/ In conclusion, we have found distinguished behavior

. s s A ‘ . A for chaotic i.c. in an intrinsically quantum property. We

think that an adequate way of investigating the problem of

0.0
10 12 14 16 18 20
t . . . .
quantum chaos is by studying the dynamics of essentially

FIG. 2. Linear entropys() as a function of time in the quantum properties, of which the linear entropy (idempo-
tency defect) is only one example. The connection be-

tween quantum and classical domains is done by means
of the choice of coherent states, whose center is precisely
on a classical phase space point. The time evolution will
test the vicinities of this point. We believe that these
results are applicable to more general systems in semi-
classical regime corresponding to classical chaotic behav-
ior: namely, if we choose an initial state corresponding
to an integrable part of the phase space, the decoherence
rate is slower than the one corresponding to a chaotic re-
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resonant cases(= wo = 1), mean energyE = 8.5, J =
9/2 in a nonintegrable case witl = 0.5 and G’ = 0.2:
(@) Regular i.c. corresponding to the filled circles shown
in Fig. 1: (g, = 0.0, p; = 2.0,9, = 0.0, p, = 3.615516)
for the continuous line andg, = 0.0,p, = —3.577,¢q, =
0.0, p, = 5.221772) for the dashed Iline; (b) chaotic
i.c. corresponding to the filled triangles shown in Fig(d; =
—-4.0,p1 = 0.0,¢q, = 0.0, p, = 3.162278) for the fastest
increase,(q; = 0.0, p; = —1.0,q, = 0.0, p, = 5.724 343) for
_2.0, qr =

the next one (dashed line), arg, = 1.57,p, =
0.0, p» = 5.680464) for the slowest of them.
contributions for the wave packet from tori surrounding agion. This prediction has been put forth by Zurek and
regular i.c. involve always a limited well behaved regionPaz [4] in a very general context of a system coupled
in phase space, and as a consequence a limited numideran environment. They argue that in the weak dissipa-
of states are reached; whereas the nonperiodic chaotiion limit the rate of entropy increase is dictated by the
orbits surrounding a chaotic i.c. do spread over all thesensitivity to i.c. For a chaotic system the Wigner dis-
chaotic sea in phase space, thus involving a greatdribution associated with a phase space patch will be
number of states, and a dynamically faster entanglememxponentially stretched in the unstable directions corre-
between subsystems seems natural to occur. For largeponding to positive Lyapunov exponents, while there will
dimensionality the diffusion in the phase space is facili-be a lower bound for the squeezing in the stable direc-
tated because the KAM tori are no longer a restriction asions due to diffusion. By contrast for integrable sys-
in two-dimensional systems. A simple prediction fromtems this prediction changes qualitatively in the sense that
the present work is that the inclusion of nonintegrablethe stretching is only polynomial. The resulting increase
interaction in an integrable Hamiltonian system with moreof the initial patch volume for both cases will mean an
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