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Time-Dependent Thomas-Fermi Approach for Electron Dynamics in Metal Clusters
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We propose a time-dependent Thomas-Fermi approach to the (nonlinear) dynamics of many-
fermion systems. The approach relies on a hydrodynamical picture describing the system in terms
of collective flow. We investigate in particular an application to electron dynamics in metal clusters.
We make extensive comparisons with fully fledged quantal dynamical calculations and find overall
good agreement. The approach thus provides a reliable and inexpensive scheme to study the electronic
response of large metal clusters. [S0031-9007(98)06302-9]

PACS numbers: 36.40.Vz, 31.15.Bs

Time-dependent mean-field theories are a basic togdroblem. In that context, Kohn-Sham equations solved in
for describing the dynamics of many-fermion systemsreal time within the time-dependent local density approxi-
They are widely used in many fields of physics and formation (TDLDA) are an appropriate formalism [14,15].

a broad range of phenomena. The most detailed and aé TDTF description could possibly simplify those elabo-
vanced theory is the fully quantum mechanical mean-fieldate three-dimensional calculations for the purpose of
approach, often called the time-dependent Hartree-Fockxploratory studies. The static (extended) Thomas-Fermi
method, which was already proposed in the early days adipproach was indeed successfully used to compute the
guantum theory [1]. This requires, however, enormoustructure of large clusters, for molecular dynamics simu-
technical efforts when the systems grow large. One thukations [16], and to calculate multipole spectra via RPA
often switches to semiclassical approaches from which theum rules [17—20]. We investigate here an extension to
most widely used is probably the Vlasov equation; fornonlinear time-dependent phenomena.

a general introduction see [2], for a typical nuclear ap- The test cases employed here are modeled with a few
plication [3], and for recent applications to the electronfurther simplifying assumptions. During the short times
dynamics in metal clusters [4,5]. The Vlasov equation deof a few fs investigated here, ionic cores can be considered
scribes the dynamics of the one-body distribution functioras frozen. The excitation mechanism is then simply
f(r,p,t)in the full six-dimensional phase space and a reli-described by an instantaneous initial shift of the whole
able propagation is still a formidable task. Moreover, thereelectron cloud against the ionic background, which is a
can easily appear spurious side effects from an insufficiergeneric first guess for fast excitations [14]. This excitation
handling of the Pauli principle [6,7]. Simpler approachesprovokes a collective dipole oscillation and fast electron
are thus much more desirable. It is the aim of this Letteemission. We shall hence consider these quantities in
to present and to investigate such an approach, the timearious kinematic regimes.

dependent Thomas-Fermi (TDTF) method. It also offers The TDTF model—The essence and limitations of
a simple example of a time-dependent density functionathe TDTF approach can be best demonstrated in relation
theory based only on local density and current [8]. Theto the semiclassical, but more general, Vlasov approach.
validity of the approach depends, of course, on the parThe stationary ground state in both cases is the Thomas-
ticular physical circumstances. We discuss it here in thé&ermi ground state, where the momenta are isotropically
context of the electronic dynamics in metal clusters wherelistributed inside a sphere aroupd= 0 and with radius

we find that TDTF can provide a useful description of thethe local Fermi momentum. The-space distribution can
gross features of the dynamics. become much more complicated in a dynamical situation.

Electronic excitations in metal clusters, as connectedtill, the leading feature may remain a simple collective
with spectroscopic experiments, provide valuable insighflow with velocity field
into their structural and dynamical properties and have
since long been studied in the framework of linear re-
sponse theory [9]; for reviews, see [10,11]. Recently,
new experimental techniques have accessed the regime of
strong (nonlinear) electronic excitations, e.g., when probBut the local p distribution about the centeu(r) can
ing the cluster with intense laser beams [12] or in colli-develop any curious deformation. The basic hypothesis
sions with fast, highly charged ions [13]. They require aof TDTF is that the dynamical distortions jm space are
fully fledged treatment of electron dynamics, i.e., a non-quickly relaxing back to a local Fermi sphere centered
linearized approach to the time-dependent many electroaround the local hydrodynamic momentuau(r). This

_ [ r 3
u(r) = p(r)f 2 iep.)dp. 1)
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is the typical assumption underlying any hydrodynamicalparticles; it thus provides a measure of the numerical
model, namely, that the dynamics proceeds close to localoise in X(¢) and is sufficiently small for our purpose.
equilibrium. The relevance of this assumption can bdn much less than 1 fsX drifts towards its maximum
analyzed at the Vlasov level, in terms of the local stresvalue ~0.1-0.3, and continues to oscillate. These oscil-

tensor lations reflect the dominant plasmon dynamics, show up
PE with double plasmon frequency, and are slightly damped.
IL;j(r,1) = f —pf(r,p, t)pi/p;-, (2)  Altogether the stress tensor hence typically exhibits 10%—

’ m

20% of anisotropy. The assumption of spherically dis-
wherep’ = p — mu(r), which we disentangle into iso- tributed momenta therefore appears reasonable, which
tropic 1;;(r,7) = 1/3 Tr[TI(r,1)]5;; and anisotropic part suggests to use a (hydrodynamic) TDTF description for
A;j(r) = I1;;(r) — I;(r). The relative local anisotropy the gross features of electron dynamics in metal clusters.

is measured by the ratio To derive TDTF, we come back to the variational
formulation of Kohn-Sham equations
1) = A% [ el . 3
xe) ;;,/ a ) s [ anwlina, — wig) =0, (5)
Its density weighted average where |¢) is a Slater determinant built on the Kohn-
3 Sham orbitalsp; andH = T + U the LDA Hamiltonian.
X(1) = [ p@)x(r) d*r (4) Hydrodynamical equations for the density alone can be
[p@)d3r derived from (5) in the general time-dependent density-

3 ) functional theory formalism [8], but their practical use
[where p(r) = ff(r’P)d_ p] then provides a global yequires an approximate kinetic energy functional. It
estimate for the deformation of the Fermi sphere. We cagan pe obtained through the local transfotbu(r, 1) =
thus test the validity of the Thomas-Fermi approximationd)p(r 1) exr[iﬁ)((r 1)], where both¢? and y aré real.

by analyzing results from realistic Vlasov computations. e crycial approximation that one and the same velocity
_We consider the typical case of an electron cloud exgeneratoy is used for all wave functions; [21] compels

cited by an '.n't'al Sh!ﬂ W't.h respect to the lonic bac_:k- each of them to follow the collective flow with irrotational

ground and indulge in using the jellium approxmaﬂonvelocity u =Vy [22]. This probably underestimates

for the background [14]. Figure 1 shows the globalyisgination in collective modes, as discussed below. The
anisotropy X (¢) for three amplitudes from linearE( = kinetic energy, in turn, decouples as

1.2 eV) to nonlinear £* = 7.4 eV) excitations. We ob-
serve a finite initial value ok ~ 0.05, although the sys-
tem has been initialized in the Thomas-Fermi ground state
with isotropic momentum distribution. This offset is due
to the finite representation gf(r, p,#) by means of test

2
mpu
WITl) = WOITlY) + =25, (6)
wherey is the Slater determinant built on tige”s alone.

Because of the weak deformation of the Fermi sphere,
the local kinetic energy/°|T|4°) can be approximated at

the Thomas-Fermi level as

03 F
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density and neglects the discrete nature of one-body
levels. As analyzed in the next section, the relevance of
such an approximation depends on the dynamical regime.

Equation (5) then leads to the set of coupled TDTF
(hydrodynamic) equations:

J
L4V (pu) =0, (8)
Jat
9 SU 8T
00} : : . ‘ ) m—X+ﬂ(vX)2+5—U+5—=o. ©)
Time (fs) 9 2 P 0p

FIG. 1. Plot of the reduced parametar [see Eq. (3)] as For reasons of efficiency, we solve the coupled equa-

a function of time, for three different excitation energies tions (8) and (9) via an effective Schrodinger equation,
in Nag™*. using the Madelung transform [23]. This is achieved
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by packing the basic fieldp and y into one auxiliary TDTF approximation in that case. Note, however, that
wave function®(r,r) = /p(r,1) exdi%x(r, t)], which  the TDTF spectrum is slightly narrower. This reflects an

follows the nonlinear Schrodinger equation underestimated dissipation, as argued in the previous sec-
) o 2 A tion. The Vla_sov computation, on the ot_her hqnd_, overes-
in 2P g <6—U I _\/ﬁ>q) timates the width of the peak due to spurious dissipation in
2m op op 2m | /p the Vlasov dynamics [6,7]. The numbers of emitted elec-

(10)  tronsN. also compare fairly well, although TDTF some-

cauvalent o s, 9)and (9. Thisnoninear Sencngel LY, Tl bl e o e e
equation is solved in three dimensions using the powerfuﬁf her i han th di pEDA hiah
techniques developed for solving the electronic TDLDA igher in energy than the corresponding ighest oc-
problem [24]. cupied molecular orbital. The Vlasov result f¥g,. also .
First results—We are now going to compare the well appears reasonable, but strongly depends on the numeri-

established TDLDA results to those obtained within theCal parameters used to represent the phase-space distribu-
tion f(r,p,t) [6,7]. Altogether, systematic comparisons

at various excitation energies show that the TDTF model
provides a fair approximation to the exact TDDLA result.
We thus conclude that among the two semiclassical mod-
els considered here, TDTF performs the best.

The Na™ cluster is a particular case where the opti-
al spectrum shows a well isolated plasmon peak with
ittle Landau fragmentation. In order to have an essen-
tially different case, we consider electron excitation infNa
where the interplay between collective and individual mo-
tions is stronger [25]. This time, the ionic background is

background and initialized with an excitation energy Oftreate(_j by 'OC%' pse_udopoten_tials_, the ground state geome-
4.7 eV, namely, slightly beyond linear regime. For bothtY bellng obtained in the cyllndr_lcally averaged pseudo-
plotted quantities, we see a reasonable agreement betweRfiential scheme model [26]. Figure 3 shows the power

TDTE and TDLDA. which hints at the relevance of the SPectra corresponding to a shift along the longest cluster’s
’ axis, both in the linearK* = 2.6 eV) and in the nonlinear

(E* = 9.7 eV) regimes. In the linear case, the TDLDA

TDTF approximation.

The spectrum of dipole oscillations is evaluated by
recording the dipole momem(r) during time evolution
and Fourier transforming the total sampled signdbte ).
The dipole power spectrum is then obtained|B$w)|>.
The number of emitted electron$... is defined as the
number of electrons outside a spherical box of radiu
R; + 2rg (R; being jellium radius and-, Wigner-Seitz
radius), centered around the ionic center of mass.

Figure 2 show$D(w)|*> andN.(¢) predicted by TDTF,
TDLDA, and Vlasov simulations for N& with jellium
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FIG. 2. Dipole power spectrum (upper part) and number ofFIG. 3. Dipole power spectra in Mgain the linear (upper part)
emitted electrons (lower part) in hia as obtained by TDLDA, or nonlinear (lower part) regimes. The oscillatory motion is
TDTF, and Vlasov simulations faE* = 4.7 eV. performed along the longest axis of the cluster.
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spectrum shows a fragmented, double peak structure. TheIn this paper, we have demonstrated the capabilities of
TF approach, averaging out single particles levels, smoothEDTF for studying the fs dynamics of the electron cloud in
down the power distribution with respect to the TDLDA metal clusters as one typical example for many-fermion dy-
result and yields only one average plasmon peak. Noticenamics. The TDTF is a hydrodynamical approach which
also, that it fails to reproduce the particle-hole transition atlescribes the system solely in terms of collective flow.
3.6 eV. The nonlinear TDLDA spectrum, at the opposite,It manages to describe properly the gross features of a
hardly shows any structure. In this regime, the intrinsiccluster’'s electronic dynamics which is dominated by the
deficiencies of TDTF to reproduce Landau fragmentatiorcollective plasmon oscillations. Moreover, TDTF gives
are of little importance and the spectra obtained in the twalso a pertinent picture of electron emission. By construc-
methods become very similar. From these computationson, the TDTF method neglects any detailed particle-hole
in Nayy we conclude that TDTF can be reasonably trustedxcitations with the consequence that dissipation (from
where the high energy electron dynamics is concerned, dsandau fragmentation) is underestimated. This disease
could be expected for the semiclassical methods at highvill be cured in future versions of TDTF by adding a vis-
energy. cosity component into the underlying hydrodynamics. But
The above tests of the TDTF method have been caralready the present result is very encouraging showing that
ried out for relatively small clusters as these representDTF can be used with confidence to describe the gross
the most critical test conditions and as TDLDA calcula-features of electron dynamics. This will be particularly
tions are readily available. Semiclassical approaches ususeful for very large clusters where fully time-dependent
ally become more justified and efficient with increasingLDA calculations are not yet feasible.
system size [11]. To demonstrate the performance for The authors thank the French-German program
a larger cluster, we consider Nd with jellium back- PROCOPE (No. 95073) and Institut Universitaire de
ground as a test case and plot in Fig. 4 the dipole strengtiirance for financial support. F. Calvayrac is thanked for
S(w) = Im[D(w)] for small amplitude excitations [14] in enlightening discussions and for providing a version of
comparison with the experimental absorption cross sectiohis 3D-TDLDA code.
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