
VOLUME 80, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 22 JUNE 1998

France

5

Time-Dependent Thomas-Fermi Approach for Electron Dynamics in Metal Clusters
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We propose a time-dependent Thomas-Fermi approach to the (nonlinear) dynamics of many-
fermion systems. The approach relies on a hydrodynamical picture describing the system in terms
of collective flow. We investigate in particular an application to electron dynamics in metal clusters.
We make extensive comparisons with fully fledged quantal dynamical calculations and find overall
good agreement. The approach thus provides a reliable and inexpensive scheme to study the electronic
response of large metal clusters. [S0031-9007(98)06302-9]
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Time-dependent mean-field theories are a basic to
for describing the dynamics of many-fermion system
They are widely used in many fields of physics and fo
a broad range of phenomena. The most detailed and
vanced theory is the fully quantum mechanical mean-fie
approach, often called the time-dependent Hartree-Fo
method, which was already proposed in the early days
quantum theory [1]. This requires, however, enormou
technical efforts when the systems grow large. One th
often switches to semiclassical approaches from which t
most widely used is probably the Vlasov equation; fo
a general introduction see [2], for a typical nuclear ap
plication [3], and for recent applications to the electro
dynamics in metal clusters [4,5]. The Vlasov equation d
scribes the dynamics of the one-body distribution functio
fsr, p, td in the full six-dimensional phase space and a re
able propagation is still a formidable task. Moreover, the
can easily appear spurious side effects from an insufficie
handling of the Pauli principle [6,7]. Simpler approache
are thus much more desirable. It is the aim of this Lett
to present and to investigate such an approach, the tim
dependent Thomas-Fermi (TDTF) method. It also offe
a simple example of a time-dependent density function
theory based only on local density and current [8]. Th
validity of the approach depends, of course, on the pa
ticular physical circumstances. We discuss it here in t
context of the electronic dynamics in metal clusters whe
we find that TDTF can provide a useful description of th
gross features of the dynamics.

Electronic excitations in metal clusters, as connect
with spectroscopic experiments, provide valuable insig
into their structural and dynamical properties and hav
since long been studied in the framework of linear re
sponse theory [9]; for reviews, see [10,11]. Recentl
new experimental techniques have accessed the regim
strong (nonlinear) electronic excitations, e.g., when pro
ing the cluster with intense laser beams [12] or in coll
sions with fast, highly charged ions [13]. They require
fully fledged treatment of electron dynamics, i.e., a non
linearized approach to the time-dependent many electr
520 0031-9007y98y80(25)y5520(4)$15.00
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problem. In that context, Kohn-Sham equations solved
real time within the time-dependent local density approx
mation (TDLDA) are an appropriate formalism [14,15]
A TDTF description could possibly simplify those elabo
rate three-dimensional calculations for the purpose
exploratory studies. The static (extended) Thomas-Fer
approach was indeed successfully used to compute
structure of large clusters, for molecular dynamics simu
lations [16], and to calculate multipole spectra via RPA
sum rules [17–20]. We investigate here an extension
nonlinear time-dependent phenomena.

The test cases employed here are modeled with a f
further simplifying assumptions. During the short time
of a few fs investigated here, ionic cores can be consider
as frozen. The excitation mechanism is then simp
described by an instantaneous initial shift of the who
electron cloud against the ionic background, which is
generic first guess for fast excitations [14]. This excitatio
provokes a collective dipole oscillation and fast electro
emission. We shall hence consider these quantities
various kinematic regimes.

The TDTF model.—The essence and limitations of
the TDTF approach can be best demonstrated in relati
to the semiclassical, but more general, Vlasov approac
The stationary ground state in both cases is the Thom
Fermi ground state, where the momenta are isotropica
distributed inside a sphere aroundp ­ 0 and with radius
the local Fermi momentum. Thep-space distribution can
become much more complicated in a dynamical situatio
Still, the leading feature may remain a simple collectiv
flow with velocity field

usrd ­
1

rsrd

Z p
m

fsr, p, td d3p . (1)

But the local p distribution about the centerusrd can
develop any curious deformation. The basic hypothes
of TDTF is that the dynamical distortions inp space are
quickly relaxing back to a local Fermi sphere centere
around the local hydrodynamic momentummusrd. This
© 1998 The American Physical Society
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is the typical assumption underlying any hydrodynamic
model, namely, that the dynamics proceeds close to lo
equilibrium. The relevance of this assumption can b
analyzed at the Vlasov level, in terms of the local stre
tensor

Pijsr, td ­
Z d3p

m
fsr, p, tdp 0

i p
0
j , (2)

wherep0 ­ p 2 musrd, which we disentangle into iso-
tropic Iijsr, td ­ 1y3 TrfPsr, tdgdij and anisotropic part
Aijsrd ­ Pijsrd 2 Iijsrd. The relative local anisotropy
is measured by the ratio

xsr, td ­
sX

i#j

A2
ij

,
6I11 . (3)

Its density weighted average

Xstd ­

R
rsrdxsrd d3rR

rsrd d3r
(4)

[where rsrd ­
R

fsr, pd d3p] then provides a global
estimate for the deformation of the Fermi sphere. We c
thus test the validity of the Thomas-Fermi approximatio
by analyzing results from realistic Vlasov computations.

We consider the typical case of an electron cloud e
cited by an initial shift with respect to the ionic back
ground and indulge in using the jellium approximatio
for the background [14]. Figure 1 shows the globa
anisotropyXstd for three amplitudes from linear (Ep ­
1.2 eV) to nonlinear (Ep ­ 7.4 eV) excitations. We ob-
serve a finite initial value ofX , 0.05, although the sys-
tem has been initialized in the Thomas-Fermi ground sta
with isotropic momentum distribution. This offset is due
to the finite representation offsr, p, td by means of test
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FIG. 1. Plot of the reduced parameterX [see Eq. (3)] as
a function of time, for three different excitation energie
in Na9
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particles; it thus provides a measure of the numerica
noise in Xstd and is sufficiently small for our purpose.
In much less than 1 fs,X drifts towards its maximum
value,0.1 0.3, and continues to oscillate. These oscil-
lations reflect the dominant plasmon dynamics, show u
with double plasmon frequency, and are slightly damped
Altogether the stress tensor hence typically exhibits 10%
20% of anisotropy. The assumption of spherically dis
tributed momenta therefore appears reasonable, whi
suggests to use a (hydrodynamic) TDTF description fo
the gross features of electron dynamics in metal clusters

To derive TDTF, we come back to the variational
formulation of Kohn-Sham equations

d
Z

dtkcjih̄≠t 2 Hjcl ­ 0 , (5)

where jcl is a Slater determinant built on the Kohn-
Sham orbitalsfi andH ­ T 1 U the LDA Hamiltonian.
Hydrodynamical equations for the density alone can b
derived from (5) in the general time-dependent density
functional theory formalism [8], but their practical use
requires an approximate kinetic energy functional. I
can be obtained through the local transformfisr, td ­
f

0
i sr, td expfi h̄

m xsr, tdg, where bothf
0
i and x are real.

The crucial approximation that one and the same velocit
generatorx is used for all wave functionsfi [21] compels
each of them to follow the collective flow with irrotational
velocity u ­ =x [22]. This probably underestimates
dissipation in collective modes, as discussed below. Th
kinetic energy, in turn, decouples as

kcjT jcl ­ kc0jT jc0l 1
mru2

2
, (6)

wherec0 is the Slater determinant built on thef
0
i ’s alone.

Because of the weak deformation of the Fermi sphere
the local kinetic energykc0jT̂ jc0l can be approximated at
the Thomas-Fermi level as

T frg ­ s3p2d2y3
Z 3h̄2

10m
rsr, td5y3d3r . (7)

This semiclassical expression relies on a continuous lev
density and neglects the discrete nature of one-bod
levels. As analyzed in the next section, the relevance o
such an approximation depends on the dynamical regim

Equation (5) then leads to the set of coupled TDTF
(hydrodynamic) equations:

≠r

≠t
1 = ? srud ­ 0 , (8)

m
≠x

≠t
1

m
2

s=xd2 1
dU
dr

1
dT
dr

­ 0 . (9)

For reasons of efficiency, we solve the coupled equa
tions (8) and (9) via an effective Schrödinger equation
using the Madelung transform [23]. This is achieved
5521
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by packing the basic fieldsr and x into one auxiliary
wave functionFsr, td ­

p
rsr, td expfi h̄

m xsr, tdg, which
follows the nonlinear Schrödinger equation

ih̄
≠F

≠t
­ 2

h̄2

2m
DF 1

µ
dU
dr

1
dT0

dr
1

h̄2

2m

D
p

r
p

r

∂
F

(10)

equivalent to Eqs. (8) and (9). This nonlinear Schröding
equation is solved in three dimensions using the power
techniques developed for solving the electronic TDLD
problem [24].

First results.—We are now going to compare the we
established TDLDA results to those obtained within th
TDTF approximation.

The spectrum of dipole oscillations is evaluated b
recording the dipole momentDstd during time evolution
and Fourier transforming the total sampled signal toDsvd.
The dipole power spectrum is then obtained asjDsvdj2.
The number of emitted electronsNesc is defined as the
number of electrons outside a spherical box of radi
RJ 1 2rs (RJ being jellium radius andrs Wigner-Seitz
radius), centered around the ionic center of mass.

Figure 2 showsjDsvdj2 andNescstd predicted by TDTF,
TDLDA, and Vlasov simulations for Na91 with jellium
background and initialized with an excitation energy
4.7 eV, namely, slightly beyond linear regime. For bo
plotted quantities, we see a reasonable agreement betw
TDTF and TDLDA, which hints at the relevance of th
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FIG. 2. Dipole power spectrum (upper part) and number
emitted electrons (lower part) in Na9

1 as obtained by TDLDA,
TDTF, and Vlasov simulations forEp ­ 4.7 eV.
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TDTF approximation in that case. Note, however, tha
the TDTF spectrum is slightly narrower. This reflects an
underestimated dissipation, as argued in the previous se
tion. The Vlasov computation, on the other hand, overe
timates the width of the peak due to spurious dissipation
the Vlasov dynamics [6,7]. The numbers of emitted elec
tronsNesc also compare fairly well, although TDTF some-
what overestimatesNesc. This is probably due to the fact
that the Fermi level obtained in the TF approximation lie
higher in energy than the corresponding LDA highest oc
cupied molecular orbital. The Vlasov result forNesc also
appears reasonable, but strongly depends on the nume
cal parameters used to represent the phase-space distr
tion fsr, p, td [6,7]. Altogether, systematic comparisons
at various excitation energies show that the TDTF mode
provides a fair approximation to the exact TDDLA result
We thus conclude that among the two semiclassical mo
els considered here, TDTF performs the best.

The Na91 cluster is a particular case where the opti
cal spectrum shows a well isolated plasmon peak wit
little Landau fragmentation. In order to have an essen
tially different case, we consider electron excitation in Na20

where the interplay between collective and individual mo
tions is stronger [25]. This time, the ionic background is
treated by local pseudopotentials, the ground state geom
try being obtained in the cylindrically averaged pseudo
potential scheme model [26]. Figure 3 shows the powe
spectra corresponding to a shift along the longest cluster
axis, both in the linear (Ep ­ 2.6 eV) and in the nonlinear
(Ep ­ 9.7 eV) regimes. In the linear case, the TDLDA
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FIG. 3. Dipole power spectra in Na20 in the linear (upper part)
or nonlinear (lower part) regimes. The oscillatory motion is
performed along the longest axis of the cluster.
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spectrum shows a fragmented, double peak structure. T
TF approach, averaging out single particles levels, smoo
down the power distribution with respect to the TDLDA
result and yields only one average plasmon peak. Noti
also, that it fails to reproduce the particle-hole transition
3.6 eV. The nonlinear TDLDA spectrum, at the opposite
hardly shows any structure. In this regime, the intrins
deficiencies of TDTF to reproduce Landau fragmentatio
are of little importance and the spectra obtained in the tw
methods become very similar. From these computatio
in Na20 we conclude that TDTF can be reasonably truste
where the high energy electron dynamics is concerned,
could be expected for the semiclassical methods at hi
energy.

The above tests of the TDTF method have been ca
ried out for relatively small clusters as these represe
the most critical test conditions and as TDLDA calcula
tions are readily available. Semiclassical approaches u
ally become more justified and efficient with increasin
system size [11]. To demonstrate the performance f
a larger cluster, we consider Na93

1 with jellium back-
ground as a test case and plot in Fig. 4 the dipole stren
Ssvd ­ ImfDsvdg for small amplitude excitations [14] in
comparison with the experimental absorption cross secti
[27] and with quantal RPA results [28]. As in [28], the
spectrum has been convoluted with a Lorentzian profi
with width 0.1vplasmon, which simulates the inhomoge-
neous line broadening by ionic vibrations. We see aga
that TDTF provides the appropriate average peak po
tion but misses, of course, the substantial Landau fra
mentation. The deficiency to miss Landau fragmentatio
thus naturally persists also for large clusters. The fu
TDLDA results converge, nonetheless, towards the TDT
picture with increasing system size because the fragme
tation structure will be more and more washed out su
that the spectra resemble more to one pronounced pe
The width of the peak, however, remains always undere
timated by TDTF. But this feature can be corrected in
further step by complementing TDTF with a friction term

FIG. 4. TDTF strength function in Na93
1 (dashed line) as

compared to experiment ([27], error bars) and RPA ([28], fu
line).
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In this paper, we have demonstrated the capabilities
TDTF for studying the fs dynamics of the electron cloud i
metal clusters as one typical example for many-fermion d
namics. The TDTF is a hydrodynamical approach whic
describes the system solely in terms of collective flow
It manages to describe properly the gross features o
cluster’s electronic dynamics which is dominated by th
collective plasmon oscillations. Moreover, TDTF give
also a pertinent picture of electron emission. By constru
tion, the TDTF method neglects any detailed particle-ho
excitations with the consequence that dissipation (fro
Landau fragmentation) is underestimated. This disea
will be cured in future versions of TDTF by adding a vis
cosity component into the underlying hydrodynamics. Bu
already the present result is very encouraging showing th
TDTF can be used with confidence to describe the gro
features of electron dynamics. This will be particularly
useful for very large clusters where fully time-dependen
LDA calculations are not yet feasible.
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