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Phase Transitions in Rotating Neutron Stars
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As rotating neutron stars slow down, the pressure and the density in the core region increase due to
the decreasing centrifugal forces and phase transitions may occur in the center. We extract the analytic
behavior near the critical angular velocify,, where the phase transitions occur in the center of a
neutron star, and calculate the moment of inertia, angular velocity, rate of slow down, braking index,
etc. For a first order phase transition these quantities have a characteristic behavior, e.g., the braking
index diverges as~(Q, — Q)~'/2. Observational consequences for first, second, and other phase
transitions are discussed. [S0031-9007(98)06463-1]

PACS numbers: 97.60.Jd, 12.38.Mh, 26.60.+c, 97.60.Gb

The physical state of matter in the interiors of neu-GM /R = 10% for neutron stars of masd = 1.4M.
tron stars at densities above a few times normal nuclearhe extracted analytical properties of a rotating star are
matter densities is essentially unknown. Interesting phasinen checked below by actually solving Hartle’s equations
transitions in nuclear matter to quark matter [1], mixednumerically for a realistic equation of state.
phases of quark and nuclear matter [2,3], kaon [4] or The simple Newtonian equation of motion expresses
pion condensates [5,6], neutron and proton superfluiditghe balance between the pressure gradient and the grav-
[7], hyperonic matter [1,2], crystalline nuclear matter [5], itational and centrifugal forces
magnetized matter, etc., have been considered. Recently, .
GIe%denninget al. [8] considered rapidly rotating neutron g VP = =p(VV + Q@ X Q Xr). (1)
stars and what happens as they slow down when the détere,V(r) is the gravitational potential for the deformed
creasing centrifugal force leads to increasing core presstar andp the energy(~mas$ density. We assume
sures. They find that a drastic softening of the equatiothat friction in the (nonsuperfluid) matter ensures that
of state, e.g., by a phase transition to quark matter, cathe star is uniformly rotating. Since cold neutron stars
lead to a sudden contraction of the neutron star at a criticare barotropes, i.e., the pressure is a function of density,
angular velocity and shows up in a backbending momenthe pressure, density, and effective gravitational potential,
of inertia as a function of frequency. Here we considerand =V — %(Q X r)?, are all constants on theame
other interesting phenomenon, namely, how the star andsobaric surfaces for a uniformly rotating star [9]. We
in particular, its moment of inertia behave near the criti-denote these surfaces by the effective radiusnd for
cal angular velocity where the core pressure just exceedsowly rotating stars it is related to the distanc&om the
that needed to make a phase transition. We calculate theenter and the polar angiefrom the rotation axis along
moment of inertia, angular velocities, braking index, etc.Q by [9]
near the critical angular velocity and discuss observational .
consequences for first and second order phase transitions. r(a,0) = a[l — e(a)P,(cost)], (2)

The general relativistic equations for slowly rotating where P,(cos#) is the second Legendre polynomial
stars were described by Hartle [9]. We shall also make thand e(a) is the deformation of the star from spherical
standard approximation of slowly rotating stars, i.e., thesymmetry.

rotational angular velocity i> << GM /R?. For neutron Inserting Eqg. (2) into Eq. (1), one obtains for small de-
stars with mas3/ = 1.4M, and radiusR ~ 10 km their ~ formations [9] thel = 0 Newtonian hydrostatic equation
period should thus be larger than a few milliseconds, a 1 dP m(a) 2

fact which applies to all measured pulsars so far. Hartle’s ; 20 - 6 + 3 0%a, 3

equations are quite elaborate to solve as they consist
of six coupled differential equations as compared to thevherem(a) = 4w [ p(a’)a"*da’ is the mass contained
single Tolman-Oppenheimer-Volkoff equation [10] in the inside the mean radius The factor 23 in the centrifugal
nonrotating case. In order to be able to analyticallyforce arises because it only acts in two of the three
extract the qualitative behavior near the critical anguladirections. The equatiofi = 2) for the deformatiore(a)
velocity )y, where a phase transition occurs in the centeris given in, e.g., Ref. [11]. The deformation generally
we will first solve the Newtonian equations for a simpleincreases with decreasing density, i.e., the star is more
equation of state. This will allow us to make generaldeformed in its outer layers.

predictions on properties of rotating neutrons stars when In order to discuss the qualitative behavior near critical
phase transitions occur in the interior of a star. Theangular velocities we first consider a simple equation of
corrections from general relativity are typically of order state (EOS) with phase transitions for which Eq. (3) can
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be solved analytically, namely, that of two incompressibleis proportional toR; « (w3 — w)*? near the critical
fluids with a first order phase transition between energyangular velocity. Consequently, the derivativé/d w?
densityp; andp, (p; < p») coexisting at a pressui®,.  displays the same nonanalytic square root dependence as
The mass functiom:(a) is very simple in the Newtonian R, [see Eg. (8)].
limit and the boundary conditiom(R) = M relates the Latent heat is generated in the phase transition and
star radiusk to the radius of the dense coRg as can be ignored because of rapid neutrino cooling which
_ 02 X 1/3 will be even faster than in supernova explosions. Thus
R = [R‘ - <— - 1>R()} , (4)  temperatures will drop below1 MeV in seconds. Such
_ Pt temperatures are negligible compared to typical Fermi
where R = (3M /4w p;)'/3 is the star radius in the ab- energies of nucleons or quarks and the time scales are
sence of a dense core. Solving Eq. (3) gives the pressuiglso much smaller than.
Let us subsequently consider a more realistic EOS for
) dense nuclear matter at high densities such as the Bethe-
Johnson EOS [12]. At high densities it can be approxi-
+ dm GR2(py — p1)p1<1 - &>, (5) mated by a polytropic relation between the pressure and
3 a energy density: P = K, p%3*, wherek; = 0.021py *
for Ry = a = R. The boundary condition at the surface and p, = m,,0.15 fm~3 is normal nuclear matter mass

1 4ar 2
P(a) = Py + 5(133 - 02)171(7 Gp1 — gﬂz

P(R) = 0in Eq. (5) gives density. As we are only interested in the dense core we
5 02 will for simplicity employ this Bethe-Johnson polytrope
w- = 27Gp (BJP) EOS. The central density of a nonrotatingM4

) mass neutron star with the BJP-3.4p,. Furthermore,
=1 [i Po + <& — 1)&(1 _ RO/R)} we assume that a first order phase transition occurs at
47 GpiR? P1 R? density p; = 3.2po to a high density phase of density
X (1 — R2/RY)". 6) P2 = 4po with a similar polytropic EOSP = Kyp>*,
B ) From the Maxwell construction the pressure is the same
The phase transition occurs right at the center when; ihe interface?, which determinek> = K;(p1/p2)>>*.

Ry = 0 corresponding to theeritical angular velocity e now generalize Eq. (3) by including effects of general

Qo = wo/2mGpy, where relativity. From Einstein’s field equations for the metric
PoR we obtain from the = 0 part
of =1-250 ) P
3
Generally, for any EOS the critical angular velocity L _dP _ —GM + Eﬂza’ (10)
depends oy, M, andp, but not onp,. p+ Pda a*(1 = 2Gm/a) 3

For angular velocities just below, very little of the

— a NA2 4, H
high density phase exists amth < R. Expanding (6) where m(a) = 4 f‘) plaa”da’. In the centrifugal

force term we have ignored frame dragging and other

we obtain corrections of orde)2GM /R ~ 0.102 for simplicity
Ro 02 — w? and beqause they have only minor effects in our case. By
T — . (8) expanding the pressure, mass function, and gravitational
2p2/p1 = 1 = w5 potential in the difference between the rotating and

For o = wo the dense phase disappears dd= 0. nonrotating case, Eq. (10) reduces to the: 0 part of
Generally, one can interpret, as an order parameter Hartle’'s equations [cf. Eg. (100) in [9]]. Note also that
in analogy to, e.g., magnetization, the BCS gap, or thedartle’s full equations cannot be used in our case because
Higgs field in the standard model, however, as a functiorthe first order phase transition causes discontinuities in

of angular velocity instead of temperature. densities so that changes are not small locally. This

The corresponding moment of inertia is B < R, shows up, for example, in the divergent thermodynamic
4 2 derivativedp /dP.

1= ?[szS + pi(R° — RS)]<1 + §6> The rotating version of the Tolman-Oppenheimer-

3 Volkoff equation (10) is now solved for a rotating neutron
_ EMRZ[I B i(& B 1)&“1 s wz) (9) Star of mass¥ = 1.4M with the BJP EOS, including
5 P1 R3 2 ’ a first order phase transition. In Fig. 1 we show the
where we used the deformatien= (5/4)w? in the low ceqtral density,_ moment pf inertia, braking index, star
density phase [11]. However, for the qualitative behaviof@dius, and radius of the interfa¢®) as a function of
near(), only the contraction of the star radi@swith the the scaled angular velocity. It is important to note that

appearance of the dense cakg is important, whereas Rj « \/(23 — Q2 for angular velocities just below the
the deformations can be ignored. The contraction igritical valueQy. The qualitative behavior of the neutron
responsible for the term in the moment of inertia andstar with the BJP EOS and a first order phase transition

5486



VOLUME 80, NUMBER 25 PHYSICAL REVIEW LETTERS 22 UNE 1998

5.0 " T . With the moment of inertia given by Eq. (11)the angular
R R velocity will then decrease with time as
20 i | O cor! 02 02
: —=- (didd)I —=——(l—-c1—5 —cnl—-——
—= n(o) Q Iy % 02
30 feme.  ONC T d 1 to >2/(”_1)
___________ = |1 - 1/1—— + ...,
(n— 1)t |: 2 <t
20 | (13)
for t = ty,. Here, the time after formation of the pulsar,
using Eq. (12), is related to the angular velocity ras
L S0 W 10(Qo/Q)" !, andry = Ip/[(n — NCQG ™' Jforn > 1is
the critical time where a phase transition occurs in the
00 ) ) ) center. For earlier times= r, there is no dense core and
0.00 0.05 , 010 0.15 Eq. (13) applies when setting = 0 The critical angular
® velocity is Qg = wo/27p; = 6 kHz for the BJP EOS,

FIG. 1. Central density (in units gb,), radii of the neutron I-€., comparable to a millisecond binary pulsar. Applying
star R and its dense cor®,, moment of inertia, its derivative these numbers to, for example, the Crab pulsar we find
I'/I = dI/dw?/I, and the braking index are shown as athat it would have been spinning with critical angular

function of the scaled angular velocity’ = O°/27Gpi. The  yelocity approximately a decade after the Crab supernova
rotating neutron star has makgM, and a Bethe-Johnson-like explosion, i.e..;y ~ 10 years for the Crab. Generally

polytropic equation of state with a first order phase transition I ) .
taking place at density; = 3.2p, t0 p, = 4p,. to « Qo " and the time scale for the transients(h as

given by Eq. (13) may be months or centuries. In any

case it would not require continuous monitoring which
is the same as for our simple analytic example of twovould help a dedicated observational program.
incompressible fluids examined above. Generally, it is The braking index depends on the second derivative
the finite density difference between the phases that i§' = d/d*Q of the moment of inertia and thus diverges
important and leads to a term in the moment of inertia(See Fig. 1) ag) approaches), from below

proportional to(Q — Q2)¥2 as in Eq. (9). n(Q) = a0 e 02 . 0404
The moment of inertia increases with angular velocity. 52 "2 2T ———
Generally, for a first order phase transition we find for 0 0 V1 - 02/Q4
Q = Q [see also Eq. (9) and Fig. 1], (14)
1 02 ) 02\3/2 For Q = O the term with¢, is absent. Theobserva-
I = 10[1 + S5 — —cz<1 — —2> + } tional braking indexn(€2) should be distinguished from
2 W 3 Q9 the theoretical exponentrn appearing in Eq. (12). Al-

(11)  though the results in Egs. (13) and (14) were derived

For the two incompressible fluids with momentum of for the pulsar slowdown assumed in Eq. (12), béth
inertia given by Eq. (9), the small expansion parameter&ndz(€2) will generally display the/z = 7, behavior for
arec; = wi andes = (5/2)walpa/pr — 1)/2pa/p1 — 1= 1o as long as the rotational energy loss is a smooth
1 — @232 for Q > Q, the ¢, term is absent. For function of (0. The singular behavior will, however, be

the BJP we find from Fig. 1 that, = 0.07 = 2.2w;. smeared on the pulsar glitch “healing” time which in the

Generally, we find that the coefficient is proportional to ~ C@S€ of the Crab pulsar is of order of weeks only.

the density difference between the two coexisting phases We now discuss possible phase transitions in |nter|ors
and to the critical angular velocity to the third power, Of Neutron stars. The quark and nuclear matter mixed
¢y ~ (pa/p1 — 1ws. The scaled critical angular velocity phase described in [2] has continuous pressures and

 can at most reach unity for submillisecond pulsars. densities. There are no first order phase transitions but,

To make contact with observation we consider the®t MOSt, two second order phase transitions, namely, at a
ensity, where quark matter first appears in nuclear

temporal behavior of angular velocities of pulsars. The®Wer d J Hah density (if ationall
pulsars slow down at a rate given by the loss of rotationainatter, and at a very high density (i gravitationally
energy which we shall assume is proportional to thestable), where all nucleons are finally d'SSO|.V.ed Into
rotational angular velocity to some power (for dip0|equark matter. In second order phase transitions the

radiationn = 3) pressure is a continuous function of density and we find
a continuous braking index. This mixed phase does not,
da(1 02) = —conrt! 12 however, include local surface and Coulomb energies of
I = . (12) )
dt\2 the quark and nuclear matter structures. As shown in
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[3,13] there can be an appreciable surface and Coulomb, = Qo//27Gp; such that c; ~ (p2/p1 — g
energy associated with forming these structures and, iThe observational consequences depend very much on
the interface tension between quark and nuclear matter ibe critical angular velocity),, which depends on the
too large, the mixed phase is not favored energeticallyequation of state employed, at which density the phase
The neutron star will then have a core of pure quarkransition occurs, and the mass of the neutron star. By
matter with a mantle of nuclear matter surrounding itstudying a range of angular velocities for a sample of
and the two phases are coexisting by a first order phasdifferent star masses the chance for encountering a critical
transition. For a small or moderate interface tensiorangular velocity increases. We encourage a dedicated
the quarks are confined in droplet, rodlike and platelikesearch for the characteristic transients discussed above.
structures [3,13] as found in the inner crust of neutrorEventually, one may be able to cover the full range of
stars [14]. Because of the finite Coulomb and surfaceentral densities and find all first order phase transitions
energies associated with forming these structures, thep to a certain size determined by the experimental
transitions change from second order to first order at eackesolution. Since the size of the signal scales
topological change in structure. If a kaon condensat¢he transition may be best observed in rapidly rotating
appears it may also have such structures [15]. Piopulsars such as binary pulsars or pulsars recently formed
condensates [5], crystalline nuclear matter [6], hyperonién supernova explosion and which are rapidly slowing
or magnetized matter, etc. may provide other first ordedown. Carefully monitoring such pulsars may reveal the
phase transitions. characteristic behavior of the angular velocity or braking
There may also be other transitions in neutron starsndex, as described above, which is a signal of a first
The glitches observed in the Crab, Vela, and a few otheorder phase transition in dense matter.
pulsars are probably due to quakes occurring in solid We thank Gordon Baym, Larry McLerran, Ben Mottel-
structures such as the crust, superfluid vortices or possiblgon, and Chris Pethick for valuable comments.
the quark matter lattice in the core [13]. These glitches
are very smalAQ/Q ~ 1078 and have a characteristic
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backbending moment of inertia as a function of frequency. 241 (1976); G.F. Chapline and M. Nauenberg, Nature
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