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Phase Transitions in Rotating Neutron Stars
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As rotating neutron stars slow down, the pressure and the density in the core region increase
the decreasing centrifugal forces and phase transitions may occur in the center. We extract the a
behavior near the critical angular velocityV0, where the phase transitions occur in the center of
neutron star, and calculate the moment of inertia, angular velocity, rate of slow down, braking in
etc. For a first order phase transition these quantities have a characteristic behavior, e.g., the b
index diverges as,sV0 2 Vd21y2. Observational consequences for first, second, and other ph
transitions are discussed. [S0031-9007(98)06463-1]

PACS numbers: 97.60.Jd, 12.38.Mh, 26.60.+c, 97.60.Gb
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The physical state of matter in the interiors of neu
tron stars at densities above a few times normal nucle
matter densities is essentially unknown. Interesting pha
transitions in nuclear matter to quark matter [1], mixe
phases of quark and nuclear matter [2,3], kaon [4]
pion condensates [5,6], neutron and proton superfluid
[7], hyperonic matter [1,2], crystalline nuclear matter [5
magnetized matter, etc., have been considered. Recen
Glendenninget al. [8] considered rapidly rotating neutron
stars and what happens as they slow down when the
creasing centrifugal force leads to increasing core pre
sures. They find that a drastic softening of the equati
of state, e.g., by a phase transition to quark matter, c
lead to a sudden contraction of the neutron star at a criti
angular velocity and shows up in a backbending mome
of inertia as a function of frequency. Here we consider a
other interesting phenomenon, namely, how the star a
in particular, its moment of inertia behave near the cri
cal angular velocity where the core pressure just excee
that needed to make a phase transition. We calculate
moment of inertia, angular velocities, braking index, etc
near the critical angular velocity and discuss observation
consequences for first and second order phase transitio

The general relativistic equations for slowly rotatin
stars were described by Hartle [9]. We shall also make t
standard approximation of slowly rotating stars, i.e., th
rotational angular velocity isV2 ø GMyR3. For neutron
stars with massM  1.4MØ and radiusR , 10 km their
period should thus be larger than a few milliseconds,
fact which applies to all measured pulsars so far. Hartle
equations are quite elaborate to solve as they con
of six coupled differential equations as compared to t
single Tolman-Oppenheimer-Volkoff equation [10] in th
nonrotating case. In order to be able to analytical
extract the qualitative behavior near the critical angul
velocity V0, where a phase transition occurs in the cente
we will first solve the Newtonian equations for a simpl
equation of state. This will allow us to make gener
predictions on properties of rotating neutrons stars wh
phase transitions occur in the interior of a star. Th
corrections from general relativity are typically of orde
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GMyR . 10% for neutron stars of massM . 1.4MØ.
The extracted analytical properties of a rotating star a
then checked below by actually solving Hartle’s equation
numerically for a realistic equation of state.

The simple Newtonian equation of motion expresse
the balance between the pressure gradient and the gr
itational and centrifugal forces

=P  2rs=V 1 V 3 V 3 rd . (1)

Here,V srd is the gravitational potential for the deformed
star and r the energys,massd density. We assume
that friction in the (nonsuperfluid) matter ensures tha
the star is uniformly rotating. Since cold neutron star
are barotropes, i.e., the pressure is a function of densi
the pressure, density, and effective gravitational potenti
F  V 2

1
2 sV 3 rd2, are all constants on thesame

isobaric surfaces for a uniformly rotating star [9]. We
denote these surfaces by the effective radiusa, and for
slowly rotating stars it is related to the distancer from the
center and the polar angleu from the rotation axis along
V by [9]

rsa, ud  af1 2 esadP2scosudg , (2)

where P2scosud is the second Legendre polynomia
and esad is the deformation of the star from spherica
symmetry.

Inserting Eq. (2) into Eq. (1), one obtains for small de
formations [9] thel  0 Newtonian hydrostatic equation

1
r

dP
da

 2G
msad

a2
1

2
3

V2a , (3)

wheremsad  4p
Ra

0 rsa0da02da0 is the mass contained
inside the mean radiusa. The factor 2y3 in the centrifugal
force arises because it only acts in two of the thre
directions. The equationsl  2d for the deformationesad
is given in, e.g., Ref. [11]. The deformation generall
increases with decreasing density, i.e., the star is mo
deformed in its outer layers.

In order to discuss the qualitative behavior near critic
angular velocities we first consider a simple equation
state (EOS) with phase transitions for which Eq. (3) ca
© 1998 The American Physical Society 5485
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be solved analytically, namely, that of two incompressib
fluids with a first order phase transition between energ
densityr1 andr2 sr1 , r2d coexisting at a pressureP0.
The mass functionmsad is very simple in the Newtonian
limit and the boundary conditionmsRd  M relates the
star radiusR to the radius of the dense coreR0 as

R 

∑
R̄3 2

µ
r2

r1
2 1

∂
R3

0

∏1y3

, (4)

where R̄  s3My4pr1d1y3 is the star radius in the ab-
sence of a dense core. Solving Eq. (3) gives the pressu

Psad  P0 1
1
2

sR2
0 2 a2dr1

µ
4p

3
Gr1 2

2
3

V2

∂
1

4p

3
GR2

0 sr2 2 r1dr1

µ
1 2

R0

a

∂
, (5)

for R0 # a # R. The boundary condition at the surface
PsRd  0 in Eq. (5) gives

v2 ;
V2

2pGr1

 1 2 2

∑
3

4p

P0

Gr
2
1R2

1

µ
r2

r1
2 1

∂
R2

0

R2 s1 2 R0yRd
∏

3 s1 2 R2
0yR2d21. (6)

The phase transition occurs right at the center whe
R0  0 corresponding to thecritical angular velocity
V0  v0

p
2pGr1, where

v2
0  1 2 2

P0R̄
GM

. (7)

Generally, for any EOS the critical angular velocity
depends onP0, M, andr1 but not onr2.

For angular velocities just belowv0 very little of the
high density phase exists andR0 ø R. Expanding (6)
we obtain

R0

R̄
.

vuut v
2
0 2 v2

2r2yr1 2 1 2 v
2
0

. (8)

For v $ v0 the dense phase disappears andR0  0.
Generally, one can interpretR0 as an order parameter
in analogy to, e.g., magnetization, the BCS gap, or th
Higgs field in the standard model, however, as a functio
of angular velocity instead of temperature.

The corresponding moment of inertia is forR0 ø R,

I 
4p

5
fr2R5

0 1 r1sR5 2 R5
0 dg

µ
1 1

2
5

e

∂
.

2
5

MR̄2

∑
1 2

5
3

µ
r2

r1
2 1

∂
R3

0

R̄3

∏ µ
1 1

1
2

v2

∂
, (9)

where we used the deformatione  s5y4dv2 in the low
density phase [11]. However, for the qualitative behavio
nearV0 only the contraction of the star radiusR with the
appearance of the dense coreR0 is important, whereas
the deformations can be ignored. The contraction
responsible for the term in the moment of inertia an
5486
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is proportional to R3
0 ~ sv2

0 2 vd3y2 near the critical
angular velocity. Consequently, the derivativedIydv2

displays the same nonanalytic square root dependence
R0 [see Eq. (8)].

Latent heat is generated in the phase transition a
can be ignored because of rapid neutrino cooling whic
will be even faster than in supernova explosions. Thu
temperatures will drop below,1 MeV in seconds. Such
temperatures are negligible compared to typical Ferm
energies of nucleons or quarks and the time scales a
also much smaller thant0.

Let us subsequently consider a more realistic EOS f
dense nuclear matter at high densities such as the Bet
Johnson EOS [12]. At high densities it can be approx
mated by a polytropic relation between the pressure a
energy density: P  K1r2.54, whereK1  0.021r

21.54
0

and r0  mn0.15 fm23 is normal nuclear matter mass
density. As we are only interested in the dense core w
will for simplicity employ this Bethe-Johnson polytrope
(BJP) EOS. The central density of a nonrotating 1.4MØ

mass neutron star with the BJP is,3.4r0. Furthermore,
we assume that a first order phase transition occurs
density r1  3.2r0 to a high density phase of density
r2  4r0 with a similar polytropic EOSP  K2r2.54.
From the Maxwell construction the pressure is the sam
at the interfaceP0 which determinesK2  K1sr1yr2d2.54.
We now generalize Eq. (3) by including effects of genera
relativity. From Einstein’s field equations for the metric
we obtain from thel  0 part

1
r 1 P

dP
da

 2G
m 1 4pa3P

a2s1 2 2Gmyad
1

2
3

V2a , (10)

where msad  4p
Ra

0 rsa0da02da0. In the centrifugal
force term we have ignored frame dragging and othe
corrections of orderV2GMyR , 0.1V2 for simplicity
and because they have only minor effects in our case. B
expanding the pressure, mass function, and gravitation
potential in the difference between the rotating an
nonrotating case, Eq. (10) reduces to thel  0 part of
Hartle’s equations [cf. Eq. (100) in [9]]. Note also tha
Hartle’s full equations cannot be used in our case becau
the first order phase transition causes discontinuities
densities so that changes are not small locally. Th
shows up, for example, in the divergent thermodynam
derivativedrydP.

The rotating version of the Tolman-Oppenheimer
Volkoff equation (10) is now solved for a rotating neutron
star of massM  1.4MØ with the BJP EOS, including
a first order phase transition. In Fig. 1 we show th
central density, moment of inertia, braking index, sta
radius, and radius of the interfacesR0d as a function of
the scaled angular velocity. It is important to note tha

R0 ~

q
V

2
0 2 V2 for angular velocities just below the

critical valueV0. The qualitative behavior of the neutron
star with the BJP EOS and a first order phase transitio
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FIG. 1. Central density (in units ofr0), radii of the neutron
star R and its dense coreR0, moment of inertia, its derivative
I 0yI  dIydv2yI, and the braking index are shown as
function of the scaled angular velocityv2  V2y2pGr1. The
rotating neutron star has mass1.4MØ and a Bethe-Johnson-like
polytropic equation of state with a first order phase transitio
taking place at densityr1  3.2r0 to r2  4r0.

is the same as for our simple analytic example of tw
incompressible fluids examined above. Generally, it
the finite density difference between the phases that
important and leads to a term in the moment of inert
proportional tosV2

0 2 V2d3y2 as in Eq. (9).
The moment of inertia increases with angular velocit

Generally, for a first order phase transition we find fo
V & V0 [see also Eq. (9) and Fig. 1],

I  I0

∑
1 1

1
2

c1
V2

V
2
0

2
2
3

c2

µ
1 2

V2

V
2
0

∂3y2

1 . . .

∏
.

(11)

For the two incompressible fluids with momentum o
inertia given by Eq. (9), the small expansion paramete
are c1  v

2
0 and c2  s5y2dv3

0sr2yr1 2 1dys2r2yr1 2

1 2 v
2
0d3y2; for V . V0 the c2 term is absent. For

the BJP we find from Fig. 1 thatc2 . 0.07 . 2.2v
3
0 .

Generally, we find that the coefficientc2 is proportional to
the density difference between the two coexisting phas
and to the critical angular velocity to the third powe
c2 , sr2yr1 2 1dv3

0 . The scaled critical angular velocity
v0 can at most reach unity for submillisecond pulsars.

To make contact with observation we consider th
temporal behavior of angular velocities of pulsars. Th
pulsars slow down at a rate given by the loss of rotation
energy which we shall assume is proportional to th
rotational angular velocity to some power (for dipol
radiationn  3)

d
dt

µ
1
2

IV2

∂
 2CVn11. (12)
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With the moment of inertia given by Eq. (11)the angular
velocity will then decrease with time as

ÙV
V

 2
CVn21

I0

√
1 2 c1

V2

V
2
0

2 c2

s
1 2

V2

V
2
0

!

. 2
1

sn 2 1dt

241 2 c2

s
1 2

µ
t0

t

∂2ysn21d
1 . . .

35 ,

(13)

for t $ t0. Here, the time after formation of the pulsar,
using Eq. (12), is related to the angular velocity ast .
t0sV0yVdn21, andt0  I0yfsn 2 1dCV

n21
0 g for n . 1 is

the critical time where a phase transition occurs in the
center. For earlier timest # t0 there is no dense core and
Eq. (13) applies when settingc2  0 The critical angular
velocity is V0  v0

p
2pr1 . 6 kHz for the BJP EOS,

i.e., comparable to a millisecond binary pulsar. Applying
these numbers to, for example, the Crab pulsar we fin
that it would have been spinning with critical angular
velocity approximately a decade after the Crab supernov
explosion, i.e.,t0 , 10 years for the Crab. Generally,
t0 ~ V

12n
0 and the time scale for the transients inÙV as

given by Eq. (13) may be months or centuries. In any
case it would not require continuous monitoring which
would help a dedicated observational program.

The braking index depends on the second derivativ
I 00  dIyd2V of the moment of inertia and thus diverges
(see Fig. 1) asV approachesV0 from below

nsVd ;
V̈V

ÙV2
. n 2 2c1

V2

V
2
0

1 c2
V4yV

4
0q

1 2 V2yV
2
0

.

(14)

For V $ V0 the term withc2 is absent. Theobserva-
tional braking indexnsVd should be distinguished from
the theoretical exponentn appearing in Eq. (12). Al-
though the results in Eqs. (13) and (14) were derived
for the pulsar slowdown assumed in Eq. (12), bothÙV
andnsVd will generally display the

p
t 2 t0 behavior for

t * t0 as long as the rotational energy loss is a smoot
function of V. The singular behavior will, however, be
smeared on the pulsar glitch “healing” time which in the
case of the Crab pulsar is of order of weeks only.

We now discuss possible phase transitions in interior
of neutron stars. The quark and nuclear matter mixe
phase described in [2] has continuous pressures an
densities. There are no first order phase transitions bu
at most, two second order phase transitions, namely, at
lower density, where quark matter first appears in nuclea
matter, and at a very high density (if gravitationally
stable), where all nucleons are finally dissolved into
quark matter. In second order phase transitions th
pressure is a continuous function of density and we fin
a continuous braking index. This mixed phase does no
however, include local surface and Coulomb energies o
the quark and nuclear matter structures. As shown i
5487
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[3,13] there can be an appreciable surface and Coulo
energy associated with forming these structures and
the interface tension between quark and nuclear matte
too large, the mixed phase is not favored energetica
The neutron star will then have a core of pure qua
matter with a mantle of nuclear matter surrounding
and the two phases are coexisting by a first order ph
transition. For a small or moderate interface tensi
the quarks are confined in droplet, rodlike and plateli
structures [3,13] as found in the inner crust of neutro
stars [14]. Because of the finite Coulomb and surfa
energies associated with forming these structures,
transitions change from second order to first order at ea
topological change in structure. If a kaon condensa
appears it may also have such structures [15]. P
condensates [5], crystalline nuclear matter [6], hyperon
or magnetized matter, etc. may provide other first ord
phase transitions.

There may also be other transitions in neutron sta
The glitches observed in the Crab, Vela, and a few oth
pulsars are probably due to quakes occurring in so
structures such as the crust, superfluid vortices or poss
the quark matter lattice in the core [13]. These glitch
are very smallDVyV , 1028 and have a characteristic
healing time. In [8] a drastic softening of the equatio
of state by a phase transition to quark matter leads t
backbending moment of inertia as a function of frequenc
As a result, the star will become unstable as it slow
down, will suddenly decrease its moment of inertia an
create a large glitch. A similar phenomenon occurs
supercooling takes place. However, if the cooling
continuous the temperature will decrease with time, a
the phase transition boundary will move inwards. Th
two phases could, e.g., be quark-gluon/nuclear matter
a melted/solid phase. In the latter case the size of
hot (melted) matter in the core is slowly reduced as t
temperature drops, freezing the fluid into the solid mant
Melting temperatures have been estimated in [14,16]
the crust and in [3] for the quark matter mixed phas
When the very core freezes we have a similar situation
when the star slows down to the critical angular velocit
i.e., a first order phase transition occurs right at the cen
Consequently, similar behavior of the moment of inerti
angular velocities, and braking index may occur as
Eqs. (11), (13), and (14) replacingVstd with Tstd.

In summary, we have shown that, if a first order pha
transition is present at central densities of neutron sta
it will show up in moments of inertia and, consequentl
also in angular velocities in a characteristic way. F
example, the slowdown of the angular velocity has a ch
acteristic behavior ÙV , c2

p
1 2 tyt0 and the braking

index diverges as nsVd , c2y
q

1 2 V2yV
2
0 [see

Eqs. (13) and (14)]. The magnitude of the sig
nal generally depends on the density difference b
tween the two phases and the critical angular veloc
5488
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v0  V0y
p

2pGr1 such that c2 , sr2yr1 2 1dv3
0 .

The observational consequences depend very much
the critical angular velocityV0, which depends on the
equation of state employed, at which density the phas
transition occurs, and the mass of the neutron star. B
studying a range of angular velocities for a sample o
different star masses the chance for encountering a critic
angular velocity increases. We encourage a dedicat
search for the characteristic transients discussed abo
Eventually, one may be able to cover the full range o
central densities and find all first order phase transition
up to a certain size determined by the experimenta
resolution. Since the size of the signal scales withV

3
0

the transition may be best observed in rapidly rotatin
pulsars such as binary pulsars or pulsars recently form
in supernova explosion and which are rapidly slowing
down. Carefully monitoring such pulsars may reveal th
characteristic behavior of the angular velocity or braking
index, as described above, which is a signal of a firs
order phase transition in dense matter.

We thank Gordon Baym, Larry McLerran, Ben Mottel-
son, and Chris Pethick for valuable comments.
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