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The recent discovery of critical phenomena arising in gravitational collapse near the threshold of
black-hole formation is used to estimate the initial mass function of primordial black holes (PBHs).
It is argued that the scaling relation between black-hole mass and initial perturbation found for a
collapsing radiation fluid in an asymptotically flat space-time also applies to PBH formation in a
Friedmann universe. Owing to the natural fine tuning of initial conditions by the exponential decline
of the probability distribution for primordial density fluctuations, sub-horizon-mass PBHs are expected
to form at all epochs. We derive a two-parameter mass function for PBHs. [S0031-9007(98)06434-5]

PACS numbers: 98.80.—k, 04.25.Dm, 04.70.—-s

In this Letter, we consider the initial mass function mass, providing a conceptual difference to our current
(IMF) of primordial black holes (PBHs) formed in the understanding of the process of PBH formation.
process of gravitationally collapsing primordial density It is possible that PBH formation is the only natural ex-
fluctuations in the radiation dominated phase of the earlyample for critical phenomena in gravitational collapse, a
Universe [1,2]. Implications of the PBH number andfield of considerable interest in classical general relativ-
mass spectrum with regard to their contribution to thety that was previously believed to have no astrophysical
cosmic density and the-ray background (via Hawking application. Triggered by the intriguing results of Chop-
evaporation) have been employed to constrain the spectralik [6] who demonstrated scaling and self-similarity in
index of the primordial fluctuation spectrum [3,4]. Two the gravitational collapse of a massless scalar field near
aspects play a central role in these studies: first, fothe threshold of black-hole formation, critical phenom-
each horizon-sized space-time region there exists a critica&na were studied for a number of different setups, includ-
threshold valueg,., for the density (or mass) contra8t  ing spherically symmetric radiation fluids [7], Yang-Mills
separating its further evolution between formation of afields [8], and axially symmetric collapsing gravity waves
black hole ¢ > §.) and dispersion by pressure forces[9]. In all cases, families of initial data quantified by a
(6 < é.) (we shall use the term “horizon” to denote single generic parametet were found to give rise to a
the particle horizony, ~ t). Comparing the Jeans and scaling relation of the form
horizon lengths at the time when the collapsing region .
breaks away from Hubble expansion, one finds that My (8) = K(8 = 8c) (1)
must be of order unity [5]. The second key assumptiomear the critical point for black-hole formatiod,.. The
relates to the final mass of the black hold,,. It is  specific choice ofé is arbitrary since differentiable
commonly assumed thalf,, is approximately equal to transformations of6 leave (1) invariant, changing only
the mass of the collapsing region and thus to the horizothe constank to leading order [10]. Another noteworthy
mass at the epoch of formatiod,. Nevertheless, feature of near-critical solutions is the appearance of
detailed predictions for the PBH IMF have not previouslydiscrete (scalar field collapse) or continuous (perfect fluid
been made. Based on a scaling relation discoveredollapse) self-similarities.
in gravitational collapse of various near-critical space- Equation (1) is, in general, irrelevant for the formation
times, generalized to collapsing density perturbations irof astrophysical black holes. Degeneracy pressure of neu-
an Einstein-de Sitter universe, we are able to derivédrons or electrons introduces intrinsic limiting mass scales
a universal, two-parameter PBH IMF, applicable whenof hydrostatic stability, such as the Chandrasekhar mass,
PBH number densities are dominated from fluctuationwiolating the scale-free behavior indicated by Eg. (1).
collapsing during one particular epoch. Here the twoMoreover, Eq. (1) is valid only in the immediate neigh-
parameters in the PBH IMF carry all the information borhood ofé., requiring a high degree of fine tuning of
of the statistics of the initial density spectra and thethe initial conditions which is unnatural under most cir-
perturbation shapes. We show that when the perturbatiocumstances. In PBH formation, on the other hand, it is
overdensity is sufficiently close to the critical overdensityexpected that most regions collapsing to a black hole will
for PBH formation, 6., the final mass of the resulting have overdensities close to the critical overdensity for PBH
PBH may be an arbitrarily small fraction of the horizon formation, §., owing to a steeply declining probability
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distribution for primordial density fluctuations. Typical of the asymptotic behavior of the background space-
cosmic initial conditions thus provide the fine tuning of ini- time. We note that preliminary results of numerical
tial conditions, required for near-critical collapse. Further,simulations of the PBH formation process in the early
with the exception of cosmological phase transitions thatyniverse confirm (1) the scaling relation and (2) the
will not be considered here, the matter collapsing to PBHspplicabilty of scaling for commonly assumed parameters
is well described by a perfect fluid with radiation domi- of the statistics of pre-existing cosmic density fluctuations
nated equation of statp, = p/3, wherep andp are pres- (see below). The results of this numerical investigation
sure and energy density, respectively. Hence, the problemill be presented elsewhere [14].

for PBH formation in radiation dominated cosmological Based on the arguments above we will henceforth em-
epochs and the perfect fluid collapse studied numericallploy Eq. (1) for the masses of PBHs formed by collaps-
by Evans and Coleman (EC) [7] differ only with regard to ing primordial density perturbations slightly exceedihg

the background space-time. While canonical initial condi-with an exponent = 0.356 independent of initial pertur-
tions for PBH formation involve curvature perturbations in bation shape. We assume a Gaussian probability distribu-
an expanding Friedmann-Robertson-Walker (FRW) spacdion for density fluctuations entering the horizon,

time, EC used initial data embedded in an asymptotically 2

: ) . j . 1 )

stationary space-time for their collapse simulations. P(d) = — -5 (2
In addition to their numerical simulations, EC found v2mo 20

a Self-SImllar SO|utI0n to the equatlonS Of mOtlon andwhere o is the, possibly Scale_dependenL root-mean-
gravitation in the limité — 6.. A self-similar ansatz square fluctuation amplitude. Equation (2) allows us to

reduces the spatial and temporal degrees of freedom {@mpute the fraction of horizon-sized regions collapsing
a single self-similar coordinate and thereby transformgs pBHs at a given epoch [5]

the system of partial differential equations into ordinary | )

ones. Demanding regularity at the center and along B 2[ P(8)ds ~ (rexp(— o; ) 3)

the ingoing acoustic characteristic, corresponding to the 8. 20

absence _ofash_oc_k, the system of ODES can .be solved a'ﬁi]e upper integration limit reflects that & > 1, the

the solution coincides well with their numerical reSUItS'coIIapsing space-time region corresponds to a’ separate
As suggested by EC, the critical exponent of (1) was, <oy niverse instead of a black hole [2], and the
subsequently derived by analyzing linear perturbations, o imation on the right-hand side is valid to within
of the self-similar solution: Koike, Hara, and Adachi

. ) L a factor of a few foro/8. = 0.2. It is noted that non-
[11] obtainedy = 0.3558019 for a collapsing radiation . :
fluid. Note that neither the self-similar solution nor the Gaussian effects may be important f6 > o [15],

s : . but a Gaussian distribution suffices for the demonstration
perturbation analysis rely on asymptotic flathess of thepurpose of this work
space-time; on _the contrary, EC's seIf—glmllar solution In what follows we assume that cosmological PBH
IS not asymptotlca!ly flat. As E.CS solution CONVEIGes ¢, mation is dominated by perturbations of one particular
neither to a flat stationary space-time nor to an exact FR ength scale, defining a characteristic epoch of PBH
solution, it invariably breaks down at large radii for both formation by’ the time the perturbations cross into the

as%/_?;t?;';“?erez\gg;s'to expect the emergence of Se"Jjorizon. Such an analysis should be adequate when either
P 9 the initial perturbation spectrum exhibits a peak on a given

similarity in near-critical gravitational collapse occurring scale [16], or PBH formation is most probable during a

in asymptotically FRW space-times is the SeF""‘"’mor’épecific epoch by virtue of the equation of state [17]. It

of qharacterlstlc scal.es: Just as in the gsymptoncaIIYS also approximately valid for blue initial perturbation
stationary case studied by EC, the solution forms a pectra where PBH formation is most efficient on the

intermediate asymptotic between two widely separate mallest scale under consideration [18].

length scales [12]. The scalg of the fluid perturbation With these assumptions, and approximating incorrectly

. . _1/2 .
0 at 'ghe onset of'collapse. IS given by™~“ry [5] 'f. for the moment that the mass of the resulting PBH is
the initial perturbation amplitude is evaluated at horizon

crossing. ro can be identified with the transition from M, we may compute the value of the PBH mass density
. o e : .
Hubble expansion of the asymptotic FRW space-time téjlwded by the cosmic background lden5|ty,

the collapse-dominated region<< rop. On small scales, A Poh \ _ _1[

deviation from exact criticality leads to violation of self- Qpon.ota 2o My N My P(8)d5
similarity if r approaches; ~ K|8 — 8.| [13]. The - -
ratio ro/r; can be made arbitrarily large by chosing initial B for My, = My, (4)
data close to the critical point. In the limét — 6., we  where the hat indicates th&X,,; is evaluated at the time
therefore assume that gravitational collapse of a radiationf PBH formation.
fluid is well described by the self-similar solution of EC ~ As a straightforward modification of2(},,,, we use
[7] and the critical exponent =~ 0.356 [11], independent the continuous distribution of PBH masses (1) in (4)
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and re-evaluate the integral. Doing so, we implicitly this case one may search for a control paramétés)
assume that (1) is valid fob as large as unity; this which rendersP(5)d5/dé’ Gaussian. Applying this
need not necessarily be the case. However, the largesansformation between control parameters to Eq. (1), one
contribution to the integral comes froth= 6. owing to  will obtain a form-invariant equation (1) with modified
the exponential form of(8), and thus our assumption is constantsk’ and &/, provided the limit of near-critical
justified. The integrand rises steeply to a maximum at gravitational collapse still applies. Equation (10) then

1 defines a universal two-parameter family of PBH IMFs,
Om = 5 (8. + Vayo® + 87) applicable for many initial conditions, with the parameters
) K and é,. carrying all the information about the statistics
_ Yo 4 of initial conditions and the shapes of perturbations.
o, + + 0(o") 5) : ot .
c The mass function of Eq. (10) exhibits a maximum at
close to the lower integration boundary, and the black- . a2\’
hole mass at this point is Mpy™ = k| 5~ | Ma (11)
2\? ¢
Yo . .
Mp(8,) = K(5—> ~ ko* "My, (6)  which approximately equals the average black-hole mass
' _ _ ¢ _ equation (8). PBHs in cosmological interesting numbers
with the dimensionless defined by K = kM. The are formed during the evolution of the early Universe for
modified expression fof) ), is thus values ofa /5, = 0.1 — 0.2, provided Gaussian statistics
R (! holds [4]. Such values otr/§. yield typical volume
Qpphnew = M, ]5 Mpp(8) P(8)dd collapse fractions in the rangg8 =~ 107°-10"% and,
| depending on the epoch of formation, imply PBH number
~ Mh_lf My, (8) P(8)ds densities significantly contributing to the present mass
S0 density, or they background. Inserting = 3.3 found

52 by EC [19],0/6,. = 0.15, andé§,. = 1/3 [5], we find

~ k0_1+2y exp(— c2> ~ k0'27,3, (7) y [ ] [ ]

20 M =~ 0.6M,, . (12)
where the integral was asymptotically expanded to first |; js not surprising that the maximum of the IMF
order. Equation (7) shows that the average black-holg; 5 fixed epoch coincides with the horizon mass to
mass produced at each epoch is approximately given hyjiihin an order of magnitude, since the latter determines

(6), since the mass scale for collapse. However, depending on

1 .
el ) the value ofo, a fraction of all PBHs formed at each
(Mpp) = B fa Mpn(8)P(8)dé ~ ko "My (8) epoch will have masses significantly smaller thaf,

We can now determine the PBH initial mass functioniMPlying @ fundamental conceptual difference between
(IMF) when PBH number densities are dominated fromthis work and prewous_calculatlons. It was previously
formation during one particular epoch. The global PBHaSSUMed that there exists a one-to-one correspondence
mass spectrum generally involves an integration over afP€WweenMy, and redshiftz. Under this assumption, it
epochs, a formidable problem, which will not be at-Was straightforward to relate,;, to a single energy scale,

tempted here. We define the PBH IMF as the fractiori-€-» microscopically small black holes only formed at
d¢ of PBH number per logarithmic mass interval, nor- €'Y early times. Using Eq. (1) instead, this simplification

malized such that is no longer valid; the formation of black holes with
M=) g a continuous IMF allows the formation of microscopic
f ————d(nM},) =1. (9) PBHSs at all epochs. The formulation of observational
—oo d(In My,) constraints based on these results, such as constraints
This mass function is given by on the spectral index of initial density spectra, requires
do 1 ds a detailed _ana}Iysis of the PBH IMF in'tegrated over all
m = B 'P[6(Mp)] m epochs which is peyond the scope of this Letter.
Uy 'The quthors wish to thank S.E. Woosley for helpful
_ L VN N C Pl 7)) discussions.
2w Boy bh 2072 ’
(10)
wherem;,,, is black hole mass in units @\, and where [1] Ya.B. Zeldovich and I. D. Novikov, Sov. Astron. A. 10,
we have used Eq. (2) fa?(5). The PBH IMF of Eq. (10) 602 (1967): S.W. Hawking, Mon. Not. R. Astron. Soc.

has wider applicability than naively thought. Imagine 152, 75 (1971).
PBH formation in the case of non-Gaussian statistics,[2] B.J. Carr and S.W. Hawking, Mon. Not. R. Astron. Soc.
in particular, whenP(8) is different from Eq. (2). In 168, 399 (1974).
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Doing so, we make a specific choice for the control
parameters. Evans and Coleman definetl= 2M/r,.
This corresponds in our case to the mass that is contained
within the horizon sphere in addition to the unperturbed
FRW horizon mass. We note here that for canonical
Gaussian density perturbatioAsin Eq. (2) is the average
overdensity in uniform Hubble constant gauge determined
in the limit of linear evolution, which may yield a
different value ofk. Further,k may be perturbation shape
dependent such that an exact evaluation of this quantity
has to await the results of numerical simulations.



