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Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes
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The recent discovery of critical phenomena arising in gravitational collapse near the threshold of
black-hole formation is used to estimate the initial mass function of primordial black holes (PBHs).
It is argued that the scaling relation between black-hole mass and initial perturbation found for a
collapsing radiation fluid in an asymptotically flat space-time also applies to PBH formation in a
Friedmann universe. Owing to the natural fine tuning of initial conditions by the exponential decline
of the probability distribution for primordial density fluctuations, sub-horizon-mass PBHs are expected
to form at all epochs. We derive a two-parameter mass function for PBHs. [S0031-9007(98)06434-5]
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In this Letter, we consider the initial mass functio
(IMF) of primordial black holes (PBHs) formed in the
process of gravitationally collapsing primordial densit
fluctuations in the radiation dominated phase of the ea
Universe [1,2]. Implications of the PBH number an
mass spectrum with regard to their contribution to th
cosmic density and theg-ray background (via Hawking
evaporation) have been employed to constrain the spec
index of the primordial fluctuation spectrum [3,4]. Two
aspects play a central role in these studies: first,
each horizon-sized space-time region there exists a criti
threshold value,dc, for the density (or mass) contrastd,
separating its further evolution between formation of
black hole (d . dc) and dispersion by pressure force
(d , dc) (we shall use the term “horizon” to denote
the particle horizon,rh , t). Comparing the Jeans and
horizon lengths at the time when the collapsing regio
breaks away from Hubble expansion, one finds thatdc

must be of order unity [5]. The second key assumptio
relates to the final mass of the black hole,Mbh. It is
commonly assumed thatMbh is approximately equal to
the mass of the collapsing region and thus to the horiz
mass at the epoch of formation,Mh. Nevertheless,
detailed predictions for the PBH IMF have not previous
been made. Based on a scaling relation discove
in gravitational collapse of various near-critical spac
times, generalized to collapsing density perturbations
an Einstein-de Sitter universe, we are able to deri
a universal, two-parameter PBH IMF, applicable whe
PBH number densities are dominated from fluctuatio
collapsing during one particular epoch. Here the tw
parameters in the PBH IMF carry all the informatio
of the statistics of the initial density spectra and th
perturbation shapes. We show that when the perturbat
overdensity is sufficiently close to the critical overdensi
for PBH formation,dc, the final mass of the resulting
PBH may be an arbitrarily small fraction of the horizo
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mass, providing a conceptual difference to our curren
understanding of the process of PBH formation.

It is possible that PBH formation is the only natural ex-
ample for critical phenomena in gravitational collapse, a
field of considerable interest in classical general relativ
ity that was previously believed to have no astrophysica
application. Triggered by the intriguing results of Chop-
tuik [6] who demonstrated scaling and self-similarity in
the gravitational collapse of a massless scalar field ne
the threshold of black-hole formation, critical phenom-
ena were studied for a number of different setups, includ
ing spherically symmetric radiation fluids [7], Yang-Mills
fields [8], and axially symmetric collapsing gravity waves
[9]. In all cases, families of initial data quantified by a
single generic parameterd were found to give rise to a
scaling relation of the form

Mbhsdd ­ Ksd 2 dcdg (1)

near the critical point for black-hole formation,dc. The
specific choice ofd is arbitrary since differentiable
transformations ofd leave (1) invariant, changing only
the constantK to leading order [10]. Another noteworthy
feature of near-critical solutions is the appearance o
discrete (scalar field collapse) or continuous (perfect fluid
collapse) self-similarities.

Equation (1) is, in general, irrelevant for the formation
of astrophysical black holes. Degeneracy pressure of ne
trons or electrons introduces intrinsic limiting mass scale
of hydrostatic stability, such as the Chandrasekhar mas
violating the scale-free behavior indicated by Eq. (1)
Moreover, Eq. (1) is valid only in the immediate neigh-
borhood ofdc, requiring a high degree of fine tuning of
the initial conditions which is unnatural under most cir-
cumstances. In PBH formation, on the other hand, it is
expected that most regions collapsing to a black hole wi
have overdensities close to the critical overdensity for PBH
formation, dc, owing to a steeply declining probability
© 1998 The American Physical Society 5481
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distribution for primordial density fluctuations. Typica
cosmic initial conditions thus provide the fine tuning of in
tial conditions, required for near-critical collapse. Furthe
with the exception of cosmological phase transitions th
will not be considered here, the matter collapsing to PB
is well described by a perfect fluid with radiation dom
nated equation of state,p ­ ry3, wherep andr are pres-
sure and energy density, respectively. Hence, the prob
for PBH formation in radiation dominated cosmologica
epochs and the perfect fluid collapse studied numerica
by Evans and Coleman (EC) [7] differ only with regard t
the background space-time. While canonical initial cond
tions for PBH formation involve curvature perturbations
an expanding Friedmann-Robertson-Walker (FRW) spa
time, EC used initial data embedded in an asymptotica
stationary space-time for their collapse simulations.

In addition to their numerical simulations, EC foun
a self-similar solution to the equations of motion an
gravitation in the limit d ! dc. A self-similar ansatz
reduces the spatial and temporal degrees of freedom
a single self-similar coordinate and thereby transform
the system of partial differential equations into ordina
ones. Demanding regularity at the center and alo
the ingoing acoustic characteristic, corresponding to t
absence of a shock, the system of ODEs can be solved
the solution coincides well with their numerical result
As suggested by EC, the critical exponent of (1) w
subsequently derived by analyzing linear perturbatio
of the self-similar solution: Koike, Hara, and Adach
[11] obtainedg ­ 0.355 801 9 for a collapsing radiation
fluid. Note that neither the self-similar solution nor th
perturbation analysis rely on asymptotic flatness of t
space-time; on the contrary, EC’s self-similar solutio
is not asymptotically flat. As EC’s solution converge
neither to a flat stationary space-time nor to an exact FR
solution, it invariably breaks down at large radii for bot
asymptotic behaviors.

The main reason to expect the emergence of se
similarity in near-critical gravitational collapse occurrin
in asymptotically FRW space-times is the separati
of characteristic scales: Just as in the asymptotica
stationary case studied by EC, the solution forms
intermediate asymptotic between two widely separat
length scales [12]. The scaler0 of the fluid perturbation
d at the onset of collapse is given byd21y2rh [5] if
the initial perturbation amplitude is evaluated at horizo
crossing. r0 can be identified with the transition from
Hubble expansion of the asymptotic FRW space-time
the collapse-dominated regionr , r0. On small scales,
deviation from exact criticality leads to violation of self
similarity if r approachesr1 , Kjd 2 dcj [13]. The
ratio r0yr1 can be made arbitrarily large by chosing initia
data close to the critical point. In the limitd ! dc, we
therefore assume that gravitational collapse of a radiat
fluid is well described by the self-similar solution of EC
[7] and the critical exponentg ø 0.356 [11], independent
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of the asymptotic behavior of the background space
time. We note that preliminary results of numerical
simulations of the PBH formation process in the early
Universe confirm (1) the scaling relation and (2) the
applicabilty of scaling for commonly assumed parameter
of the statistics of pre-existing cosmic density fluctuation
(see below). The results of this numerical investigation
will be presented elsewhere [14].

Based on the arguments above we will henceforth em
ploy Eq. (1) for the masses of PBHs formed by collaps
ing primordial density perturbations slightly exceedingdc,
with an exponentg ø 0.356 independent of initial pertur-
bation shape. We assume a Gaussian probability distrib
tion for density fluctuations entering the horizon,

Psdd ­
1

p
2ps

exp

√
2

d2

2s2

!
, (2)

where s is the, possibly scale-dependent, root-mean
square fluctuation amplitude. Equation (2) allows us to
compute the fraction of horizon-sized regions collapsing
to PBHs at a given epoch [5]

b ­
Z 1

dc

Psdd dd ø s exp

√
2

d2
c

2s2

!
. (3)

The upper integration limit reflects that ifd . 1, the
collapsing space-time region corresponds to a separa
closed universe instead of a black hole [2], and th
approximation on the right-hand side is valid to within
a factor of a few forsydc # 0.2. It is noted that non-
Gaussian effects may be important fordc ¿ s [15],
but a Gaussian distribution suffices for the demonstratio
purpose of this work.

In what follows we assume that cosmological PBH
formation is dominated by perturbations of one particula
length scale, defining a characteristic epoch of PBH
formation by the time the perturbations cross into the
horizon. Such an analysis should be adequate when eith
the initial perturbation spectrum exhibits a peak on a give
scale [16], or PBH formation is most probable during a
specific epoch by virtue of the equation of state [17]. I
is also approximately valid for blue initial perturbation
spectra where PBH formation is most efficient on the
smallest scale under consideration [18].

With these assumptions, and approximating incorrectl
for the moment that the mass of the resulting PBH is
Mh, we may compute the value of the PBH mass densit
divided by the cosmic background density,

V̂pbh,old ;

*
rbh

r0

+
­ M21

h

Z 1

dc

MbhPsdd dd

ø b for Mbh ø Mh , (4)

where the hat indicates thatVpbh is evaluated at the time
of PBH formation.

As a straightforward modification ofVVpbh, we use
the continuous distribution of PBH masses (1) in (4)
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and re-evaluate the integral. Doing so, we implicitl
assume that (1) is valid ford as large as unity; this
need not necessarily be the case. However, the larg
contribution to the integral comes fromd ø dc owing to
the exponential form ofPsdd, and thus our assumption is
justified. The integrand rises steeply to a maximum at

dm ­
1
2

sdc 1
p

4gs2 1 d2
c d

­ dc 1
gs2

dc
1 Oss4d (5)

close to the lower integration boundary, and the blac
hole mass at this point is

Mbhsdmd ­ K

√
gs2

dc

!g

ø ks2gMh , (6)

with the dimensionlessk defined by K ­ kMh. The
modified expression for̂Vpbh is thus

V̂pbh,new ­ M21
h

Z 1

dc

Mbhsdd Psdd dd

ø M21
h

Z 1

dm

Mbhsdd Psdd dd

ø ks112g exp

√
2

d2
c

2s2

!
ø ks2gb , (7)

where the integral was asymptotically expanded to fir
order. Equation (7) shows that the average black-ho
mass produced at each epoch is approximately given
(6), since

kMbhl ­ b21
Z 1

dc

Mbhsdd Psdd dd ø ks2gMh . (8)

We can now determine the PBH initial mass functio
(IMF) when PBH number densities are dominated from
formation during one particular epoch. The global PB
mass spectrum generally involves an integration over
epochs, a formidable problem, which will not be at
tempted here. We define the PBH IMF as the fractio
df of PBH number per logarithmic mass interval, nor
malized such thatZ ln Mbhsd­1d

2`

df

dsln M 0
bhd

dsln M 0
bhd ­ 1 . (9)

This mass function is given by

df

dsln Mbhd
­ b21PfdsMbhdg

dd

dsln Mbhd

­
1

p
2pbsg

m
1yg
bh exp

√
2

sdc 1 m
1yg
bh d2

2s2

!
,

(10)

wherembh is black hole mass in units ofkMh, and where
we have used Eq. (2) forPsdd. The PBH IMF of Eq. (10)
has wider applicability than naively thought. Imagin
PBH formation in the case of non-Gaussian statistic
in particular, whenPsdd is different from Eq. (2). In
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this case one may search for a control parameterd0sdd
which rendersPsddddydd0 Gaussian. Applying this
transformation between control parameters to Eq. (1), on
will obtain a form-invariant equation (1) with modified
constantsK 0 and d0

c, provided the limit of near-critical
gravitational collapse still applies. Equation (10) then
defines a universal two-parameter family of PBH IMFs,
applicable for many initial conditions, with the parameters
K anddc carrying all the information about the statistics
of initial conditions and the shapes of perturbations.

The mass function of Eq. (10) exhibits a maximum at

Mmax
bh ­ k

√
s2

dc

!g

Mh , (11)

which approximately equals the average black-hole mas
equation (8). PBHs in cosmological interesting numbers
are formed during the evolution of the early Universe for
values ofsydc ø 0.1 2 0.2, provided Gaussian statistics
holds [4]. Such values ofsydc yield typical volume
collapse fractions in the rangeb ø 1026 10223 and,
depending on the epoch of formation, imply PBH number
densities significantly contributing to the present mass
density, or theg background. Insertingk ø 3.3 found
by EC [19],sydc ø 0.15, anddc ø 1y3 [5], we find

Mmax
bh ø 0.6Mh . (12)

It is not surprising that the maximum of the IMF
at a fixed epoch coincides with the horizon mass to
within an order of magnitude, since the latter determine
the mass scale for collapse. However, depending o
the value ofs, a fraction of all PBHs formed at each
epoch will have masses significantly smaller thanMh,
implying a fundamental conceptual difference between
this work and previous calculations. It was previously
assumed that there exists a one-to-one corresponden
betweenMbh and redshiftz. Under this assumption, it
was straightforward to relateMbh to a single energy scale,
i.e., microscopically small black holes only formed at
very early times. Using Eq. (1) instead, this simplification
is no longer valid; the formation of black holes with
a continuous IMF allows the formation of microscopic
PBHs at all epochs. The formulation of observationa
constraints based on these results, such as constrain
on the spectral index of initial density spectra, requires
a detailed analysis of the PBH IMF integrated over all
epochs which is beyond the scope of this Letter.

The authors wish to thank S. E. Woosley for helpful
discussions.
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