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Vortex Formation in Two Dimensions: When Symmetry Breaks, How Big Are the Pieces?
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We investigate the dynamics of second-order phase transitions in two dimensions, breaking a gauged
U(1) symmetry. Using numerical simulations, we show that the density of the topological defects
formed scales with the quench time scaletQ as n , t

21y2
Q when the dynamics is overdamped at the

instant when the freeze-out of thermal fluctuations takes place, andn , t
22y3
Q in the underdamped case.

This is predicted by the scenario proposed by one of us (W. H. Z.). [S0031-9007(98)06423-0]

PACS numbers: 05.70.Fh, 11.15.Ex, 11.27.+d, 67.40.Vs
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Phase transitions occur at all energy scales, from Bo
Einstein condensation near absolute zero to the sub-Pla
temperatures relevant for symmetry breaking in a cosm
logical setting. While the dynamics of some types of firs
order transitions (i.e., the process of nucleation) has be
extensively studied, analogous understanding of seco
order transitions is emerging only now. In this case the
is no supercooling and the final state of the system
asymptotically approached through phase ordering. U
til recently, research has focused largely on the asympto
scalings of this process [1] rather than on the dynamics
the transition itself.

The change in focus is relatively recent. Kibble [2
pointed out that topological defects may have significa
cosmological consequences—i.e., they may act as se
for structure or as constraints on models. While their initi
statistics may be wiped out at later times, some featu
(such as theab initio existence of an “infinite” string) are
essential for the scenario. Also, the initial defect dens
may be directly relevant for generation of baryons [3].

The configuration of the order parameter establish
in the course of the transition is therefore importan
Furthermore, it is accessible in cases where topologi
defects are formed, as they bear witness to the dynam
of the order parameter in the vicinity of the critical poin
Experiments based on this idea allow one to probe t
critical dynamics of symmetry breaking, and have be
carried out in liquid crystals [4] and in superfluids [5–8
They have led to new insights into the dynamics o
the transition between phasesA and B of 3He [9]. A
description of the dependence of defect density on the r
of the transition and the damping of the order parame
in second-order transitions has been proposed by one o
[10], and in this Letter we discuss further and verify th
model with numerical simulations.

We study the consequences of second-order phase tr
formations of the order parameterc , a complex scalar,
with Landau-Ginzburg dynamics in two spatial dimension
and an associated gauge fieldAa. This is the Abelian Higgs
model coupled to a heat bath and with a dissipative ter
When cast into first-order form, the equations of motio
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are the following [cX ­ sc1, c2d, i runs overhx, yj, and
Dac ­ ≠a 1 ieAac]:

pX ­ ≠tcX , Pi ­ ≠tAi , (1)

≠tpX ­ =2cX 2 e2A2cX 2 2eeXY Ai≠icY

2
≠V
≠cX

2 hpX 1 q , (2)

≠tPi ­ =2Ai 2 eeXY cX≠icY 2 e2Ai jcj2, (3)

V scd ­ 2
1
2

em2
0c2 1

1
4

c4. (4)

The system is subjected to the white noiseq sx, y, td;
kq sx, y, tdq sx0, y0, t0dl ­ 2hudsx 2 x0dds y 2 y0ddst 2

t0d. The heat bath temperature isu andh sets the damp-
ing rate, in accordance with the fluctuation-dissipatio
theorem.

We induce the symmetry breaking by changing the si
of the dimensionless parametere in the effective potential
over the quench time scaletQ , so thate ­ tytQ (jej # 1).
The phase transition occurs when it becomes energetic
and entropically favorable for the order parameter
assume (in equilibrium) a finite expectation value. In o
case this happens in the region0 , e ø 1. The shift of
critical temperature frome ­ 0 is due to the coupling to
the gauge field (m2

eff , m2
0 1 e2kA2l) and as a result of

finite temperatureu, which we take to be0.01.
The equations of motion are evolved on a torus of5122

grid points, using the staggered leapfrog method. We u
the gaugeAt ­ 0, implicit in Eqs. (2) and (3), and perform
20 realizations of each parameter set. We resolved defe
by several grid spacings at low temperatures.

We begin the simulations well above the phase tran
tion, allowing the system to equilibrate under the influen
of the noise and relaxation at constante. We monitor the
order parameter and the gauge field throughout the sub
quent evolution. The focus of attention, however, is th
number of topological defects, which can be identified
zeros ofc in the broken symmetry phase. Initially, in the
© 1998 The American Physical Society 5477



VOLUME 80, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 22 JUNE 1998

e

t
r

le

c-

d
l

symmetric phase, such zeros are plentiful and short liv
(see Fig. 1). While they cannot be identified with defec
their density and arrangement gives an idea of the nat
of the thermal fluctuations.

BelowTc their density decreases, although there still e
ist regions over which the field has a near-zero expectat
value and hence many unstable zeros. Eventually, o
a few isolated defects remain. We count only those th
have no companions withinj0 ­ m21

0 .
The local and global (e ­ 0) gauge cases are quali

tatively indistinguishable until this late stage. Howeve
local defects do not interact over more than a few cor
lation lengths and annihilate relatively slowly, even whe
the friction coefficient is small. By contrast, global defec
interact with a logarithmic potential, and disappear mu
more rapidly. Estimates of initial densities become mo
difficult in this case. Below, we shall focus on the loca
case, leaving global-local comparisons for the future.

The theory of defect formation combines the realizatio
due to Kibble [2], that the domains of the order parame
c which break symmetry incoherently must contain
the order one “fragment” of a defect, with the estima
[10] of the relevant size based on the comparison of t
relaxation time scale ofc with the effective rate of change
of the mass parametere. In the immediate vicinity of
the critical temperature, the dynamics ofc are subject to
critical slowing down. Thus, the time scalet over which
the order parameter can react is given byt Ùcz ­ ht

2
0yjej

andtc̈ ­ t0yjej1y2 (t0 ­ 1ym0) in the overdamped and
underdamped cases, respectively, where correspondin
the first or second time derivative in Eq. (2) dominate
The overdamped scenario is presumably more relevant
condensed matter applications, while in the cosmologi
settingsc may be underdamped.

The characteristic time scale of variations ofe is ey Ùe ­
t. The system is able to readjust to the new equilibriu
as long as the relaxation time is smaller thant. Hence,
outside the intervalf2t̂, t̂g defined bytfest̂dg ­ t̂, the evo-
lution of c is approximately adiabatic, and physical qua
FIG. 1. (a)–(c) Representations of the field and defects (filled squares or open triangles) on1282 grid during and after a quench of
time scaletQ ­ 32, with h ­ 1.0 and in the presence of a gauge field (e ­ 0.5). (a) shows the field at the critical point (e ­ 0),
(b) at e ­ 0.6, and (c) ate ­ 1, time t ­ 2tQ after the critical point.
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tities follow their equilibrium expectation values. Thus
the timest̂ Ùc ­ 6t0

p
htQ and t̂c̈ ­ 6m

22y3
0 t

1y3
Q , giving

ê Ùc ­ 6sht
2
0ytQd1y2 and êc̈ ­ 6sm2

0ytQd2y3, mark the
borders between the (approximately) adiabatic and impuls
(or “drift”) stages of evolution ofc in the overdamped and
underdamped cases, respectively.

In particular, the correlation lengthj of c above the
transition will cease to follow the Landau-Ginzburg scaling
(j ­ j0yjej1y2) once the adiabatic-impulse boundary a
2t̂ is reached. Dynamics will be suspended (except fo
the drift and noise) in the intervalf2t̂, t̂g and will resume
at 1t̂ below the transition.

We expect, then, that the characteristic length sca
over which c is ordered already in the course of the
transition will be the correlation length at freeze-out,ĵ ­
j0y

p
ê [10]. This results inĵ Ùc ­ j0stQyht

2
0 d1y4 and

ĵc̈ ­ j0stQyt0d1y3 in the two cases. The initial density
of vortex lines in two dimensions should then scale as

n Ùc ­
1

s f Ùcĵ Ùc d2
­

1
s f Ùcj0d2

vuutht
2
0

tQ
, (5)

nc̈ ­
1

s fc̈ ĵc̈ d2
­

1
s fc̈j0d2

√
t0

tQ

!2y3

(6)

in the overdamped and underdamped regimes, respe
tively. Above, f is the proportionality factor which is
expected to be of the order of a few [11], and which may
be estimated analytically in some cases [12].

The relative importance of theÙc andc̈ terms in Eq. (2)
also depends on̂e. What matters for the formation of
defects is—in view of the arguments above—which of the
two terms dominates att̂. Thus,h2 . ê is the condition
for overdamped evolution, which leads to the inequality
h3tQ . m2

0. Therefore, one can enter the overdampe
regime by performing a sufficiently slow quench, as wel
as increasing the damping parameterh.
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We verify these scalings in Fig. 2, where the numbers
defects obtained in both the overdamped and underdam
cases are plotted as a function of the quench timetQ.
In the overdamped case the annihilation of the we
separated topological defects is slow. Consequently, it
relatively easy to count them at some fixed time. Th
yields Fig. 2a withn , t

g
Q, g ­ 20.44 6 0.1 for tQ $

8, in good agreement with the theoretical prediction o
g ­ 21y2 [10]. A similar conclusion can be reached fo
the underdamped case, Fig. 2b, except that annihilat
is now quite rapid, and the initial number of defects i
harder to define. This is especially true for the faste
quenches which produce most defects. However, wh
the three left-most points most affected by annihilatio
are ignored, straightforward counting of vortices yield
g ­ 20.6 6 0.07. This is in agreement with the theory—
which in this case predictsg ­ 22y3 [10,13]—and with
the indications from kink formation in one dimension [14]

The reason the slope might become shallower for sm
tQ is easy to understand. A very fast quench becom
indistinguishable from an instantaneous one, which do
not allow for the adiabatic regime we have noted abov
Instantaneous quenches start the evolution in the brok
symmetry phase, but with an initial field configuration
which will contain many zeros per healing-length siz
volume—too many to regard them as well-defined defec
Unless the defects are well separated at their concept
(which in effect requireŝe ø 1), annihilation will decide
their initial density. We see this already in Fig. 2a, wher
ê ­ 0.5 for the leftmost point. The effect is even more
pronounced in the underdamped case, which allows
more rapid annihilation (Fig. 2b).

FIG. 2. The variation of defect countN with tQ in both (a)
overdamped and (b) underdamped regimes. The fitted slo
are (a)20.44 6 0.10 (x2 ­ 0.44, dropping the two leftmost
points) and (b)20.60 6 0.07 (x2 ­ 0.034, dropping three
points). Predicted values were21y2 and 22y3. The points
fitted by the dashed line are inferred from the fits in Fig. 3
The slope is20.79 6 0.04 (x2 ­ 0.27).
of
ped

ll-
is

is

f
r
ion
s
st
en
n
s

.
all
es
es
e.
en

e
ts.
ion

e

for

pes

.

The annihilation rate is expected to be of the form
Ùn ­ 2xshdn2, as it is proportional to the frequency with
which defects encounter one another. This leads to

n21 ­ n21
0 1 xt . (7)

Figure 3 shows (in the underdamped case, when the a
nihilation is appreciable) the fit between (7) and the dat
We can then infer the value of the initial defect densityn0,
which is also shown in Fig. 2b. This procedure (followed
e.g., in the superfluid work [5]) yields a somewhat dif
ferent slopeg ­ 20.79 6 0.04, steeper than equal-time
data, and somewhat steeper than the theoretical predicti
It also seems to successfully correct for the annihilatio
(although the leftmost point still seems to be affected). U
ing the data in Fig. 2, we estimatef Ùc . 12 andfc̈ . 8
(equal-time data),fc̈ . 4 [fitting to Eq. (7)].

One of the issues in defect formation is the significanc
of the thermal fluctuations, which continue to rearrang
the order parameter configuration down to the Ginzbur
regime (i.e., below the transition temperature). If, a
was once thought, fluctuations and Ginzburg temperatu
were to determine initial defect density, then heating th
system above the critical point would presumably eras
the pre-existing configuration of defects and create a ne
one. We performed a numerical experiment to test th
importance of fluctuations. The initial configuration with
defects present is the one shown in Fig. 1c. We rehe
this, varyinge from the broken symmetry valuee ­ 1 to
values around the critical pointe . 0, using the sametQ

as in the original quench of Fig. 1.
The results (Fig. 4) demonstrate that even when th

system is taken above the critical point, the initial con
figuration of defects is eventually recovered, as long as t
reheating does not take it further thanê into the symmet-
ric phase. This confirms the theory put forward in [10]

FIG. 3. Defect annihilation in the underdamped regime. Th
inverse of the defect count is plotted against time for variou
tQ . Also shown are least-squares fits using Eq. (7).
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FIG. 4. Memory and reheating: The post-transition configuration shown in Fig. 1 (the pointS in the sketch to the left) is reheated
to various temperatures close to the critical point (a)–(c) and cooled again toe ­ 1 [(A)–(C), respectively]. The reheat values of
e are (a)20.1, (b) 20.2, and (c)20.25. Herejêj . 0.17. Notice that the memory of the configuration is largely preserved ev
when the critical temperature is exceeded during reheating [(A) and (B)]. Memory is erased only when the temperature cros
jej freeze-out zone associated with the formation of the original defect configuration.
6
.
e
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and leads one to conclude that thermal fluctuations can
significantly rearrange configurations of the order param
ter on scales larger than,ĵ, unless the “impulse strip”
jej , jêj is traversed (or unless the time spent in th
regime is set by a time scale other thantQ).

We have used high-resolution numerical simulation
to explore phase transitions in two dimensions and ha
found the scaling with quench time scale and dampi
agree with the predictions of the Kibble-Zurek scenari
The importance of the freeze-out timet̂ as the defining
moment for defect formation has been illustrated.
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