VOLUME 80, NUMBER 25 PHYSICAL REVIEW LETTERS 22 UNE 1998

Vortex Formation in Two Dimensions: When Symmetry Breaks, How Big Are the Pieces?
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We investigate the dynamics of second-order phase transitions in two dimensions, breaking a gauged
U(1) symmetry. Using numerical simulations, we show that the density of the topological defects
formed scales with the quench time scalg asn ~ 751/2 when the dynamics is overdamped at the
instant when the freeze-out of thermal fluctuations takes placen a:Fldréz/3 in the underdamped case.

This is predicted by the scenario proposed by one of us (W.H.Z.). [S0031-9007(98)06423-0]

PACS numbers: 05.70.Fh, 11.15.Ex, 11.27.+d, 67.40.Vs

Phase transitions occur at all energy scales, from Bosere the following {/x = (i1, ¢»), i runs over{x, y}, and
Einstein condensation near absolute zero to the sub-Planék, s = 9, + ieA,¥]:
temperatures relevant for symmetry breaking in a cosmo-

logical setting. While the dynamics of some types of first- Tx = i, II; = 9:A;, (1)
order transitions (i.e., the process of nucleation) has been ,
extensively studied, analogous understanding of second- dimx = Vi — A%y — 2eexyA'd;y

order transitions is emerging only now. In this case there oV

is no supercooling and the final state of the system is —— —gwyx + O, (2)
asymptotically approached through phase ordering. Un- dx

til recently, research has focused largely on the asymptotic
scalings of this process [1] rather than on the dynamics of
the transition itself. 1 1
The change in focus is relatively recent. Kibble [2] V() = —— emdy® + — y*. (4)
pointed out that topological defects may have significant 2 4
cosmological consequences—i.e., they may act as seedibe system is subjected to the white noiféx,y,t);
for structure or as constraints on models. While their initiak 3 (x, y, )3 (x,y’, t)) = 2906(x — x")é(y — y")é(t —
statistics may be wiped out at later times, some featureg). The heat bath temperaturedsand » sets the damp-
(such as thab initio existence of an “infinite” string) are ing rate, in accordance with the fluctuation-dissipation
essential for the scenario. Also, the initial defect densitytheorem.
may be directly relevant for generation of baryons [3]. We induce the symmetry breaking by changing the sign
The configuration of the order parameter establishedf the dimensionless parametein the effective potential
in the course of the transition is therefore important.over the quenchtime scatg, sothate = t/7o (le| = 1).
Furthermore, it is accessible in cases where topologicalhe phase transition occurs when it becomes energetically
defects are formed, as they bear witness to the dynami@nd entropically favorable for the order parameter to
of the order parameter in the vicinity of the critical point. assume (in equilibrium) a finite expectation value. In our
Experiments based on this idea allow one to probe thease this happens in the regidn< e <« 1. The shift of
critical dynamics of symmetry breaking, and have beertritical temperature frone = 0 is due to the coupling to
carried out in liquid crystals [4] and in superfluids [5—8]. the gauge field 2 ~ m3 + ¢2(A%)) and as a result of
They have led to new insights into the dynamics offinite temperaturé, which we take to b@.01.
the transition between phasdsand B of He [9]. A The equations of motion are evolved on a torus 1>
description of the dependence of defect density on the raigrid points, using the staggered leapfrog method. We use
of the transition and the damping of the order parametethe gauget, = 0, implicitin Egs. (2) and (3), and perform
in second-order transitions has been proposed by one of @9 realizations of each parameter set. We resolved defects
[10], and in this Letter we discuss further and verify thisby several grid spacings at low temperatures.
model with numerical simulations. We begin the simulations well above the phase transi-
We study the consequences of second-order phase tranin, allowing the system to equilibrate under the influence
formations of the order parametér, a complex scalar, of the noise and relaxation at constant We monitor the
with Landau-Ginzburg dynamics in two spatial dimensionsorder parameter and the gauge field throughout the subse-
and an associated gauge fidld This is the Abelian Higgs quent evolution. The focus of attention, however, is the
model coupled to a heat bath and with a dissipative terrmumber of topological defects, which can be identified as
When cast into first-order form, the equations of motionzeros ofis in the broken symmetry phase. Initially, in the

a,01; = V2A; — eexyhxdithy — EAilyl*,  (3)
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symmetric phase, such zeros are plentiful and short livedities follow their equilibrium expectation values. Thus

(see Fig. 1). While they cannot be identified with defectsthe timesi;, = * 7. /77 and?; = im52/37-1Q/3, giving

their density and arrangement gives an idea of the naturg{p = i(nTg/TQ)lﬂ and & = t(m%/rQ)2/3, mark the

of the thermal fluctuations. borders between the (approximately) adiabatic and impulse
BelowT their density decreases, although there still ex{or “drift”) stages of evolution off in the overdamped and

ist regions over which the field has a near-zero eXpeCtatiO[]nderdamped cases, respective|y_

value and hence many unstable zeros. Eventually, Only In particu|ar, the correlation |engt§ of ‘r// above the

a few isolated defects remain. We count only those tharansition will cease to follow the Landau-Ginzburg scaling

have no companions withigy = m; '. (€ = &o/lel'/?) once the adiabatic-impulse boundary at
The local and global« = 0) gauge cases are quali- —7 is reached. Dynamics will be suspended (except for

tatively indistinguishable until this late stage. However,the drift and noise) in the intervat-7, 7] and will resume

local defects do not interact over more than a few corregt +% below the transition.

lation lengths and annihilate relatively slowly, even when e expect, then, that the characteristic length scale

the friction coefficient is small. By contrast, global defectsover which ¢ is ordered already in the course of the

interact with a logarithmic potential, and disappear muchransition will be the correlation length at freeze-afit=

more rapidly. Estimates of initial densities become morez,/\/¢ [10]. This results in&b = fo(TQ/nrg)l/“ and

difficult in this case. Below, we shall focus on the local & = éo(1o/70)'? in the two cases. The initial density

case, leaving global-local comparisons for the future.  of vortex lines in two dimensions should then scale as
The theory of defect formation combines the realization,

due to Kibble [2], that the domains of the order parameter

2
¢ which break symmetry incoherently must contain of o= lA = ! n70 , (5)
the order one “fragment” of a defect, with the estimate Y(fpg)r (F€0 \ o
[10] of the relevant size based on the comparison of the
relaxation time scale aof with the effective rate of change 2/3
of the mass parameter. In the immediate vicinity of oy — 1 70 (©6)
the critical temperature, the dynamicsfare subject to v (f¢§¢)2 (fpé0)* \ 70
critical slowing down. Thus, the time scateover which
the order parameter can react is givendyy = 7773/|6| in the overdamped and underdamped regimes, respec-

andr; = 7o/l€e|'/? (1o = 1/myo) in the overdamped and tively. Above, f is the proportionality factor which is
underdamped cases, respectively, where correspondingdxpected to be of the order of a few [11], and which may
the first or second time derivative in Eq. (2) dominatesbe estimated analytically in some cases [12].
The overdamped scenario is presumably more relevant for The relative importance of thg andy terms in Eq. (2)
condensed matter applications, while in the cosmologicahlso depends oi. What matters for the formation of
settingsyy may be underdamped. defects is—in view of the arguments above —which of the
The characteristic time scale of variationseds e /e =  two terms dominates @ Thus,n? > & is the condition
t. The system is able to readjust to the new equilibriunfor overdamped evolution, which leads to the inequality
as long as the relaxation time is smaller thranHence, 7’7y > m3. Therefore, one can enter the overdamped
outside the intervdl—17, 7] defined byr[€(7)] = 7,the evo- regime by performing a sufficiently slow quench, as well
lution of ¢ is approximately adiabatic, and physical quan-as increasing the damping parameter

®)

FIG. 1. (a)-(c) Representations of the field and defects (filled squares or open triangl@8} gnid during and after a quench of
time scalery, = 32, with » = 1.0 and in the presence of a gauge fiedd=t 0.5). (a) shows the field at the critical poir¢ & 0),
(b) ate = 0.6, and (c) ate = 1, timer = 27, after the critical point.
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We verify these scalings in Fig. 2, where the numbers of The annihilation rate is expected to be of the form
defects obtained in both the overdamped and underdampeéd= — y(n)n?, as it is proportional to the frequency with
cases are plotted as a function of the quench tipe  which defects encounter one another. This leads to
In the overdamped case the annihilation of the well-
separated topological defects is slow. Consequently, it is nl=ng! + xt. (7)

relatively easy to count them at some fixed time. This_. .
yields Fig. 2a withn ~ 7_5, y = —0.44 = 0.1 for 7o = Figure 3 shows (in the underdamped case, when the an-

; ; : Pt nihilation is appreciable) the fit between (7) and the data.
i’ r 9‘1’;’3 [ig]r_eimseimingltsogé?u;?;? Ljhcigegz(ﬁﬁggr}o?fWe can then infer the value of the initial defect densi§y

the underdamped case, Fig. 2b, except that annihilatioWhiCh. istr;l]lso Shov‘;r '3 Fig.k2bé Th_islgrocedure (for:Ioglvg?,
is now quite rapid, and the initial number of defects is€-9-, In the supertiuid wor [5]) yields a somewhat dif-

harder to define. This is especially true for the fastes{erem slopey = —0.79 X 0.04, steeper than .equal-t|r.ne_
quenches which produce most defects. However, whe ata, and somewhat steeper than the theoretical prediction.

the three left-most points most affected by annihilation also seems to successfully correct for the annihilation
are ignored, straightforward counting of vortices yields.(althonghthe leftmost point still seems to be affected). Us-

y = —0.6 + 0.07. Thisisin agreementwith the theory— M9 th?t_datadintFig'. 2~ Zvef_t(i_stirr:ay% = 712 andfj =8
which in this case predictg = —2/3 [10,13]—and with (e%Ja- I?ti ‘T’la)flﬂ L d[fl 'T% 0 ? ( ')].th anifi
the indications from kink formation in one dimension [14]. _ ©"€ Of (€ ISSues In detect formation 1 the significance

The reason the slope might become shallower for sma@lc thedthermal quE[:tuatlor;fs,, WTCh gontmLtje ttr? rg&_xrra;ge
7o is easy to understand. A very fast quench become§'c O'C€! Parameter configuration cown 1o the &inzburg

indistinguishable from an instantaneous one, which doe£9'me (i.e., below the trgnsmon temperature). If, as
not allow for the adiabatic regime we have noted above/as once thought, flggtuanons and G_Inzburg temperature
ere to determine initial defect density, then heating the

Instantaneous quenches start the evolution in the brokely ¢ b th itical point ld bl
symmetry phase, but with an initial field configuration system above (he critical point would presumably erase

which will contain many zeros per healing-length Sizethe pre-existing configuration of defects and create a new

volume—too many to regard them as well-defined defectX"e: We performed a numerical experiment to test the

Unless the defects are well separated at their conceptidﬁqportance of qu_Ctuations. The init?al cpnfiguration with
(which in effect requireg¢ < 1), annihilation will decide defects present is the one shown in Fig. 1c. We reheat

their initial density. We see this already in Fig. 2a, Wherethis' varyinge from the broken symmetry value = 1 to

¢ = 0.5 for the leftmost point. The effect is even more values around the critical poirt = 0, using the same,

; : s in the original quench of Fig. 1.
Er:grnemrj:;i?jda;nni;r};t?onnd?;?garggfd case, which allows fof The results (Fig. 4) demonstrate that even when the

system is taken above the critical point, the initial con-
figuration of defects is eventually recovered, as long as the
reheating does not take it further tharnnto the symmet-

L "'”tl‘i I ric phase. This confirms the theory put forward in [10],
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FIG. 2. The variation of defect coutN with 7, in both (a) 0 | AN T T I
overdamped and (b) underdamped regimes. The fitted slopes 0 500 1000 1500 2000
are (@) —0.44 = 0.10 (x> = 0.44, dropping the two leftmost t—t

crit

points) and (b)—0.60 = 0.07 (x> = 0.034, dropping three
points). Predicted values werel/2 and —2/3. The points FIG. 3. Defect annihilation in the underdamped regime. The
fitted by the dashed line are inferred from the fits in Fig. 3.inverse of the defect count is plotted against time for various
The slope is—0.79 * 0.04 (x> = 0.27). To. Also shown are least-squares fits using Eq. (7).
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FIG. 4. Memory and reheating: The post-transition configuration shown in Fig. 1 (the$wirthe sketch to the left) is reheated

to various temperatures close to the critical point (a)—(c) and cooled agair=td [(A)—(C), respectively]. The reheat values of

€ are (a)—0.1, (b) —0.2, and (c)—0.25. Herelé&| = 0.17. Notice that the memory of the configuration is largely preserved even
when the critical temperature is exceeded during reheating [(A) and (B)]. Memory is erased only when the temperature crosses the
le| freeze-out zone associated with the formation of the original defect configuration.

and leads one to conclude that thermal fluctuations cannof5] P.C. Hendryet al., Nature (London3868 315 (1994).

significantly rearrange configurations of the order parame-[6] C. Bauerleet al., Nature (London)382, 334 (1996).

ter on scales larger thar £, unless the “impulse strip” [7] V.M. H. Ruutuet al., Nature (London882, 332 (1996).

le| < |€] is traversed (or unless the time spent in that [8] V.M. H. Ruutu et aI.,Phys..Rev. Lett80, 1465 (1998).

regime is set by a time scale other thajl). [9] As remarked by G. Volovik, C_zech. J Phys_. Suppl. S6
We have used high-resolution numerical simulations 25 '3048 81996)' gndfestaEhshed md deta;ﬂ by Yu. M.

to explore phase transitions in two dimensions and have Bunkov and O. D. Timofeevskaya, cond-mat/9706004 (see

found th i ith h i | d d . also V.M. H. Ruutuet al., Ref. [8]). The exotic thermo-
ound the scaling with quench time scaleé and damping dynamic configuration of the “baked Alaska” mechanism

agree with the predictions of the Kibble-Zurek scenario. s not required to nucleate phaseof *He out of phase
The importance of the freeze-out t|nﬁeas the deﬁning A. Rather, the same Symmetry_breaking dynamics [1] in-
moment for defect formation has been illustrated. voked to predict creation of topological defects will al-
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