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The multiple scattering interferences due to the addition of several contiguous potential units are
to construct composite complex potentials that absorb at an arbitrary set of incident momenta or f
broad momentum interval. [S0031-9007(98)06418-7]
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Complex absorbing potentials are an important tool i
stationary or time dependent scattering calculations [1
They avoid spurious edge effects of the finite “box” in
which the system is enclosed for numerical purposes
wave packet calculations [2]. They have also been us
in other contexts, such as time independent approach
to reactive scattering [3–5] or calculations of the micro
canonical cumulative reaction probability and transitio
probabilities in time dependent fields [6,7]. Allcock and
other authors have claimed that no perfectly absorbing p
tential can exist, even for one single incident momentum
with finite spatial support [8]. But counterexamples hav
been found; i.e., potentials that absorb perfectly at one s
lected momentum for an arbitrarily small support do exis
[9]. In actual collisions, however, the wave packets ma
have broad translational momentum distributions and b
peaked around different momenta. Such a case arises,
example, as a result of internal state energy discretiz
tion of the collision products [10]. So the challenge is
to model complex potentials that absorb perfectly at a di
crete set of energies, or with sufficient efficiency for broa
momentum intervals.

In this Letter we shall make use of the interference
between paths associated with “multiple collisions” in
composite barriers to construct complex potentials th
absorb at a selected set of incident momenta or for a bro
momentum range. Two different complementary method
are described and demonstrated. The first method wor
by successive addition of one potential unit for eac
absorbed momentum and leads to perfect absorption
the selected momenta. In the second method no perf
absorption is achieved but it is numerically much mor
robust than the former, and allows for efficient absorptio
in a broad momentum range.

The first construction method is now described. Assum
two complex potential unitsV1 and V2 of contiguous,
finite supports,V1 being the first one from the left, and
V2 the second. LetT

r ,l
i andR

r ,l
i , i  1, 2, be the complex

transmission and reflection amplitudes for left (l) and right
(r) incidence for theith (isolated) potential unit, andTr ,l

or Rr ,l (without subscript) the corresponding amplitude
for the compound barrier,V  V1 1 V2. These last
quantities may be obtained in terms of the former by th
multiple collision technique [11], i.e., by considering the
0031-9007y98y80(25)y5469(4)$15.00
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sum of the amplitudes for all the possible “paths” that le
eventually to transmission or reflection. In particular,
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Now assume that

T l
1sk1d  Rl

1sk1d  0 , (2)

wherek1 . 0 is a particular (dimensionless) wave numb
(k  d1pyh̄, wherep is the dimensional momentum an
d1 is the dimensional width of the first barrier.) Insertin
(2) into (1) givesTlsk1d  Rlsk1d  0. In other words,
if V1 is a perfect absorber atk1, the total potential
V is a perfect absorber fork1 too. The objective
of adding V2 is to absorbalso at k2 fi k1. If V2 is
naively constructed in such a way thatRl

2sk2d  Tl
2sk2d 

0, according to (1) the composite barrier does not trans
the new momentum,Tlsk2d  0, but in generalRlsk2d fi

0 because of reflection in the first barrier,Rl
1sk2d fi 0.

Instead, if the second potential satisfies

T l
2sk2d  0 , (3)

Rl
2sk2d 

Rl
1sk2d

Rl
1sk2dRr

1 sk2d 2 Tl
1sk2dTr

1 sk2d
, (4)

total absorption is achieved atk2, Tlsk2d  Rlsk2d  0.
Equation (4) is obtained by assumingRlsk2d  0 and
solving for Rl

2 in (1) in terms of quantities that depen
only on V1. Even though the two barriers alone ha
nonvanishing reflection amplitudes fork2, when they are
put together the interference effects exactly cancel
global reflection.

We shall next describe a way to constructV1 and V2
with the desired partial reflection and transmission a
plitudes. Dimensionless variables will be used throug
out. The dimensionless positionx is obtained by dividing
© 1998 The American Physical Society 5469
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s.
the dimensional position by a reference length (d1 in this
case), so that the support ofV1 has length one when using
the x variable. The second potential unit,V2, may have
a different length,L2  d2yd1. Dimensionless energies
(kinetic and potential) are obtained by dividing the cor
responding dimensional quantities byh̄2y2md2

1 , m being
the mass of the particle.

PotentialsV1 with vanishing reflection and transmission
coefficients fork1 can be constructed by means of a
inversion procedure similar to the one described in [9
The important difference with respect to that work is tha
now transmission is allowed atother wave numbers, so
that the wave function and its derivative are continuous
x  1. This is necessary to take advantage of interferen
effects. The boundary conditions to be satisfied by th
stationary wave function corresponding to an incide
plane wave with wave numberk1 at the two potential
edges are

c1s0d  1, c 0
1s0d  ik1 ,

c1s1d  c 0
1s1d  0 ,

(5)

where the prime means “derivative with respect tox.” To
satisfy these four conditions the wave function between0
and 1 is written in terms of a functional form with four
free parameters. By substituting this expression in t
four equations (5), the four parameters are determine
and solving in the Schrödinger equation forV1sxd one
finds

V1  k2
1 1 c 00

1 yc1 . (6)
5470
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The simplest choice forc1 is a polynomial, c1 P
j0,3 ajxj . From (5) the coefficientsaj are readily

obtained,

a0  1, a1  ik1, a2  23 2 2ik1,

a3  2 1 ik1 . (7)

To construct the potentialV2 between 1 and1 1 L2, or
additional units with support between two pointsx 
z and x  z 1 L, it is convenient to define the new
variable y  sx 2 zdyL, so that the potential unit goes
from y  0 to y  1. A new wave number is also
defined ask̂  Lk (remember thatL is dimensionless).
The reflection amplituderlsk̂d for the new variables (k̂, y)
is related to the one for the original variables (k, x) by
rlsk̂d  Rlskde22ikz [12]. It is much easier to manipulate
the constraints (3) and (4) using the new set of variable
In particular, for obtainingV2, it is first assumed that
the wave functionC2syd corresponding to a plane wave
incident from the left with wave numberk̂2  L2k2 obeys
the four conditions

C2sy  0d  1 1 rl
2 ,

C0
2sy  0d  ik̂2s1 2 rl

2d ,

C2sy  1d  C0
2sy  1d  0 ,

(8)

with rl
2sk̂2d  Rl

2sk2de22ik2 and Rl
2sk2d given by (4).

By assuming, as before, a polynomial form,C2syd P
j0,3 bjyj , and substituting in (8), the coefficients are

found to be
b0  1 1 rl
2, b1  ik̂2s1 2 rl

2d , (9)

b2  2s3 1 2ik̂2d 2 rl
2s3 2 2ik̂2d, b3  s2 1 ik̂2d 1 rl

2s2 2 ik̂2d. (10)
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Solving in the Schrödinger equation for the correspon
ing potential and rewriting the result for the original vari
ables, c2sxd  C2syd, one then finds forV2 between
x  1 andx  1 1 L2,

V2sxd  k2
2 1

c
00
2

c2
L2

2 . (11)

The potentialV1 1 V2 so constructed is a perfect absorbe
at k1 and k2, and addition of a third unitV3 will not
change this property, as we have already discussed
the addition ofV2. By treating theV1 1 V2 potential

as a newfV1 unit, and the new barrierV3 as fV2, the in-
version method can be repeated to build a potentialV3

that absorbsk3. This procedure can be continued to con
struct “perfectly absorbing composite potentials” for a
arbitrary number of momenta. [With minor changes th
method is also applicable when an infinite barrier is put
the right edge of the last barrier. The only difference
d-
-

r

for

-
n
e
at
is

that the conditionc 0sx 
P

Ljd  0 need not be imposed
so that a quadratic polynomial, rather than a cubic one
enough for the last barrier.] Note that the polynomials a
the minimal set of conditions discussed here have the
vantage of providing simple explicit expressions but oth
functional forms for the wave functions may be used, a
further conditions may be imposed.

Figure 1 shows the survival probabilitySskd ;
jRlskdj2 1 jTlskdj2 versus k for potentials constructed
with two units in this fashion (thick solid and dotted
lines). The effective absorption width aroundk2 in-
creases with decreasingL2, an effect reminiscent of the
broadening of transmission resonances when the walls
a double barrier are narrowed. In Fig. 2 three units a
used to absorb at three different wave numbers. The pr
to pay for the requirement of perfect absorption is that,
least for the potential units we have studied, numeric
instabilities complicate their practical implementation
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FIG. 1. Survival Sskd versusk. The thick solid and thick
dotted lines correspond to “perfectly absorbing compos
potentials” withL2  0.5 and L2  1.6, respectively (L1  1
in both cases), that absorb atk1  1 and k2  1.2. (For
numerical stability the theoreticalV1 is truncated for values
of the real or imaginary parts larger than103.) The dotted and
dashed lines correspond to “square barrier composite potenti
with N  2 and N  3, respectively, with the same tota
length as the potential of the thick solid line, and optimize
for the same values ofk (s  2). The solid line with circles
corresponds to the potential2ihx2, where h minimizes the
sum of the survivals at the two selected wave numbers.

Even though the potential is explicit, the absorption
an arbitrary momentum has to be computed numerica
The numerically calculatedS at and aroundk2 becomes
very sensitive to small errors in the discretization of th
potentials ifT1sk2d is extremely small [13] (it appears a
a denominator in the estimate of the error ofS caused
by errors inR

l,r
1 or T1). A way to avoid this problem in

practice is to truncate the potentials so thatSsk1d is not
exactly zero [but sufficiently close for practical purpose
say, Ssk1d  1025]. This increasesT1sk2d and makesS
in the proximity of k2 much more stable with respect to
slight numerical errors due to the discrete representat
of the potential. However, the difficulties increase whe
adding morek points. A numerically robust alternative
is described next.

The second method also makes use of interferen
between contiguous units, but in a less explicit way th
the former approach. Now the functional form chosen f
the potential is a series ofN equal length complex square
barriers with complex energieshVjj, j  1, 2, . . . , N. The
real and imaginary values ofVj are optimized with
standard subroutines according to a flexible criterion: T
sum of the survivals for a set ofs selected points is
minimized [14],
ite
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FIG. 2. Sskd versusk. The thick solid line corresponds to
a “perfectly absorbing composite potential” constructed wi
three units to absorb atk1  1.94, k2  4.84, and k3  7.75,
L1  1, L2  0.008, and L3  0.024. As in Fig. 1 this
potential is truncated to avoid numerical instability. Als
shown is the survival for square barrier composite potenti
optimized for the same points (s  3), and with the same
total length: N  1, solid line; N  2, dotted line; N  3,
dashed line;N  4, dot-dashed line. The solid line with circles
corresponds to the potential2ihx2, where h minimizes the
sum of the survivals at the three selected wave numbers.

fsV1, . . . , VN ; k1, . . . , ksd 
sX

a1

SsV1, . . . , VN ; kad .

(12)

Note thats andN are not necessarily equal. In a gener
application thes points are evenly spaced in a give
interval in order to absorb arbitrary wave packets with
the interval. The advantage of this functional form for th
potential is that, for a given set of valueshVjj, the total
transmission and reflection coefficients and their gradie
with respect to variations of the barrier parameters c
be obtained exactly by multiplication of2 3 2 transfer
matrices. These evaluations are very fast, so that m
more parameters can be optimized, two for each barr
than for other functional forms [15,16].

In Figs. 1 and 2 the survival probabilities obtained wit
the two methods fors  2 ands  3 can be compared in
the low (dimensionless) wave number region, which is t
important one to minimize the (dimensional) absorbin
potential width in the applications. The second meth
provides with just a few barriers excellent survival curve
below 0.001, which is sufficient for most practical pur-
poses. Note the improvement of the survival curves as
number of barriers increases. This method achieves lar
absorption widths than a previous systematic approa
5471
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[9,15] in all studied cases [16], with the added advanta
of a very simple implementation. We have also include
in both figures the survival curves for one of the most fr
quently used potentials,V  2ihx2, whereh (real) has
been chosen to minimizeS at the two or three selected
points in Figs. 1 or 2, respectively. A more extensiv
comparison will appear elsewhere [16].
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