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Measuring Quantum Optical Hamiltonians
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We show how recent state-reconstruction techniques can be used to determine the Hamiltonian of an
optical device that evolves the quantum state of radiation. A simple experimental setup is proposed for
measuring the Liouvillian of phase-insensitive devices. The feasibility of the method with current tech-
nology is demonstrated on the basis of Monte Carlo simulated experiments. [S0031-9007(98)06431-X]

PACS numbers: 03.65.Bz, 42.55.—f, 42.50.—p

In recent years, the possibility of “measuring” the quan- Pout = Gpin (1)
tum state, after remaining for a long time a mere theoreti-

. where G has actually a four-index matrix represen-
cal speculation [1], eventually entered the realm of truqation and on the Fock basis one haspou|m) —
’ out -

experiments. From the first experimental demonstratimz-x G (hlpwlk). For a device that is homogeneous
h,k=0 inlK/.

[2], the so called “homodyne tomography” technique ad- L . .

I ._along the direction of light propagation the Green super-

vanced to the level of a quantitative state-reconstructior . .

. o . .o operator can be written as the exponential of a constant
technique [3,4], achieving a high degree of reliability in =~ " .
. X . . Liouville superoperato as follows:

experiments [5]. This state-reconstruction method is now

ready to be used for concrete applications. G =exp L), 2

What is the practical use of measuring a quantum state? : L : .
Apart from the availability of a kind of “universal detector” TWherer is the propagation time (i.e., the device length).

61 that provides information on all observables at a time The Liouvillian £ gives the evolution of the state through
[6] P :an infinitesimal slab of the device media according to the

meatlstjrlng a qutgntum_tﬁ_tate Is the ollnly way ttho checl aster equatiop = L p. In this Letter we restrict our
a state preparation within a (generally nonorthogona ttention to the case of a perfectly phase-insensitive de-

set. In turn, Fhe use of homodyne tomography to teStice: as it will be clear from the following, the case of a
state preparation becomes a way to check the operation

of a quantum device that prepares a chosen state from
a given one. It is now natural to ask if eventually
it would be possible to recover complete information
on the quantum device itself, namely to reconstruct the
detailed form of its Hamiltonian—or, more generally, of
its Liouvillian, as in reality the device is always an open
quantum system. Previous theoretical proposals to givea |
complete characterization of quantum processes have been ggrce
made in Refs. [7,8]. There, the methods are restricted

to systems with finite dimensionql .Hilbert space, and the input output
method does not lead to an explicit reconstruction of the

Liouvillian. In this Letter we show how this goal can

be achieved in practice, presenting a simple experimental

setup for measuring the Liouvillian of a phase-insensitive ‘

optical device, using currently available technology.

The main idea for reconstructing the Liouvillian of -20 2 -20 2
a quantum device is sketched in Fig. 1. One should < X

impinge the c:e;nce Y{V't?ha kgo;/vn |_nputthsta,ten fromt FIG. 1. Sketch of the method for measuring the Liouvillian
a (overjcomplete set, then determine the sialg & of an optical device. A known input state,, is impinged

the output, and finally compargi, t0 pou. FOr an into the device, and a quantum tomography of the output state
optical device the determination of the output state ids performed using a homodyne detector. By scanning an

made possible by the homodyne-tomography techniqudoverjcomplete set of states,, at the input and comparing

Regarding the generation of the set of input stdjes}, them with their respective output states, it is possible to
; tal method is suqaested later in this I_em_}reconstruct the Liouvillian pf the device. The hlstograms

an experimen 99 lbf homodyne data, here given for the sake of illustration,

The evolution of the state from, to pou: is governed by  correspond to a device that consists of an empty cavity, and
the Green (super)operatgr with the input states as number staggs = |n)(n|.

Homodyne detector
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phase-sensitive device is much more complicated, and will @

be analyzed elsewhere [9]. A phase-insensitive device is

a device that leaves dephased states as dephased, as in th¢
case of a traveling wave laser amplifier. A dephased state

L ——
is diagonal in the photon-number representation, with den- R

sity matrix of the formp = >, r,|n){(n|, where{|n)} v %, Lo

denotes the complete set of eigenvectors of the photon- i ) :
number operatonta of the field mode with annihilation w’ Computer
operatora. For the evolution of dephased states it is suf- e, data acquisition

ficient to determine the sector of the Green superoperator

that evolves dephased states, i.e., the two-index Fock maiG, 2. Experimental setup, including the apparatus used to

trix G, = (n|G[|lm){m|]n). generate the input number states, = |n){n| needed for
The experimental reconstruction 6f,, could be per- thet. t?m(?gfaphicil fnggfgulgt(i)%l; g{atteh|e>l_1i‘gl|rjvtiwgningtjtan

formed by impinging a number statg, = |n)(n| on the  OpPlcal device. ran ; n 1c

device, and then making the homodyne tomographyof thisa™ =, 2cieved by perorming piotodetectoriatn e

output state. In this fashion, the number probability dis-o" nondegenerate optical parametric amplifier (NOPA) with

tribution r(n) of the output coincides with theth row  vacuum input is used to produce the twin beams.

of the Green matrixG,,,, and by varyingn one would

reconstruct the whole matrix. Since producing number : . .

states is experimentally difficult, one would try to use co-'° related to the Green matrix through the identity

herent states instead. In this way matrix elements of the ri(n) = [(9p — D|x|* + 17**!

form (¢|G[|a){a|]l¥'y would be obtained, witha) de- =

noting the scanning coherent input state, apgdand |”) X Z( >[|K|2(1 = p)"Grmn - (4)

being a couple of vectors of the tomographically recon- m=0% M

structed matrix representation. Unfortunately, the relationrhe relation (4) can be inverted as follows:

betweenG,,, and{(n|G[|a){al|]|n) is highly singular, in-

volving the P function of |m) (m|, and hence the matrix 1

G,.» cannot be obtained in this way starting from experi- [(np — DI]> + 177+

mental data. On the other hand, the Fock representation “ (n+ 1 (mp — DIx|? "

has a privileged role, because here the Liouvillian matrix X Z / (p — DIl + 1 ri(n +1).
has a transparent meaning in terms of creation and anni- n=0 nn 5
hilation operators. How to overcome the problem of gen- )

erating input number-states? Actually, for our purposeEquation (5) is our algorithm to reconstruct the Green ma-
it is sufficient to generate number states with randem trix G;; from the collection of all tomographically mea-
as far asn is known. This leads us to devise the setupsured number probabilities (r) for different outcomes
depicted in Fig. 2. A nondegenerate optical parametrigin practice the sum in Eq. (5) is truncated at some maxi-
amplifier (NOPA) with a strong classical pump-down con-mumn]. Notice the interplay of the gair and the quan-
verts the vacuum into a pair of twin beams. The twintum efficiencynp in determining the probability, on
beams are used as a randaenfrock state generator, by one hand, and in producing the statistical errors in the re-
measuring the number of photons on one beam (detecteonstructed Green matrix on the other hand. For decreas-
D in Fig. 2) while impinging the other beam on the op- ing quantum efficiency;p — 0, larger values of: can be
tical device. For quantum efficiencyp, = 1 at detector made more probable by increasing the gain of the NOPA
D, the photodetection would reduce the twin-beam statasx — 1~. However, at the same time, convergence of
[TB) « >, «"|n,n) into a randomn state |n) at the the sum in Eq. (5) becomes slower, and statistical errors
input of the optical device, with thermal probability dis- of matrix elements7,; increase as a result of tomographic
tribution w,, = |«[**(1 — |«|?), wheren is the measure- errors onri(n). Hence, the effect of quantum efficiency
ment outcome aD. The tomographically reconstructed np, which reduces the size of the viewable mattfiy,
number probabilityk|G[|n) (n|]lk) of the output state al- can be partially compensated by increasing the gain of the
ready would provide theth row Gy, of the Green matrix. NOPA, however, at the expense of statistical errors for
On the other hand, forp, < 1, a mixed state, willac-  G;. For the tomographic measurement, by increasing the
tually enter the device instead &f)(n|, as a result of number of experimental data and using-dependent pat-
state reduction aD. The outcome: probability distribu-  tern functions, the method of Ref. [4] can compensate the
tion then becomes effect of low quantum efficiencyyy < 1, that, anyhow,

on = (1 — &) (nplxl*)" (3 Must be above the thresholgl, = 1/2. On the other

" [(np — D|k|? + 1]+1° hand, for quantum efficiency;p at detectorD there is

One can easily show that the tomographically reconnot such a threshold, as one can see from convergence
structed output number probability(n) = (k|G[p,]lk)  and an error-propagation analysis of Eq. (5).
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The proposed state-reduction scheme—based on twin-
beams from a NOPA—is not a new one, and, for
example, a similar setup has been proposed in Ref. [10]to 1, .
generate Schrodinger-cat states. As such state reduction is
the core of our measurement method, we want to examine
it at work in a realistic situation. Typically the NOPA (a)
can be pumped by the second harmonic @-awitched
mode-locked Nd:YAG laser, with the output twin-beamsF|G. 3. (a) Linear phase-insensitive laser amplifier with=
pulsed at a repetition rate of 80 MHz, and with a0.1940 and B = 0.00945. Monte Carlo simulation of the
7 ps pulse duration. Thus, the twin-beam mode withreconstruction o_f the LiouvilliarL,,, in Eqg. (7) by means of the
annihilatora at the input of the optical device is actually a groposed experimental setup. The reconstruction is performed

. . y using two statistical blocks of0° homodyne data for each
Wldebanq mode, with frequency centered around 532. NMYf the output states (from a total .7 X 10! of data).
and a width of 140 GHz (the inverse of the pulse timeQuantum efficiencies arg, = 0.8 and 5y = 0.85. The gain
length). The same Nd:YAG laser beam is used for theof the NOPA isk = 0.6. (b) The same reconstruction for
local oscillator (LO) of the homodyne detecté#. In  lower quantum efficiencyn, = 0.3. Here the gain is set to
this way the LO has the same central frequency and th 9=X0.;16]?nd the same number of data is used out of a total of
same time envelope of the beam at the input of the optical '
device. The integration time at photodeteci®drcan be

set to 1 ns, which is greater than the pulse width anghnoton absorptionpat of the loss termD[«], the lower
shorter than the distance between pulses. In this way eagfiagonal corresponding to the one-photon emisgibpa
pulse is completely annihilated by the detectbrduring o the gain termD[a1], and the main diagonal containing
the integration time, and, correspondingly, the homodyngne anticommutators coming from both terms.
measurement is made with the LO matched on the same |, Fig. 3a we show a typical result of a Monte Carlo
pulse shape of the signal twin-beam, which means that theyperiment of the tomographic reconstruction of the Li-
measurement is performed on the right wideband modgyyillian (7). We used quantum efficienay, = 0.8 and
after reduction by detectdd. Moreover, the detectab | — 3 at detectod andny = 0.85 at the homodyne
and the optical device can be geometrically placed in SuCHetectorHf. One can see that the details of the matrix are
a way that, within a narrow solid angle, the direction ofye|| recovered, and the truncation of the Hilbert space di-
the respective input vectors are the same relative 0 the mension does not affect the reconstruction. In Fig. 4 the
k vector of the NOPA pump, so that state reduction athree main diagonals of the matrix are plotted with their
D affects only radiation at the twik at the input of the  statistical errors against the theoretical value, showing a
device, so that the state-reduced mode®aind at the  yery good agreement. The statistical errors are of the same
device are perfectly matched. _size as those of the tomographically reconstructed output

From the above scenario it follows that the mode withyrgpapilities. Notice that the number of daté!!—10'2
annihilatora at the input of the optical device is actually needed for this experiment could be collected in a few
a wideband mode, and hence we measure the effectiginytes at the repetition rate of 80 MHz. In Fig. 3b we
Liouvillian over a 140 GHz bandwidth centered around
532 nm. Then, it is clear that all measurements for
different random inputs can be considered as independent . . . ;
only if the (atomic) relaxation times in the optical devices
are shorter than the pulse-repetition period.

Now we show results from some Monte Carlo simu-
lated experiments to see our method at work, and estimate
the number of measurements needed for the reconstruc- o
tion of Gy;.

The simplest phase-insensitive device is the phase-
insensitive linear amplifier (PIA), with LiouvillianC

L =2{AD[at] + BD[al}, (6)
where D[0]p = 0p0T — 3(010p + pote) for any
complex operatof. The Liouvillian matrix has the form

Lum = (nl L [Im)(m|]ln)

= 2{A(m + 1)[5nm+1 - 5nm]

+ Bm[anmfl - (Snm]}, (7) . . . -
. . FIG. 4. The three main diagonals of the Liouvillidr,, of
whered;, denotes the Kroneker delta. Notice tat, is  Fig. 3a are given with their statistical error bars. The full line

tridiagonal, the upper diagonal corresponding to the oneis the theoretical value from Eq. (7).
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FIG. 5. Theoretical Liouvillian for a one-atom laser, obtainedFIG. 6. Monte Carlo simulated experiment for the recon-

by solving numerically the master equation (8). The parameterstruction of the laser theoretical Liouvillian in Fig. 5. Here

for this laser areC = 1/87 =12, n, = % =17, o9 =1; np = 0.8, ng = 0.85, and k = 0.65. A set of 811>< 107 ho-

f=2 =1y =11 =00l15 modyne data have been used of a totabgf x 10" measure-
YL ments with random photon number at detedior

present a simulated experiment using the very realistic |n conclusion, we have seen that it is possible to
value np = 0.3 of quantum efficiency, however, for the experimentally reconstruct the Liouvillian of a quantum
reconstruction of a smaller matrixx< 5. Notice thatonly  gptical phase-insensitive device, using homodyne tomog-
the photodetectab is required to be linear single-photon raphy in a scheme based on parametric down conversion
resolving, whereas the homodyne detector takes advantag®m a NOPA. We have shown the feasibility of the re-
of amplification from the LO, and hence can use high effi-construction with an experimental setup that uses standard
ciency detectors (the valugy = 0.85 here used has been technology devices. The problem of low efficiency at the
widely surpassed in the real tomographic experiments, asingle-photon resolving detectd —the major obstacle
in Ref. [5]). for the experiment—has been solved by implementing a

As another example, we simulated the experimentatompensation algorithm that makes the reconstruction of
tomography of the effective Liouvillian of a one-atom 5 x 5 Liouville matrix possible even for, = 0.3, and
traveling-wave laser amplifier. In Fig. 5 the theoreticalwith a number of data that can be collected in a few min-
Liouvillian matrix is plotted, as obtained from a long- utes of experimental run.
run quantum jump simulation of the one-atom-laser master
equation [11]:
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