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Coulomb Interactions at Quantum Hall Critical Points of Systems in a Periodic Potential

Jinwu Ye
Department of Physics, The Johns Hopkins University, Baltimore, Maryland 21218

Subir Sachdev
Department of Physics, P.O. Box 208120, Yale University, New Haven, Connecticut 06520-8120

(Received 16 December 1997)

We study the consequences of long-range Coulomb interactions at the critical points between integer/
fractional quantum Hall states and an insulator. We use low energy theories for such transitions in
anyon gases in the presence of an external periodic potential. We find that Coulomb interactions are
marginally irrelevant for the integer quantum Hall case. For the fractional case, depending upon the
anyon statistics parameter, we find behavior similar to the integer case, or flow to a novel line of fixed
points with exponentsz ­ 1, n . 1 stable against weak disorder in the position of the critical point, or
runaway flow to strong coupling. [S0031-9007(98)06345-5]
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The zero temperature quantum phase transitions
tween the different quantum Hall and insulating states
a two-dimensional electron gas in a strong magnetic fie
are among the most intensively studied quantum cri
cal points, both theoretically [1,2] and experimentally [3
Earlier theoretical investigations focused on the transitio
between the integer quantum Hall plateaus and describ
them in terms of noninteracting electrons moving in a ra
dom external potential [4]. It has also been argued that
transitions between fractional quantum Hall states cou
be mapped onto models essentially equivalent to tho
between the integer states [5]. The latter point of vie
was, however, questioned by Wen and Wu [6] and Che
Fisher, and Wu [7]: they focused on the simpler case
systems in the presence of aperiodic rather than a ran-
dom potential, and examined a model of anyons, with
statistical angleu and short-range repulsive interactions
which displayed a second order quantum phase transit
between a quantized Hall state and a Mott insulator as
strength of the periodic potential was varied. This trans
tion was characterized by a line of critical points with con
tinuously varying exponents, parametrized by the value
u. For the caseu ­ 0, when the anyons were fermions
the transition was out of an integer quantum Hall stat
its exponents and other universal properties were diffe
ent from the cases0 , u , 2p for which the anyons ac-
quired fractional statistics and the transition was out of
fractional quantum Hall state. (Foru ­ 2p the anyons
became bosons and the Hall state reduced to a superflu

In all of the above theoretical works, the long-rang
Coulomb interactions between charge carriers have be
effectively ignored. However, a few recent works hav
taken steps to remedy this serious shortcoming. Ya
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et al. [8] studied the integer quantum Hall transition und
a Hartree-Fock treatment of the Coulomb interaction. L
and Wang [9] showed that the renormalization gro
eigenvalue of the Coulomb interaction was zero at t
Hartree-Fock critical point; higher order calculations a
therefore necessary to understand the physics.

In this paper we shall provide a thorough analysis of t
consequences of Coulomb interactions on the anyons
periodic potential model of Refs. [6,7] (short range inte
actions are irrelevant and so need not be considered).
shall show that the Coulomb interaction ismarginally ir-
relevantfor the integer case (u ­ 0), and remains so for
the fractional case for small values ofu; this marginally
irrelevant interaction will lead to logarithmic correction
to naive scaling functions for the vicinity of the transition
For largeru, we will establish, in a certain1yN expansion,
the existence of a novel line of fixed points at which th
Coulomb interactions acquire a nonzero fixed point va
determined by the value ofu. There are no logarithmic
corrections at these fixed points, and naive scaling ho
We find a dynamic critical exponentz ­ 1 at all points on
the fixed line, providing a concrete realization of the sc
nario [2,10], not previously established explicitly, that e
ergies must scale as inverse distances for the1yr Coulomb
interaction. It is also worth noting that, despite the val
z ­ 1, the critical correlators are not Lorentz invarian
We also find that the correlation length exponentn satis-
fies n . 2yd (whered ­ 2 is the spatial dimensionality)
along this fixed line, which implies that the fixed line i
stable towards disorder involving local fluctuations in th
position of the critical point.

We begin our analysis by writing down the mod
of Ref. [7] extended to include Coulomb interaction
between the charge carriers ∏
L ­
Z

ddxdt

∑
acmg0≠0cm 1 cmgi≠icm 2

i
p

N
qmey2a1y2a0cmg0cm 2

i
p

N
gmey2a1y2aicmgicm

1
Z d2k

4p2

dv

2p

∑
ika0s2 $k, 2vdats $k, vd 1

k
2

ats2 $k, 2vdats $k, vd
∏

. (1)
© 1998 The American Physical Society 5409



VOLUME 80, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 JUNE 1998

in-

s

ts,
es
es

nd

is
n-
at
d
rt-

ts

unt
e

Thecm arem ­ 1, . . . , N species of chargeqy
p

N 2 1 1
dimensional Dirac fermions which interact with aUs1d
gauge fieldsa0, aid (i ­ 1, 2); we are interested in the
caseN ­ 1 but will find the largeN expansion to be a
useful tool. Theg0, gi are the Diracg matrices,xi (t)
are spatial (temporal) coordinates with≠0 ; ≠t , ≠i ; ≠xi ,
and $k, v (k ­ j $kj) are the Fourier transformed wave
vector and frequency variables. To aid the subseque
renormalization group analysis, we are working ind ­
2 1 e spatial dimensions andm is a renormalization
scale. The parametera is introduced to allow for
anisotropic renormalization between space and time [1
We have used the Coulomb gauge which allows us
explicitly representai in terms of the transverse spatia
component withai ­ ieijkjatyk. The term before last
in L is the Chern Simons coupling: it couples th
Dirac particles to a statistical gauge field characterize
by the statistical angleuyN with u ; qg; notice that
the angle is of the order of1yN and so the expected
periodicity of the physics underuyN ! uyN 1 4p will
not be visible in the1yN expansion. The last term is the
Coulomb interaction, and it has been written in terms
at following Ref. [12]; with this term omitted,L is the
model of Ref. [7] written in Coulomb gauge.

In the absence of the last Coulomb interaction term,
was shown in Ref. [7] thatL represents the critical theory
of a system of anyons in a periodic potential undergoin
5410
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a transition from an insulator with conductivitiessxx ­
sxy ­ 0 into a fractional quantum Hall state withsxx ­ 0
and sxy ­ sq2yhdys1 2 uy2pd. Both these states have
energy gaps, and we have shown [13] that the Coulomb
teraction does not modify the values ofsij in either phase.
The relationship of the continuum modelL to the more
realistic model of electrons studied in Ref. [14] remain
somewhat unclear, although it is plausible thatL is the
critical theory of the latter. We may also viewL as the
simplest theory consistent with the following requiremen
and therefore worthy of further study: (i) the two phas
on either side of the critical point have the correct valu
of sij , and the Hall phase hasbothquasiparticle and quasi-
hole excitations with the correct charge and statistics, a
(ii) the gap towards the quasiparticleandthe quasihole ex-
citations vanishes at the critical point.

We now proceed with a renormalization group analys
of L . Simple power counting shows that both the Cher
Simons and Coulomb interactions [15] are marginal
tree level ind ­ 2, and so loop expansions are require
and useful. Power counting also shows that a sho
range four-fermion interaction term isirrelevant and has
therefore been neglected inL ; this makes the fermionic
formulation of the anyon problem much simpler than i
bosonic counterpart [6,13,16].

The loop expansion requires counterterms to acco
for ultraviolet divergences in momentum integrals; w
write the counter terms as
L ­
Z

d2xdt

∑
asZa 2 1dcmg0≠0cm 1 sZ2 2 1dcmgi≠icm 2

i
p

N
sZq

1 2 1dqmey2a1y2a0cmg0cm

2
i

p
N

sZg
1 2 1dgmey2a1y2aicmgicm

∏
. (2)
n

y

n

s

In general, counter terms for the last two gauge fie
terms in L should also be considered. However, w
have shown [13] that at least to two loops, there a
no divergences associated with these terms. The W
identities following from gauge invariance dictateZ

q
1 ­

Za and Z
g
1 ­ Z2. Using these identities we relate the

bare fields and couplings inL to the renormalized
quantities by cmB ­ Z

1y2
2 cm, aB ­ sZayZ2da, qB ­

qmesZayZ2d1y2, andgB ­ gmey2sZ2yZad1y2. Notice that
these relations imply that for the statistical angleuyN ­
qgyN we have uB ­ ume ; so in d ­ 2 this angle is
a renormalization group invariant, which is expected o
general physical grounds. The dynamic critical expone
z is related to the renormalization ofa by [11]

z ­ 1 2 m
d

dm
ln a ­ 1 2 m

d
dm

ln
Z2

Za

. (3)

We will find it convenient to express the loop expansio
in terms of the “fine structure” constantw ; pq2y8, and
a central object of study shall be itsb function bswd ­
msdwydmd. By comparing (3) with relationships between
bare and renormalized quantities quoted above we see
ld
e
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ard

n
t,

n

that

z ­ 1 2 bswdyw . (4)

Finally, the critical exponentn is related to the anomalous
dimension of the composite operatorcc by n21 2 1 ­
msd ln Zcc ydmd; the renormalization constantZcc can be
calculated by inserting the operator into the self-energ
diagrams.

We begin the explicit calculation of the renormalization
constants by considering a direct perturbative expansio
in the Coulomb fine structure constantw and the statistical
andgleu. At one-loop order, we find no dependence on
u; the values of the renormalization constants up to term
of orderw2, u2, andwu are

Z2 ­ 1 2 2wyNpe, Za ­ 1, Zcc ­ Z2 . (5)

We also explicitly verified that the gauge invariance Ward
identities hold. From these results we find for theb

function of the Coulomb coupling

bswd ­
2w2

Np
1 O sw3, w2u2d , (6)

while the critical exponents are

z ­ 1 2 2wyNp, n ­ 1 2 2wyNp , (7)



VOLUME 80, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 JUNE 1998

the
e

n
s
y

es
to be evaluated at the fixed point of theb function. The
result (6) shows that thew is marginally irrelevant and
flows to the fixed pointwp ­ 0 at long distances. During
this flow (7) shows that the effectivez , 1, corresponding
to a smaller density of states at low energies, which
physically consistent with the irrelevance of Coulom
interactions. For the integer Hall state case we haveu ­
0, and then the fixed point is simply a free Dirac theory
in this case the Coulomb interactions aredangerously
irrelevant, as it is responsible for theT dependence of
physical quantities and will lead to logarithmic correction
to naive scaling.
is
b

:

s

To understand larger values ofu, and to explore
the consequences of a possible interference between
Coulomb interactions and the Chern-Simons term w
found it convenient to perform a1yN expansion. This is
technically simpler than a perturbative two-loop extensio
of the computation above, and also automatically include
the dynamic screening of the gauge field propagator b
the fermion polarization [12]. Alternatively stated, the
so-called random-phase approximation (RPA) becom
exact atN ­ `, and1yN corrections require gauge field
propagators which have the RPA form
wo

-
rator

do

t

e

ent is
LRPA ­
1
2

Z d2k
4p2

dv

2p
sa0, atd

√
q2k2ys16

p
k2 1 v2d ik

ik k 1
g2

16

p
k2 1 v2

! µ
a0
at

∂
. (8)

Evaluating the fermion self-energy diagrams to order1yN , we find for the renormalization constants

Z2 ­ 1 2
1

Ne

√
2w
pl

2
16w2A

p2l
1

u2C
16p2

2
u2E
16p2

!
, Za ­ 1 2

1
Ne

√
16w2B

p2l
2

u2D
16p2

1
u2F
16p2

!
, (9)

wherel ­ 1 1 suy16d2 and the constantsA, B, C, D, E ­ A 1 B, F ­ B are given by the formal expressions

A ­
Z 1

0
dx

4x2s1 2 x2d
s1 1 x2d3

fsx; w, ud, B ­
Z 1

0
dx

s1 2 x2d s1 2 6x2 1 x4d
s1 1 x2d3

fsx; w, ud ,

C ­
Z 1

0
dx

4x2

s1 2 x2d s1 1 x2d
fsx; w, ud, D ­

Z 1

0
dx

s1 2 6x2 1 x4d
s1 2 x2d s1 1 x2d

fsx; w, ud , (10)

with fsx; w, ud ­ fls1 1 x2d 1 ws1 2 x2dg21, and the variablex represents an intermediate frequency. Note the t
constantsC, D are divergent: this divergence is due to the singular effect of frequenciesjvj ¿ k. However, as shown
below and in Ref. [13], these divergences are gauge artifacts and cancel in theb function and in any physical gauge
invariant quantity liken, z, or sij . The divergences, however, do infect the anomalous dimension of the field ope
c : this is as expected as the propagator ofc is clearly gauge dependent.

We computed theb function of the Coulomb couplingw from the renormalization constants (9); the divergences
indeed cancel, and we obtain the result

bswd ­
2w2s1 2 fd

Np2l2

(
p 2 16w

Z 1

0
dx

√
1 2 x2

1 1 x2

!3
ls1 1 x2d 1

w
2 s1 2 x2d

fls1 1 x2d 1 ws1 2 x2dg2

)

1
32wf

Np2

Z 1

0
dx

s1 2 x2d s21 1 10x2 2 x4d
s1 1 x2d3

s1 1 x2d 1
w
2 s1 2 x2d

fls1 1 x2d 1 ws1 2 x2dg2
, (11)

wheref ; suy16d2 andl ­ 1 1 f. In a similar manner, the effective exponentz is given by (4), and for the exponen
n we obtain

1
n

­ 1 2
128f

Np2

Z 1

0
dx

s1 2 x2d s1 1 6x2 1 x4d
s1 1 x2d3

1 1 x2 1
w
2 s1 2 x2d

fls1 1 x2d 1 ws1 2 x2dg2

1
512fs1 2 fd

Np2

Z 1

0
dx

s1 2 x2d s1 1 x2d
fls1 1 x2d 1 ws1 2 x2dg3

; (12)

in this last expression we have used the fact thatbswd ­ 0 at a fixed point to simplify the result a bit. In the absenc
of Coulomb interactions (w ­ 0) the above result forn becomes

n ­ 1 2
512fs1 2 2fd

N3p2l3 . (13)

It agrees with earlier results [7,17] obtained in a very different computation in the Lorentz gauge: this agreem
another nontrivial check of our renormalization procedure.

We now turn to the physical implications of our main results (11) and (12).
5411
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FIG. 1. RG flow of Coulomb and Chern-Simons couplings.

First, consider the transition out of the integer quan
tum Hall state,u ­ 0, which implies f ­ 0, l ­ 1.
Then simple analysis of (11) shows thatbswd . 0 for all
w . 0; for smallw we havebswd ­ 2w2yNp , in agree-
ment with one-loop result (6), while forw ¿ 1, bswd ­
4yNp . So the only fixed point remains atw ­ 0, and
the prediction of the large-N theory agrees with the weak-
coupling analysis—Coulomb interactions are dangerous
irrelevant. This agreement between the two approache
reassuring as it is nota priori required: it is absent in the
bosonic formulation [6] of the same critical point.

Turning to the fractional case with a nonzerou, we
show a plot of a numerical integration of the flows implie
by (11) in Fig. 1; there are three distinct regimes:

(i) f , fc1.—For small values off thew ­ 0 fixed
point remains stable, as for the integer case above. T
limiting valuefc1 can be determined by expandingbswd
in (11) in powers ofw:

bswd ­
w2

2Npl3 s4 1 3f 2 5f2d

2
32w3

15Np3l4
s5 1 4f 2 7f2d . (14)

The coefficient ofw2 changes sign atf ­ fc1 ­ s3 1p
89dy10 ø 1.24, beyond which thew ­ 0 point is no

longer stable.
(ii) fc1 , f , fc2.—For intermediate values off,

the flow is towards an attractive line of fixed points0 ,

wpsfd , `. The valuef ­ fc2 at which wpsfd ! `

can be determined by evaluating (11) in the largew limit:

bsw ! `d ­
2s2 2 fd

Np
. (15)

This shows that the flow is away fromw ­ ` for f ,

fc2 ­ 2. This line of stable fixed points for the presen
range of f is our main new result. We can easily
determine the values of the fixed-point critical exponent
from (4) we see that thez ­ 1, while n follows from
(12). We findnsfc1d ø 1 1 2.82yN , andnsf2

c2d ­ 1 1
5412
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1yNwp, and a monotonic change in between. As note
earlier, becausen . 1, this line is stable to disorder in
the local position of the critical point.

(iii) f . fc2.—Now the flow is towp ­ `. How-
ever, the flows cannot be trusted oncew , N, and so we
are unable to draw any firm conclusions about this regim

To conclude, we have presented an analysis of t
consequences of Coulomb interactions at quantu
Hall critical points which goes well beyond the linea
stabilityyHartree-Fock treatments in earlier works [8,9
To allow such a study, we simplified the usual physic
situation by replacing the random external potential by
periodic one. Nevertheless, it is quite interesting that w
found a fixed line which is stable towards the introductio
of small disorder in the position of the critical point.
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