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Coulomb Interactions at Quantum Hall Critical Points of Systems in a Periodic Potential
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We study the consequences of long-range Coulomb interactions at the critical points between integer/
fractional quantum Hall states and an insulator. We use low energy theories for such transitions in
anyon gases in the presence of an external periodic potential. We find that Coulomb interactions are
marginally irrelevant for the integer quantum Hall case. For the fractional case, depending upon the
anyon statistics parameter, we find behavior similar to the integer case, or flow to a novel line of fixed
points with exponentg = 1, v > 1 stable against weak disorder in the position of the critical point, or
runaway flow to strong coupling. [S0031-9007(98)06345-5]

PACS numbers: 73.40.Hm, 05.30.—d, 71.10.Pm

The zero temperature quantum phase transitions bet al. [8] studied the integer quantum Hall transition under
tween the different quantum Hall and insulating states ok Hartree-Fock treatment of the Coulomb interaction. Lee
a two-dimensional electron gas in a strong magnetic fieldnd Wang [9] showed that the renormalization group
are among the most intensively studied quantum critieigenvalue of the Coulomb interaction was zero at the
cal points, both theoretically [1,2] and experimentally [3]. Hartree-Fock critical point; higher order calculations are
Earlier theoretical investigations focused on the transitionsherefore necessary to understand the physics.
between the integer quantum Hall plateaus and described In this paper we shall provide a thorough analysis of the
them in terms of noninteracting electrons moving in a ranconsequences of Coulomb interactions on the anyons in a
dom external potential [4]. It has also been argued that thperiodic potential model of Refs. [6,7] (short range inter-
transitions between fractional quantum Hall states couldctions are irrelevant and so need not be considered). We
be mapped onto models essentially equivalent to thosghall show that the Coulomb interactionrigarginally ir-
between the integer states [5]. The latter point of viewrelevantfor the integer casef(= 0), and remains so for
was, however, questioned by Wen and Wu [6] and Cherthe fractional case for small values @f this marginally
Fisher, and Wu [7]: they focused on the simpler case ofrrelevant interaction will lead to logarithmic corrections
systems in the presence ofpariodic rather than a ran- to naive scaling functions for the vicinity of the transition.
dom potential, and examined a model of anyons, with &or largerd, we will establish, in a certaib/N expansion,
statistical angled and short-range repulsive interactions,the existence of a novel line of fixed points at which the
which displayed a second order quantum phase transitioGoulomb interactions acquire a nonzero fixed point value
between a quantized Hall state and a Mott insulator as théetermined by the value af. There are no logarithmic
strength of the periodic potential was varied. This transicorrections at these fixed points, and naive scaling holds.
tion was characterized by a line of critical points with con-We find a dynamic critical exponent= 1 at all points on
tinuously varying exponents, parametrized by the value ofhe fixed line, providing a concrete realization of the sce-
0. For the cas® = 0, when the anyons were fermions, nario [2,10], not previously established explicitly, that en-
the transition was out of an integer quantum Hall stateprgies must scale as inverse distances foi freCoulomb
its exponents and other universal properties were differinteraction. It is also worth noting that, despite the value
ent from the case@ < # < 24 for which the anyons ac- z = 1, the critical correlators are not Lorentz invariant.
quired fractional statistics and the transition was out of aVe also find that the correlation length exponergatis-
fractional quantum Hall state. (F& = 27 the anyons fiesv > 2/d (whered = 2 is the spatial dimensionality)
became bosons and the Hall state reduced to a superfluiciong this fixed line, which implies that the fixed line is

In all of the above theoretical works, the long-rangestable towards disorder involving local fluctuations in the
Coulomb interactions between charge carriers have begosition of the critical point.
effectively ignored. However, a few recent works have We begin our analysis by writing down the model
taken steps to remedy this serious shortcoming. Yangf Ref. [7] extended to include Coulomb interactions
between the charge carriers
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They,, arem = 1,..., N species of chargg/~/N 2 + 1  a transition from an insulator with conductivities,, =
dimensional Dirac fermions which interact with ta(1) oy, = 0into a fractional quantum Hall state with,, = 0
gauge field(aop,a;) (i = 1,2); we are interested in the ando,, = (¢>/h)/(1 — 6/2m). Both these states have
caseN = 1 but will find the largeN expansion to be a energy gaps, and we have shown [13] that the Coulomb in-
useful tool. Theyy,y; are the Diracy matrices,x; ()  teraction does not modify the values®f; in either phase.
are spatial (temporal) coordinates with= 9d,, 9, = d,,,  The relationship of the continuum modé| to the more
and /Z, o (k= |7¢|) are the Fourier transformed wave realistic model of electrons studied in Ref. [14] remains
vector and frequency variables. To aid the subsequersomewhat unclear, although it is plausible thatis the
renormalization group analysis, we are workingdn= critical theory of the latter. We may also vie as the
2 + e spatial dimensions ang. is a renormalization Simplesttheory consistent with the following requirements,
scale. The parameter is introduced to allow for and therefore worthy of further study: (i) the two phases
anisotropic renormalization between space and time [11Pn either side of the critical point have the correct values
We have used the Coulomb gauge which allows us t®f oi;, and the Hall phase hasthquasiparticle and quasi-
explicitly representz; in terms of the transverse spatial hole excitations with the correct charge and statistics, and
component witha; = i€;jk;a,/k. The term before last (ii) the gap towards the quasipartidedthe quasihole ex-
in £ is the Chern Simons coupling: it couples the Citations vanishes at the critical point.
Dirac particles to a statistical gauge field characterized We now proceed with a renormalization group analysis
by the statistical angl@/N with = gg; notice that of L. Simple power counting shows that both the Chern-
the angle is of the order of /N and so the expected Simons and Coulomb interactions [15] are marginal at
periodicity of the physics undet/N — /N + 47 will tree level ind = 2, and so loop expansions are required
not be visible in thel /N expansion. The last term is the and useful. Power counting also shows that a short-
Coulomb interaction, and it has been written in terms offange four-fermion interaction term igelevantand has
a, following Ref. [12]; with this term omitted L is the therefore been neglected ifi; this makes the fermionic
model of Ref. [7] written in Coulomb gauge. formulation of the anyon problem much simpler than its
In the absence of the last Coulomb interaction term, itPosonic counterpart [6,13,16].
was shown in Ref. [7] thal represents the critical theory =~ The loop expansion requires counterterms to account
of a system of anyons in a periodic potential undergoingor ultraviolet divergences in momentum integrals; we
write the counter terms as
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bare .f|.elds and couplll/nzgs inf to the renormalized We begin the explicit calculation of the renormalization
quantities by g = 25" "thw, ap = (Za/Za)a, g8 =  constants by considering a direct perturbative expansion
qu(Za/22)'"?, andgp = gu/*(Z2/Z,)'"*. Notice that  in the Coulomb fine structure constantnd the statistical
these relations imply that for the statistical angleV = andgles. At one-loop order, we find no dependence on

qg/N we havefy = §uc; so ind =2 this angle is ¢ the values of the renormalization constants up to terms
a renormalization group invariant, which is expected orof orderw?, 2, andw# are

general physical grounds. The dynamic critical exponent,

z is related to the renormalization ef by [11] Zy=1-2w/Nme, Zo =1, Zyy =22 (9)
d d . 7 We also explicitly verified that the gauge invariance Ward
z=l—-u—MNa=1-pu—In="=. (3) identities hold. From these results we find for tjge
dp dp Za function of the Coulomb coupling
We will find it convenient to express the loop expansion 22
in terms of the “fine structure” constant = 7¢%/8, and Bw) = va ¥ 0w, w?6%), (6)

a central object of study shall be is function 8(w) =
u(dw/du). By comparing (3) with relationships between
bare and renormalized quantities quoted above we see that z=1-2w/Nm, v=1-2w/Nmw, (7)

while the critical exponents are

5410



VOLUME 80, NUMBER 24 PHYSICAL REVIEW LETTERS 15uNE 1998

to be evaluated at the fixed point of tigefunction. The To understand larger values df, and to explore
result (6) shows that the is marginally irrelevant and the consequences of a possible interference between the
flows to the fixed pointv* = 0 at long distances. During Coulomb interactions and the Chern-Simons term we
this flow (7) shows that the effective< 1, corresponding found it convenient to perform &N expansion. This is

to a smaller density of states at low energies, which igechnically simpler than a perturbative two-loop extension
physically consistent with the irrelevance of Coulombof the computation above, and also automatically includes
interactions. For the integer Hall state case we htawve  the dynamic screening of the gauge field propagator by
0, and then the fixed point is simply a free Dirac theory:the fermion polarization [12]. Alternatively stated, the
in this case the Coulomb interactions aangerously so-called random-phase approximation (RPA) becomes
irrelevant, as it is responsible for tHe dependence of exact atN = «, and1/N corrections require gauge field
physical quantities and will lead to logarithmic correctionspropagators which have the RPA form

to naive scaling. |

1 [ d*k dw G2k /(16Vk2 + w?) ik ao
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Evaluating the fermion self-energy diagrams to ortjé¥, we find for the renormalization constants
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whereA = 1 + (6/16)* and the constant$, B,C,D,E = A + B,F = B are given by the formal expressions
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with f(x;w,0) = [A(1 + x?) + w(l — x*)]"!, and the variable represents an intermediate frequency. Note the two
constantsC, D are divergent: this divergence is due to the singular effect of frequehcies> k. However, as shown
below and in Ref. [13], these divergences are gauge artifacts and cancelgnftimetion and in any physical gauge-
invariant quantity likev, z, or o;;. The divergences, however, do infect the anomalous dimension of the field operator
¢ this is as expected as the propagatog/dt clearly gauge dependent.

We computed the8 function of the Coulomb coupling’ from the renormalization constants (9); the divergences do
indeed cancel, and we obtain the result

_ _ 3 2 w2
B(w) = 2w (1 — ¢) {77 - 16wf1dx<1 x2> AL+ x7) + 701 — x9)
0

Nm2A2 1+ x2) [A( + x2) + w( — x?)]?
32w¢ I=x)C1+10x2—x%) T+xH+50-x2) 1
N2 Jo & 1+ x2)3 [A(1 + x2) + w(l — x2)]?° (1)

where¢ = (#/16)> andA = 1 + ¢. In a similar manner, the effective exponeris given by (4), and for the exponent
v We obtain

1,128 (1 (-4 a1+ 50— x)
14 N N772 X (1 + x2)3 [)\(1 + x2) + W(l _ x2)]2
512¢1—¢)] (1 —x)1 + x2)
[)\(1

Nm? + x2) + w(l — x2)P ;

(12)

in this last expression we have used the fact fhat) = 0 at a fixed point to simplify the result a bit. In the absence
of Coulomb interactionsi{ = 0) the above result for becomes

512¢(1 — 2¢)
N3mw2A3
It agrees with earlier results [7,17] obtained in a very different computation in the Lorentz gauge: this agreement is

another nontrivial check of our renormalization procedure.
We now turn to the physical implications of our main results (11) and (12).

v=1-— (13)
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1/Nw*, and a monotonic change in between. As noted
earlier, because > 1, this line is stable to disorder in
the local position of the critical point.

(i) ¢ > ¢o.—Now the flow is tow™ = «. How-
ever, the flows cannot be trusted onge~ N, and so we
are unable to draw any firm conclusions about this regime.

To conclude, we have presented an analysis of the
consequences of Coulomb interactions at quantum
Hall critical points which goes well beyond the linear
stability/Hartree-Fock treatments in earlier works [8,9].
To allow such a study, we simplified the usual physical
situation by replacing the random external potential by a
periodic one. Nevertheless, it is quite interesting that we
found a fixed line which is stable towards the introduction
of small disorder in the position of the critical point.
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