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Bosonic Resonating-Valence-Bond Description of a Doped Antiferromagnet
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We propose a theory for a doped antiferromagnet based orbdkenic resonating-valence-bond
(RVB) description incorporating the phase string effect. Both antiferromagnetic and superconducting
phase transitions occur naturally inside such a bosonic RVB phase. Two distinct metallic regions—
underdoping and optimum doping—are also found to be a logical consequence; their unique features
explain the recent neutron-scattering measurements in cuprates. [S0031-9007(98)06293-0]

PACS numbers: 71.27.+a, 74.20.Mn, 74.72.—h

In the study of the-J model, two distinctive approaches In this Letter, we present an improved two-dimensional
are often used, with the spin degrees of freedom being d¢2D) mean-field theory in the spirit of bosonic RVB pair-
scribed either by fermions (slave-boson scheme [1]) or byng with incorporating the phase string effect. The spiral
Schwinger bosons (slave-fermion scheme [2]). Their reinstability will be absent in this theory, replaced by the dis-
spective advantage and disadvantage are also well knowappearance of the AF long-range order (AFLRO) as holes
In the Schwinger-boson-slave-fermion approach, antiferrobecome mobile (i.e., in metallic phase). Such a new metal-
magnetic (AF) correlations are usually treated by a bosonitic state is drastically different from those in the slave-
RVB pairing which can produce a variational ground-stateboson scheme as strong AF correlations remain. The phase
energy with unrivaled high precision [3,4] at half filling. string effect plays a crucial role here to put the AFLRO
But at finite doping this approach is always plagued byphase, superconducting phase, and normal metallic state
the so-called spiral instability [5,6] (spiral twist of spin or- within a unified bosonic RVB spin background, which it-
der) which effectively prevents a controllable study of theself is also consistently modified by the phase string effect.
metallic phase. In contrast, a metallic phase naturally ap- We start with thet-J model,H,.; = H, + H,, in the
pears in the fermionic RVB description [1,7] of spins in Schwinger-boson, slave-fermion representation [6]
the slave-boson approach, whereas AF correlations in this

kind of metallic state are usually substantially underesti- H, = —zZP]U-Bﬁ + Hc, 1)
mated, especially in a weakly doped regime. @

If one adopts the point of view that antiferromagnetism, H; = _d ngj(ﬁfj)f’ )
superconductivity, and anomalous metallic properties all 2 W)

share the same intrinsic origin, the bosonic description of . " R + s

spins may be more appropriate as a starting point sind@here Hiy; = f; f;, Bji =3, 0bjsbis, and A} =

the AF correlations can be properly handled. As for thexo bisbj--. Here f; is a fermionic “holon” operator
difficulty of the spiral instability, it may simply reflect the @ndb;s is known as the Schwinger-boson operator. The
fact that the singular doping effect introduced by holesP0sonic RVB order parameter is defined by [2]

has been mistreated by mean-field approximations. A = (A}). 3)

Such a singular effect has been recently identified [8]at such a mean-field level, in order to gain a finite hop-
by reexamining the motion of doped holes in the AF ping integral(8;;) # 0, up and down spins have to con-
background. It has been found that as a hole slowlyripyte differently to avoid cancellation due to the sign
moves through a cloged pgt_h it will pick up a nontr|V|a_I appearing in3;;. But such a mean-field procedure, which
Berry type phase, which originates from the fact that spineads to a spiral state [6], is fundamentally flawed as the
mismatches caused by the hopping of the doped holgign & here is the source causing the nonrepairable phase
cannot be completely “repaired” through spin flips. Suchsyring effect discussed in Ref. [8]. By averaging it out
a residual nonrepairable effect is a path-dependent phagg (3 ), the nontrivial topological effect of phase string
product known as phase string [8]. Itis a topological effectyj|| pe totally lost. To avoid this difficulty, one can intro-
which would be lost if the phase string effect is averagedyce a unitary transformation [8] to reformulate the model
out locally at each step of hopping—the reason Ieadln%uch thath;; = 3, eiaAy,.E;‘Ul—)im where the singular sign

to the aforementioned spiral instability in the mean-field . . oAl .
treatment [6] of the slave-fermion scheme. In the one¥ is replaced by a link variable®®s. CorresPE)nd_meg,

. . . A F] 1 AS 7iUA,‘j ) .
dimensional (1D) case, the same phase string effect i8is "i‘nd H,;,-Aa}re*redefmed byl =2, e bighj-o
also shown [8] to be responsible for the Luttinger-liquidandH;; = g’Awhi h;, respectively. New spinon and holon
behavior of the model. operators, b;, and h;, are bothbosonic and such a
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“bosonization” is an interesting consequence of the phase 1.0 T T T
string effect. As justified in Ref. [8], this exact refor-
mulation makes it more suitable for the study of the
doped case in both 1D and 2D cases. Here the nonlocal
gauge fieIdAf,- is defined by a gauge-invariant condition
> ¢ Al = wN¢ for an oriented closed-path with N¢-
being the total hole number enclosed By And A,f]
satisfiesY - A, = 73, 0 Siecnly — ®c with nf, =
ELEU and® referring to a uniform flux enclosed hy
with a strength ofr per plaquette.

Now the phase string effect is precisely tracked through . BC

. h S N ~ A

the link variablesg’?47 ande™i, in B, A*, andH. We : o —O0— O — (¢
can then consider the mean-field solution characterized by . 0— 7 . .
the RVB order parameter defined in Eq. (3). Like the 0.0 0.1 0.2 03
half-filling case [2], a Bogolubov transformation will be
used to diagonalize the spin degrees of freedom

— o5} N0 -

- " P ) FIG. 1. The phase diagram of a doped antiferromagnet based
bio = Z(um%na — UnYh-o)e N W (i). (4) the bosonic RVB description. The dotted and shaded curves
m sketch an insulating AFLRO phase and an inhomogeneous
Herey,,, is an annihilation operator of spinon excitations metallic region, respectively, described by a spinon Bose con-
and the “single-particle” wave functiow,,,(i) is deter- densation (BC). SC indicates the superconducting condensation
mined by region determined under an optimal condition (see the text).
The temperatur is in units ofJ.

Enmo(i) = =T Y. & Nimg (), (5)

Jj=nni) in which
with J, = JA*/2. We explicitly introduce a phase fac-
tor ¢/7X» in Eq. (4) to show a phase uncertaintyin,, o = Zlm In(z; — z/)n} (8)
which cannot be determined by Eq. (5) as a linear equa- I#i

tion. Without changingd®, such a “phase” freedom can describes vortices (with vorticity= 1) centered on holes
be fixed by optimizing the hopping integrd;;) [9]. The (4 — 1f4,). In the absence of holes, the BC of spinons
coefficientsu,, andv,, in Eq. (4) are given byA,./E, + il always give rise to(S;') = (—1)/, i.e., an AFLRO.
1)!/?/3/2 and sgiié,.) (An/E, — 1)'/2//2, respectively. Byt in the presence of mobile holons—in the metal-
Here the spinon spectrum 5, = /A7, — &5, in which  jic region—free vortices introduced b will make
the hopplng term only contributes to a shift to the<5i+> — 0 even though spinons may be still Bose con-
Lagrangian multipliera by A, = A — J4/Js|énl. The  gensed, resembling a disordered phase in the Kosterlitz-
renormalized coupling constaff = (H) will be always  Thoyless transition. Only in an insulating phase where
chosen as/, = &J below (5 is the doping concentra- holes are localized, the AFLRO may be still sustained
tion). A is determined by the conditio} (b;sbis) =  as the vortex effect ofb” in Eq. (7) can be “screened”
N(1 — 8), or through the compensation of a phase with opposite vor-
0 §= % Z g_m coth’Bf’" ticities generated from spinons (after all, the phase string

effect is no longer effective if holes are localized).

b So the AFLRO should be absent in the metallic phase,
where B = 1/kpT and npc represents the number of eyen though the spinon BC may still persist. In the follow-
spinons per site staying aE, = 0 state if a Bose ing we argue that a spinon BC phase within the metallic
condensation (BC) of spinons occurs. _ regime must be generally inhomogeneous in charge dis-

In Fig. 1, the region of a nonzer&® is shown, which  yipytion. Namely, it is a phase separation state. Recall
practically covers the whole experimentally interestedinat in the BC case) must take a value to make, gap-
temperature and doping regime. Note that in the bosoniggg sych that4c # 0 can balance the difference between
RVB description,A* does not directly correspond to an ipe |eft and right sides of Eq. (6). Note that thg = 0
energy gap, in contrast to the fermionic RVB state [1]. Ingigte corresponds to the maximum|gf,|, and thus it is
fact, the spinon spectrui, is gaplessat zero doping and rgjated to those states at the band edge,pfwhich is
zero temperature [2] which ensures a BC of spinons. Iyenerally sensitive to the fluctuation &f;.  As A”; is ba-
the new formulation, the transverse spin operator can bgjca|ly controlled by the holon density, the fluctuations of
written as [8] ) the charge will then lead to a “Lifshitz” tail ig,, and play

St = E}Eil(—l)"e@f, (7)  an essential role in determining ti&, = 0 state. Such

+ ngc . (6)
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a state is thus associated with inhomogeneous hole comherex ~ 1. The left-hand side represents the number of
figurations so that the Bose condensed spinons form Akxcited spinons determined from;,, b,-t,bi,,, with n(E,,)
orders in hole-deficient region. The detailed nature of theys the Bose function.Z. calculated based on Eq. (11) is
E, = 0 state will be sensitive to many factors, like the plotted in Fig. 1 as the dashed curve. It is obtained under
dynamics of holons which is beyond the present approxithe approximatiomf’j ~ Al’!j in Eq. (5) @lﬁj is defined by
mation. Qenerally speaking, Wi'Fh the increase o_f dopingEC Alhi — 7(N"). The value off, in Eq. (11) depends
the reduction of the left-hand side of Eq. (6) will even-on 5 characteristic low-energy scale of spinons to be iden-
tually make the BC contribution go away. In Fig. 1 the fified |ater in the dynamic susceptibility function. Finally,

defines an underdoped metallic phase. (The dotted cury&ined as

in Fig. 1 marks the insulating AFLRO phase in the dilute (As . /(RS ) = e—i%zDAquk R (12)
hole regime.) iits ii+9 ,

. 0 _ 4,0 _ 4,0
Superconducting condensation (SC) is characterize herlt_eZkD d;enoties astl{[mmag[l(t)ﬁ Qich i It_' ‘Zf. teﬁk over
by the nonzero average qﬁisj-c =2 ,0¢CisCj—, defined ourtinks of a plaguetle and the resutt Indicates-aave

by [8] symmetry for the nearest-neighboring SC pairing.
‘ ‘ Thus, in the metallic phase there exist two temperature
AiS].C - Afi(hjeé[‘pf“f’?]) (hjeé[‘pf“f’f])(—ni, (9) scalesTgc and7,. Atlow doping wherelgc > T, the
‘ ‘ ' charge inhomogeneity or phase separation happens below

where Tgc and further belowT, holons are also expected to
be condensed into nonuniform regions in favor of the

® =D ImiIn(z — z) > an}, (10)  spin correlation energy. On the contrary, onge >

1#i a Tsc, holons will experience BGirst and beuniformly

describes vortices (antivortices) centered on up (doanftflbUted in real space. For the ideal BC of holons,
spinons, andp? — ¢? = 27 afteri circles once along Aij can be replaced by;; with a substantial reduction of

a plaquette. Note that the spinons are always pairedAf; = A}; — Al; belowT.. The spinon spectrum is then
(A% = <5‘Z,-> # 0). In order to have SC, bosonic holons qualitatively changed below. which prevents spinons
must undergo BC. The vortices described®jy are all  from Bose condensing into an inhomogeneous phase at
paired up in the ground state whose effect in Eq. (9) idower temperature (see below)I. shown in Fig. 1 is
minimal. But at finite temperature, free vortices appeagstimated under such a condition and it optimiZgsas

in ®; as spinons are thermally excited from the pairedcompared to the case with stronger fluctuation%ﬁn
state. In order to achieve the phase coherence in Eq. (9Yhis regime may be properly defined as the optimum-
the condensed holons have to screen those free vortices Bpping regime in our theory. Beyond. > Tgc, a
forming supercurrents. A phase transition to normal statérossover due to statistics transmutation may quickly set
eventually happens when such screening fails which cai as holons tend to balwaysBose condensed even at
be estimated as the free spinon number exceeds the holbigh temperature such that spinons have to be turned into
number. The BC of holons will then be interrupted. Sofermions, which leads to the breakdown of the bosonic

the transition temperatuf®. may be determined by RVB state and is beyond the scope of the present paper.
How can two regions of the metallic phase be distin-

2 Z A n(E,,) = k6, (11) guished by experiment? Here we would like to focus on

N < En T=T. a direct experimental signature in the local dynamic spin

| susceptibilityy) (w). x/(w) is given by

xi(w) = % D Kuw{1/2[1 + n(Ey) + n(ENNuz v, + vauz)8(wl — Ey — Ew) + [0(E,) — n(Ew)]

X (u2u?, + v2v2)8(w + Ey — En)}, (13)

m“m' m“m!

wherew > 0 With Ky = 3o [Wo ()2 ware ()2, As | with A}; = A}; (8¢ = 0) belowT,, then the spinon BC is
shown in Fig. 2,x/ (w) exhibits a double-peak structure found absent and only a single peak is left, as shown in the
in low-energy region for the spinon BC case. The lowesinset of Fig. 2. Here the sharpness of the peak is due to the
peak in Fig. 2 originates from the excitations of the Bosedl andau-level effect caused 171)7, in E,,. Its corresponding
condensed spinons which disappears aligie while the  energy scale also determinds in Fig. 1 according to
second peak is contributed by regular spinon pairs excitelg. (11). Such a sharp peak structure will be qualitatively
from the vacuum. Her@A}, is treated as a random flux, changed abové. as no more Bose condensed holons exist
with a strength of the flux per plaquet®p = 0.376  and the fluctuation part o(ff,- becomes dominant.

atd = 1/7 = 0.143. Correspondindsc is found to be Neutron-scattering measurement has indeed revealed a
~0.21J. On the other hand, if the holon BC happens firstdouble-peak structure in YB&u; Oy s compound recently
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4 : : : : metallic state—underdoping (with phase separation) and
B optimum doping (uniform phase) are also predicted by the
6= 0.143 5¢=0 present theory with distinct experimental features. As the
5¢=030 key structure in this theory, the spin and charge excita-
tion spectra are mutually influenced through the topologi-

cal gauge field]; and A{j as the manifestation of the
phase string effect. The example in the optimal-doping
case shows how it works: a uniformly distributed Bose-
condensed holons leads to a sharp peak in the spinon spec-
trum throughAflj below T.. And the gap in the spinon
excitations in turn sustains such a SC state until a suffi-
cient amount of excited spinons destroys the holon BC via

A'{,- at higher temperature. In the normal state, the sharp
peak in the spin excitation spectrum will be gone due to

the drastically modified/;, while the scattering of holons

with A{, will dictate the transport properties. The spinon
BC and charge inhomogeneity in the underdoped case are
similarly connected through the same gauge fields. The
spinon BC also bears some resemblance to a “pseudogap”
phenomenon in the behavior of uniform spin susceptibil-
ity, resistivity, etc., which will be discussed elsewhere.

FIG. 2. Local dynamic spin susceptibility/(w) vs w (in The present work is supported by grants from the Texas
units of J) at 6 = 0.143. Solid curve:T = 0; (¢): T = 0.1; ARP and the Robert A. Welch foundation, and by Texas

(X): T =02; (¥): T =03. HereTpc =021 with 6¢ =  Center for Superconductivity at University of Houston.
0.3¢. The inset: y/(w) vs w under the optimal condition:
8¢ =0atT = 0.
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