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Bosonic Resonating-Valence-Bond Description of a Doped Antiferromagnet
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We propose a theory for a doped antiferromagnet based on thebosonic resonating-valence-bond
(RVB) description incorporating the phase string effect. Both antiferromagnetic and superconducting
phase transitions occur naturally inside such a bosonic RVB phase. Two distinct metallic regions—
underdoping and optimum doping—are also found to be a logical consequence; their unique feature
explain the recent neutron-scattering measurements in cuprates. [S0031-9007(98)06293-0]

PACS numbers: 71.27.+a, 74.20.Mn, 74.72.–h
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In the study of thet-J model, two distinctive approaches
are often used, with the spin degrees of freedom being d
scribed either by fermions (slave-boson scheme [1]) or
Schwinger bosons (slave-fermion scheme [2]). Their r
spective advantage and disadvantage are also well kno
In the Schwinger-boson-slave-fermion approach, antiferr
magnetic (AF) correlations are usually treated by a boson
RVB pairing which can produce a variational ground-sta
energy with unrivaled high precision [3,4] at half filling.
But at finite doping this approach is always plagued b
the so-called spiral instability [5,6] (spiral twist of spin or
der) which effectively prevents a controllable study of th
metallic phase. In contrast, a metallic phase naturally a
pears in the fermionic RVB description [1,7] of spins in
the slave-boson approach, whereas AF correlations in t
kind of metallic state are usually substantially underes
mated, especially in a weakly doped regime.

If one adopts the point of view that antiferromagnetism
superconductivity, and anomalous metallic properties
share the same intrinsic origin, the bosonic description
spins may be more appropriate as a starting point sin
the AF correlations can be properly handled. As for th
difficulty of the spiral instability, it may simply reflect the
fact that the singular doping effect introduced by hole
has been mistreated by mean-field approximations.

Such a singular effect has been recently identified [
by reexamining the motion of doped holes in the A
background. It has been found that as a hole slow
moves through a closed path it will pick up a nontrivia
Berry type phase, which originates from the fact that sp
mismatches caused by the hopping of the doped h
cannot be completely “repaired” through spin flips. Suc
a residual nonrepairable effect is a path-dependent ph
product known as phase string [8]. It is a topological effe
which would be lost if the phase string effect is average
out locally at each step of hopping—the reason leadin
to the aforementioned spiral instability in the mean-fiel
treatment [6] of the slave-fermion scheme. In the on
dimensional (1D) case, the same phase string effect
also shown [8] to be responsible for the Luttinger-liqui
behavior of the model.
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In this Letter, we present an improved two-dimensiona
(2D) mean-field theory in the spirit of bosonic RVB pair-
ing with incorporating the phase string effect. The spira
instability will be absent in this theory, replaced by the dis
appearance of the AF long-range order (AFLRO) as hol
become mobile (i.e., in metallic phase). Such a new met
lic state is drastically different from those in the slave
boson scheme as strong AF correlations remain. The ph
string effect plays a crucial role here to put the AFLRO
phase, superconducting phase, and normal metallic st
within a unified bosonic RVB spin background, which it-
self is also consistently modified by the phase string effec

We start with thet-J model,Ht-J ­ Ht 1 HJ , in the
Schwinger-boson, slave-fermion representation [6]

Ht ­ 2t
X
kijl

ĤijB̂ji 1 H.c., (1)

HJ ­ 2
J
2

X
kijl

D̂s
ijsD̂s

ijdy, (2)

where Ĥij ­ f
y
i fj, B̂ji ­

P
s sb

y
jsbis , and D̂

s
ij ­P

s bisbj2s. Here fi is a fermionic “holon” operator
andbis is known as the Schwinger-boson operator. Th
bosonic RVB order parameter is defined by [2]

Ds ­ kD̂s
ijl . (3)

At such a mean-field level, in order to gain a finite hop
ping integralkB̂jil fi 0, up and down spins have to con-
tribute differently to avoid cancellation due to the signs

appearing inB̂ji. But such a mean-field procedure, which
leads to a spiral state [6], is fundamentally flawed as th
sign s here is the source causing the nonrepairable pha
string effect discussed in Ref. [8]. By averaging it ou
in kB̂jil, the nontrivial topological effect of phase string
will be totally lost. To avoid this difficulty, one can intro-
duce a unitary transformation [8] to reformulate the mod
such thatB̂ji ­

P
s eisAh

ji b̄
y
jsb̄is , where the singular sign

s is replaced by a link variableeisAh
ji . Correspondingly,

D̂
s
ij and Ĥij are redefined bŷDs

ij ­
P

s e2isAh
ij b̄is b̄j2s

andĤij ­ eiA
f
ij h

y
i hj, respectively. New spinon and holon

operators, b̄is and hi, are both bosonic and such a
© 1998 The American Physical Society 5401
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“bosonization” is an interesting consequence of the pha
string effect. As justified in Ref. [8], this exact refor-
mulation makes it more suitable for the study of th
doped case in both 1D and 2D cases. Here the nonlo
gauge fieldAh

ij is defined by a gauge-invariant conditionP
C Ah

ij ­ pNh
C for an oriented closed-pathC with Nh

C

being the total hole number enclosed byC. And A
f
ij

satisfies
P

C A
f
ij ­ p

P
s s

P
l[C nb

ls 2 FC with nb
ls ­

b
y
lsbls andFC referring to a uniform flux enclosed byC

with a strength ofp per plaquette.
Now the phase string effect is precisely tracked throu

the link variables,eisAh
ij andeiA

f
ij , in B̂, D̂s, andĤ. We

can then consider the mean-field solution characterized
the RVB order parameter defined in Eq. (3). Like th
half-filling case [2], a Bogolubov transformation will be
used to diagonalize the spin degrees of freedom

b̄is ­
X
m

sumgms 2 ymgy
m2sdeisxm w̄mssid . (4)

Heregms is an annihilation operator of spinon excitation
and the “single-particle” wave function̄wmssid is deter-
mined by

jmw̄mssid ­ 2Js

X
j­nnsid

eisAh
ij w̄mss jd , (5)

with Js ­ JDsy2. We explicitly introduce a phase fac-
tor eisxm in Eq. (4) to show a phase uncertainty inw̄ms

which cannot be determined by Eq. (5) as a linear equ
tion. Without changingDs, such a “phase” freedom can
be fixed by optimizing the hopping integralkB̂jil [9]. The
coefficientsum andym in Eq. (4) are given byslmyEm 1

1d1y2y
p

2 and sgnsjmd slmyEm 2 1d1y2y
p

2, respectively.
Here the spinon spectrum isEm ­

p
l2

m 2 j2
m, in which

the hopping term only contributes to a shift to th
Lagrangian multiplierl by lm ­ l 2 JhyJsjjmj. The
renormalized coupling constantJh ­ kĤlt will be always
chosen asJh ­ dJ below (d is the doping concentra-
tion). l is determined by the condition

P
ikb

y
isbisl ­

Ns1 2 dd, or

2 2 d ­
1
N

X
m

lm

Em
coth

bEm

2
1 nb

BC , (6)

where b ­ 1ykBT and nb
BC represents the number o

spinons per site staying atEm ­ 0 state if a Bose
condensation (BC) of spinons occurs.

In Fig. 1, the region of a nonzeroDs is shown, which
practically covers the whole experimentally intereste
temperature and doping regime. Note that in the boso
RVB description,Ds does not directly correspond to an
energy gap, in contrast to the fermionic RVB state [1]. I
fact, the spinon spectrumEm is gaplessat zero doping and
zero temperature [2] which ensures a BC of spinons.
the new formulation, the transverse spin operator can
written as [8]

S1
i ­ b̄

y
i"b̄i#s21dieiF

h
i , (7)
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FIG. 1. The phase diagram of a doped antiferromagnet bas
the bosonic RVB description. The dotted and shaded curv
sketch an insulating AFLRO phase and an inhomogeneo
metallic region, respectively, described by a spinon Bose co
densation (BC). SC indicates the superconducting condensat
region determined under an optimal condition (see the tex
The temperatureT is in units ofJ.

in which

Fh
i ­

X
lfii

Im lnszi 2 zldnh
l (8)

describes vortices (with vorticity­ 1) centered on holes
(nh

l ­ h
y
i hi). In the absence of holes, the BC of spinon

will always give rise tokS1
i l ~ s21di, i.e., an AFLRO.

But in the presence of mobile holons—in the meta
lic region—free vortices introduced byFh

i will make
kS1

i l ­ 0 even though spinons may be still Bose con
densed, resembling a disordered phase in the Kosterli
Thouless transition. Only in an insulating phase whe
holes are localized, the AFLRO may be still sustaine
as the vortex effect ofFh

i in Eq. (7) can be “screened”
through the compensation of a phase with opposite vo
ticities generated from spinons (after all, the phase strin
effect is no longer effective if holes are localized).

So the AFLRO should be absent in the metallic phas
even though the spinon BC may still persist. In the follow
ing, we argue that a spinon BC phase within the metall
regime must be generally inhomogeneous in charge d
tribution. Namely, it is a phase separation state. Rec
that in the BC case,l must take a value to makeEm gap-
less such thatnb

BC fi 0 can balance the difference betwee
the left and right sides of Eq. (6). Note that theEm ­ 0
state corresponds to the maximum ofjjmj, and thus it is
related to those states at the band edge ofjm which is
generally sensitive to the fluctuation ofAh

ij . As Ah
ij is ba-

sically controlled by the holon density, the fluctuations o
the charge will then lead to a “Lifshitz” tail injm and play
an essential role in determining theEm ­ 0 state. Such
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a state is thus associated with inhomogeneous hole c
figurations so that the Bose condensed spinons form A
orders in hole-deficient region. The detailed nature of th
Em ­ 0 state will be sensitive to many factors, like the
dynamics of holons which is beyond the present approx
mation. Generally speaking, with the increase of dopin
the reduction of the left-hand side of Eq. (6) will even
tually make the BC contribution go away. In Fig. 1 the
shaded curve sketches such a BC region which basica
defines an underdoped metallic phase. (The dotted cu
in Fig. 1 marks the insulating AFLRO phase in the dilut
hole regime.)

Superconducting condensation (SC) is characteriz
by the nonzero average of̂D

SC
ij ­

P
s sciscj2s defined

by [8]

D̂SC
ij ­ D̂s

ijshy
i e

i

2
fFs

i 2f
0
i gd shy

j e
i

2
fFs

j 2f
0
j gd s21di , (9)

where

Fs
i ­

X
lfii

Im lnszi 2 zld
X
a

anb
la (10)

describes vortices (antivortices) centered on up (dow
spinons, andf0

i ! f
0
i 6 2p after i circles once along

a plaquette. Note that the spinons are always pair
(Ds ­ kD̂s

ijl fi 0). In order to have SC, bosonic holons
must undergo BC. The vortices described byF

s
i are all

paired up in the ground state whose effect in Eq. (9)
minimal. But at finite temperature, free vortices appe
in F

s
i as spinons are thermally excited from the paire

state. In order to achieve the phase coherence in Eq.
the condensed holons have to screen those free vortices
forming supercurrents. A phase transition to normal sta
eventually happens when such screening fails which c
be estimated as the free spinon number exceeds the ho
number. The BC of holons will then be interrupted. S
the transition temperatureTc may be determined by

2
N

X
m

lm

Em
nsEmd

É
T­Tc

­ kd , (11)
on-
F
e
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(9),
by
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o

wherek , 1. The left-hand side represents the number o
excited spinons determined from

P
is b

y
isbis , with nsEmd

as the Bose function.Tc calculated based on Eq. (11) is
plotted in Fig. 1 as the dashed curve. It is obtained und
the approximationAh

ij ø Āh
ij in Eq. (5) (Āh

ij is defined byP
C Āh

ij ­ pkNh
c l). The value ofTc in Eq. (11) depends

on a characteristic low-energy scale of spinons to be ide
tified later in the dynamic susceptibility function. Finally,
the symmetry of the SC order parameter may be dete
mined as

kD̂s
ii1x̂lykD̂s

ii1ŷl ­ e2i 1

2

P
h

Df
0
jk ­ 21 , (12)

where
P

h denotes a summation ofDf
0
jk ; f

0
j 2 f

0
k over

four links of a plaquette and the result indicates ad-wave
symmetry for the nearest-neighboring SC pairing.

Thus, in the metallic phase there exist two temperatu
scales:TBC andTc. At low doping whereTBC . Tc, the
charge inhomogeneity or phase separation happens bel
TBC and further belowTc holons are also expected to
be condensed into nonuniform regions in favor of the
spin correlation energy. On the contrary, onceTc .

TBC, holons will experience BCfirst and beuniformly
distributed in real space. For the ideal BC of holons
Ah

ij can be replaced bȳAh
ij with a substantial reduction of

dAh
ij ­ Ah

ij 2 Āh
ij belowTc. The spinon spectrum is then

qualitatively changed belowTc which prevents spinons
from Bose condensing into an inhomogeneous phase
lower temperature (see below).Tc shown in Fig. 1 is
estimated under such a condition and it optimizesTc as
compared to the case with stronger fluctuations inAh

ij .
This regime may be properly defined as the optimum
doping regime in our theory. BeyondTc . TBC, a
crossover due to statistics transmutation may quickly s
in as holons tend to bealwaysBose condensed even at
high temperature such that spinons have to be turned in
fermions, which leads to the breakdown of the bosoni
RVB state and is beyond the scope of the present paper

How can two regions of the metallic phase be distin
guished by experiment? Here we would like to focus o
a direct experimental signature in the local dynamic spi
susceptibilityx

00
Lsvd. x

00
Lsvd is given by
x 00
Lsvd ­

p

4

X
mm0

Kmm0h1y2f1 1 nsEmd 1 nsE0
mdgsu2

my2
m0 1 y2

mu2
m0ddsjvj 2 Em 2 Em0d 1 fnsEmd 2 nsEm0dg

3 su2
mu2

m0 1 y2
my2

m0ddsv 1 Em 2 Em0dj , (13)
the
the

ly
ist

d a
wherev . 0 with Kmm0 ;
P

is jwmssidj2jwm0ssidj2. As
shown in Fig. 2,x 00

Lsvd exhibits a double-peak structure
in low-energy region for the spinon BC case. The lowe
peak in Fig. 2 originates from the excitations of the Bos
condensed spinons which disappears aboveTBC, while the
second peak is contributed by regular spinon pairs excit
from the vacuum. HeredAh

ij is treated as a random flux,
with a strength of the flux per plaquettedf ­ 0.3pd

at d ­ 1y7 ø 0.143. CorrespondingTBC is found to be
,0.21J. On the other hand, if the holon BC happens firs
st
e-

ed

t

with Ah
ij ø Āh

ij (df ­ 0) belowTc, then the spinon BC is
found absent and only a single peak is left, as shown in
inset of Fig. 2. Here the sharpness of the peak is due to
Landau-level effect caused byĀh

ij in Em. Its corresponding
energy scale also determinesTc in Fig. 1 according to
Eq. (11). Such a sharp peak structure will be qualitative
changed aboveTc as no more Bose condensed holons ex
and the fluctuation part ofAh

ij becomes dominant.
Neutron-scattering measurement has indeed reveale

double-peak structure in YBa2Cu3O6.5 compound recently
5403
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FIG. 2. Local dynamic spin susceptibilityx 00
Lsvd vs v (in

units of J) at d ­ 0.143. Solid curve:T ­ 0; (¶): T ­ 0.1;
(3): T ­ 0.2; (p): T ­ 0.3. Here TBC ­ 0.21 with df ­
0.3f̄. The inset:x 00

Lsvd vs v under the optimal condition:
df ­ 0 at T ­ 0.

[10], where the lower peak is located near30 meV and
the second one is, around60 meV, about twice bigger
in energy as predicted by the theory (Fig. 2). Thus, th
underdoped material can be understood in the pres
theory as in the spinon BC phase. On the other han
a “resonancelike” sharp peak at41 meV has been well
known for YBa2Cu3O7 belowTc [11], which is consistent
with the case shown in the inset of Fig. 2 ifJ , 100 meV.
Namely, it corresponds to the uniform phase without th
spinon BC, defined as an optimum metallic region in th
theory with an optimizedTc. Magnetic peaks located near
Q0 ­ sp , pd are also identified in the momentum space a
the “resonance” energy in both the experiment and theo
suggesting an AF nature of spin fluctuations.

Therefore, by incorporating the singular doping ef
fect—phase string, we are able to generalize the boso
RVB description from half-filling case to the metallic
regime. While the bosonic RVB pairing, representin
short-range AF correlations, is the driving force behin
the antiferromagnetism and superconductivity, it is th
combination with the phase string effect that decides wh
and where they occur in the phase diagram. Two kinds
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metallic state—underdoping (with phase separation) and
optimum doping (uniform phase) are also predicted by the
present theory with distinct experimental features. As the
key structure in this theory, the spin and charge excita-
tion spectra are mutually influenced through the topologi-
cal gauge fieldAh

ij and A
f
ij as the manifestation of the

phase string effect. The example in the optimal-doping
case shows how it works: a uniformly distributed Bose-
condensed holons leads to a sharp peak in the spinon spe
trum throughAh

ij below Tc. And the gap in the spinon
excitations in turn sustains such a SC state until a suffi
cient amount of excited spinons destroys the holon BC via
A

f
ij at higher temperature. In the normal state, the sharp

peak in the spin excitation spectrum will be gone due to
the drastically modifiedAh

ij, while the scattering of holons

with A
f
ij will dictate the transport properties. The spinon

BC and charge inhomogeneity in the underdoped case ar
similarly connected through the same gauge fields. The
spinon BC also bears some resemblance to a “pseudoga
phenomenon in the behavior of uniform spin susceptibil-
ity, resistivity, etc., which will be discussed elsewhere.
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