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Nonlinear Dynamic Rupture in Sapphire
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(Received 26 June 1997)

Thin, wide, strips like sapphire specimens were fractured under three point bending. The fract
surfaces of the specimens were investigated using nonlinear analysis. The crack profiles w
analyzed using correlation dimension, false nearest neighbor, and null hypothesis surrogate
methods and found to be a spatial occurrence of a chaotic deterministic system with at least se
dimensions, in contrast to only one independent variable used in current analytical calculatio
[S0031-9007(97)05036-9]

PACS numbers: 62.20.Mk, 05.45.+b, 46.30.Nz
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Phenomenological observations in many classes
brittle materials have shown an almost universal route
instability as the unbalanced energy increases in crack
bodies that occur in the following sequence: mirror, mi
hackle, and branching [1–3]. Fineberget al. [4] have
measured the crack velocity in polymethylmethacryla
(PMMA), and found velocity oscillations that coincide
with the jagged structure of the fracture surface. Cra
oscillations in sapphire were reported by Wiederhorn [5
when theKI direction was parallel to (0001) ands1̄012d
planes. No oscillations were detected on thes101̄0d plane.
Ball and Payne [6] have reported oscillation on som
fracture planes of quartz crystals. These oscillations we
not stable, but rather grew in amplitude until branchin
occurred. In a previous work we have shown that a cra
in single crystal should have oscillations even for low
unbalanced energy but with very low amplitude [7].

The nature of the equations of motion of a rapid crac
is not well known yet. An analytical approach, based o
continuum elastic theory [1] has led to a one-dimension
crack-tip equation of motion. Nonlinear analysis enable
one to investigate a dynamical system near steady state
to determine the characteristics of the system by examini
one or more variables as a function of time or other integr
tion variable. This investigation is aimed at demonstratin
that crack propagation in single crystal material, under t
described loading, is a chaotic deterministic process rath
than a random one, and should be described by a high
der differential equation.

In this investigation, 0.5 mm thick50 3 10 mm2 rect-
angular sapphire slabs were tested. The surfaces of
slabs were parallel to the (0001) plane, the normal [000
to these surfaces is shown in Fig. 1. The short axis
the specimen inclined with 12± to the s101̄0d cleavage
plane. The specimens were loaded under three point be
ing (3PB) until fracture occurs. Detailed analysis of th
fracture mechanisms was given in previous work [7].

Fractured specimens were placed horizontally in a Bak
lite cast to replicate the fracture surfaces, and then remov
from the cast, revealing the replicated fracture surface. W
chose to analyze the low frequency, high amplitude pe
0031-9007y98y80(3)y540(4)$15.00
of
of
ed
t

te

k
]

e
re
g
ck

k
n
al
s

and
ng
a-
g
e
er
or-

the
1]
of

nd-
e

e-
ed
e

r-

turbations [7]. The Bakelite was polished to the depth
the desired section of the crack surface. The crack pro
was photographed and the resulting skyline was scann
and converted to numerical data. The result of the sa
pling process was a “time” series of 7480 points, whic
correspond to 9 mm in length. The time series is denot
by ysxd wherex and y are both spatial coordinates, an
ȳ ­ 0. Since the actual scale of the data is irrelevant f
most of the discussion below, the values of the functio
are given in pixels. Roughly, the trajectory of the crac
profile can be described by a set of triangular sawtoo
with angle of 150±, suggesting that the crack moves alte
natively ons101̄0d ands112̄0d cleavage planes.

The numerical crack profile is shown in Fig. 2(a). Thi
profile represents a physical length of 5 mm. Thex axis
represents the crack profile coordinate self-similar to t
crack direction, while they axis represents the coordinat
normal to the crack path (note the different scales). A
suming that the velocity of the crack tip is terminal at th
zone, one can look upon thex coordinate as the time co-
ordinate andfsxd ­ fstd as a time series of an unknown
dynamic system.

We confronted the experimentally obtained crack profi
with a phase and sequence randomization of that profi
and with three other randomly generated profiles, to d
termine whether the crack trajectory is a random functio
or chaotic deterministic motion. The randomly generat
profiles, with a fixed angle of 150± were constructed us-
ing the equationy2 1 B rands0; 1d . C [Fig. 2(b)], where
B and C were adjusted to obtain a similar amplitud

FIG. 1. Schematic presentation of the specimens’ three po
bend loading and relevant direction and plane.
© 1998 The American Physical Society
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FIG. 2. The physical (a) and the randomly generated (b) cra
profiles.

compared to the experimental profile, and STD1 to STD
denoting, respectively, larger, similar, and smaller sta
dard deviations of the distances between the peaks of
randomly generated profiles and that of the experimen
profile.

The power spectrum is shown in Fig. 3. The powe
spectrum of the first and last 2000 data points, respective
from the total 7480 data points is shown. The pow
spectrum does not have a dominant peak, but rather
components in a large domain of frequencies. The pow
spectrum changes only slightly from the beginning to th
end of the sample. It is assumed that due to small chang
the strain energy release rate during crack advance [7]
system changes adiabatically; i.e., the equations of mot
change without violating equilibrium.

The most widely used phase space reconstruction
the time delay embedding [8,9]. In this method, anM
dimensional vectorP is reconstructed from the one-
dimensional time series by sampling it at constant inte

FIG. 3. The logarithm of the power spectrum of the crac
profile.
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vals: Psx; Md ­ h ysxd, ysx 1 x0d, ysx 1 2x0d, . . . , ysx 1

fM 2 1gx0dj. Given thatM is large enough, andx0 is
properly selected, the plot ofPsx; Md in anM dimensional
space will reconstruct a manifold topologically equivalen
to the system’s attractor. An estimation of the embeddin
time delay,x0, can be obtained by minimizing the mutual
information [9–11], as shown in Fig. 4, indicating that the
optimal embedding time delay for our data is 25 pixels
The time delay for the randomly generated profiles wa
chosen such that the mutual information equals the min
mum of the experimental mutual information. An example
of a reconstructed attractor of the experimental profile fo
M ­ 2 andx0 ­ 25 is shown in Fig. 5. The crossing of
many of the trajectories in this figure implies that it is a
projection of a higher dimensional trajectory.

Three methods have been used to determine whether t
time series are deterministic, and to calculate the optim
embedding dimension of the system. The methods a
based on finding nearest neighbors (NN) in a reconstructe
phase space. To minimize the influence of the change
the strain energy release rate, we limited the search spa
of the NN to a time window of 3000 pixels. We excluded
the nearest 120 pixels out of the search space to cancel
effect of linear autocorrelation.

(I) Null hypothesis surrogate data (NHSD) [12].—The
typical result of the NHSD test is a gradual decrease ofZ
(Z is the probability of rejecting the null hypothesis), with
increasing dimension until a stabilization occurs when th
optimal embedding dimension is reached. The situatio
for the examined profiles was different:Z dropped to its
minimum atM ­ 2, and then climbed and stabilized at a
higher value, Fig. 6. We postulate that this unusual resu
is due to the crystallographic angle characterizing ou
samples. NHSD test performed on the randomly generate
profiles indicated a similar behavior. However, unlike the
experimental profile,Z of the random data always climbed
to a positive value at large dimensions. It is therefore
concluded that the sapphire data is deterministic.

(II) False nearest neighbor (FNN) [9,10].—Denoting
the Euclidean distance between a pair of NN byRMsnd

FIG. 4. The mutual information as a function of embedding
interval for the experimental and the randomly generate
profiles.
541
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FIG. 5. Presentation ofy ­ fsxd and y ­ fsx 1 x0d with a
phase shift of 25 pixels.

whereM is the embedding dimension, andn the index of
the pair, we can use the criterion for FNN:hfR2

M11snd 2

R2
MsndgyR2

Msndj1y2 . Rcrit where Rcrit is usually of the
order of 10.

If the data set is small or noisy, many of the NN woul
not be close enough to allow further expansion, and t
FNN test might give a false, underestimating dimensio
To avoid this effect we used only those NN whoseRMsnd
is small compared to the STDM (the standard deviation of
the data sample in power of the embedding dimension)

We have compared the fraction of FNN as a function
the dimension for the original data, as well as for pha
randomized (PR), sequence randomized (SR) (Fig. 7), a
the randomly generated profile. The percentage of FNN
the randomized samples never decreases below 20% w
it did drop to 0.4% forM ­ 6 and to zero forM ­ 7.

(III) Correlation dimension [10,11,13].—While the
embedding dimension is essential for reconstructing t
equations of motion of the system, it is the fractal dime
sion that helps us to understand the structure of the attrac
manifold. The most commonly measured dimension is t
correlation dimension denoted byD2, which is smaller than
the dimension of the dynamic system. To calculate t
correlation dimension, one counts the numberC of neigh-

FIG. 6. Z value of the NHSD test as a function of the
embedding dimension for the experimental and the random
generated profiles.
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FIG. 7. The fraction of FNN as a function of the dimension
for the experimental profile, phase randomized (PR) an
sequence randomized (SR), and for the randomly generat
profiles.

bors in a distancer from a given point and sums on all
points:Csr; Md ­ limN!`fN22

PN
i­1

PN
j­1 Hsr 2 jPi 2

Pjjdg whereH is the Heaviside step function andj j is the
EuclideanM dimensional distance. The (physical) corre
lation dimension is defined asD2sMd ­ d ln Csrdyd lnsrd,
over some range in which this expression is relatively con
stant. As proposed by Grassberger and Procaccia [1
the correlation dimension is estimated for increasing em
bedding dimension. When the unfolding embedding d
mension is reached, the correlation dimension reaches
steady value which is the correlation dimension of the a
tractor. Following Schmidt and Dünki [10] we used an
improved version of the algorithm, including optimiza-
tion of time delay, using decorrelation window when cal
culating Csrd, and a smart algorithm for the selection of
the scaling region. The correlation dimension as a func
tion of the embedding dimension for the test data and th
two randomized data are shown in Fig. 8. For the ran
domized data the correlation dimension did not converg
We assumed asymptotic approach ofD2sMd to its final
value of the form:D2sMd ­ D`

2 s1 2 e2bMd, whereD`
2

FIG. 8. The correlation dimension as a function of the
embedding dimensionsMd for the sapphire and its SR and PR.
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is the correlation dimension of the unfolded attractor, a
b is unknown. Using best fit of that form we obtaine
D`

2 ­ 6.62 6 0.1. We note that the maximum correlation
dimension acceptable depends on the number of data po
L as Dmax

2 > 2 log10 L [14]. In the experimental profile,
the value ofDmax

2 lies between 6.95 (for the 3000 pixe
window) and 7.75 (for the whole data set). The dime
sion obtained is therefore close to the limiting value, b
the scaling behavior of the correlation integral suggested
is at least close to the real value.

It is concluded from the above nonlinear analysis th
the analyzed cracking process is chaotic determinis
in nature, and can be described by a set of different
equation of the order of 7 at least, in contrast to only on
dimensional analysis that has usually been done until no
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