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A novel chiral interferometer is proposed that allows for a direct measurement of the phase o
transmission coefficient for transport through a variety of mesoscopic structures in a strong mag
field. The effects of electron-electron interaction on this phase are investigated with the use of fi
size bosonization techniques combined with perturbation theory resummation. New non-Fermi-li
phenomena are predicted in the fractional quantum Hall effect regime that may be used to distin
experimentally between Luttinger and Fermi liquids. [S0031-9007(98)06311-X]
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Resistance measurements have long been used a
spectroscopy of mesoscopic systems, as have other s
troscopies such as optical absorption. For example
measurement of the tunneling current through a quant
dot as a function of temperature, voltage, and magne
field yields information about the electronic many-bod
states present there. Unfortunately, important informati
is lost in conventional tunneling spectroscopy becau
only the amplitudejtj of the complex-valued transmis-
sion coefficientt ­ jtjeif is measured. In a recent serie
of beautiful experiments, Yacobyet al. [1], Buks et al.
[2], and Schusteret al. [3] have succeeded in measurin
both the phase and amplitude of the transmission co
ficient for tunneling through a quantum dot. The pha
was measured by inserting a quantum dot into one arm
a mesoscopic interferometer ring and observing the sh
in the Aharonov-Bohm (AB) magnetoconductance oscill
tions, thereby converting a phase measurement to a mu
probe conductance measurement. The experiments d
in weak magnetic field used a ring-shaped semiconduc
interferometer as shown schematically in Fig. 1(a). A
oscillations in the conductance occur as the fluxF en-
closed by the ring varies. In Fig. 1(b) a phase-cohere
scatterer with transmission coefficientt ­ jtjeif is in-
serted into one arm of the interferometer, resulting in
shift of the phase of the magnetoconductance oscillatio

The properties of a ring interferometer in a strong ma
netic field are strikingly different than that in weak field
because of the formation of edge states. Under conditio
in which the quantum Hall effect is observed, namel
when the Fermi energy in the bulk of the sample is
a mobility gap, the extended states responsible for tra
port lie at the device boundaries [4]. A bare interferom
ter in the quantum Hall regime is shown schematically
Fig. 1(c). The source and drain contacts, denoted by
hatched regions, are assumed to be completely phase
coherent. Even in the absence of inserted scatterers,
chirality of the edge states dramatically changes the n
ture of the underlying AB interference: First, if there i
no coherent transport between the left and right outer ed
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states, there will be no magnetoconductance oscillations
all, because the electrons will travel from source to drai
without circling flux [5]. Therefore, weak phase-coheren
tunneling points are introduced in Fig. 1(c) (denoted b
dashed lines) to make a viable interferometer, although

FIG. 1. (a) Semiconductor interferometer in zero field. A
two-dimensional electron gas (shaded region) is connected
source and drain contacts. (b) Phase-coherent scatterer (so
black circle) with transmission coefficientt inserted into one
arm. (c) Interferometer in the quantum Hall effect regime
where edge states (solid lines) are formed. The dashed lin
represent weak tunneling points. With no scatterers inserte
the inner edge state is disconnected from the outer one a
does not affect transport properties. (d) General configuratio
of the interferometer in the strong-field case. The solid blac
circle denotes the transmission coefficientt resulting from a
coupling to the inner edge state caused by the insertion
an arbitrary phase-coherent scatterer. By unitarity,t is a pure
phase. Comparing cases (b) and (d) suggests the designat
“chiral interferometer” for the latter.
© 1998 The American Physical Society 5393
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a real system the coherence length in the contacts mi
be large enough to observe oscillations. Second, in a c
ral system the AB oscillations are caused by interferen
between the direct path from source to drain along o
edge of the ring and paths containing any number of win
ings around the ring having a given chirality. Whereas
the weak-field case the AB effect leads to both constru
tive and destructive interference (poles and zeros in t
probability to propagate around the ring), the AB effect i
a chiral system therefore leads to constructive interferen
(poles) only [6].

We are now in a position to understand the effect o
inserting a mesoscopic phase-coherent scatterer, such
quantum-point contact or a quantum dot, into one arm
the strong-field interferometer. Elastic scattering betwe
the inner and outer edge states is now possible, coupl
them together in a phase-coherent fashion. Because
coupling to the inner edge state occurs in one arm on
electrons scattered to the inner edge state must eventu
return to the outer edge state of that same arm. Therefo
the effect of any inserted scatterers is to introduce
equivalent scatterer with transmission coefficientt, shown
as a black circle in Fig. 1(d). Usually,t results from the
transmission through an inserted mesoscopic structure
parallel with the inner edge state of the ring. Comparin
the equivalent circuits shown in Figs. 1(b) and 1(d), w
see that they are distinguished by the chiral nature of t
latter. I shall therefore refer to the strong-field ring a
a chiral interferometer. An immediate consequence of
the chirality is that current conservation requirest in case
1(d) to be a pure phaseeif.

The purpose of this paper is to present a brief sum
mary of the rich physics of the chiral interferometer. Th
model I shall adopt here for the interferometer is as fo
lows: Two mesoscopic filling factorg ­ 1yq (with q
an odd integer) edge states are coupled to source
drain contacts. Weak phase-coherent tunneling poin
with reflection coefficientGc (with jGcj ø 1) couple the
left and right edge states near the contacts to mimic t
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residual coherence necessary for strong-field interferom
try, as discussed above. Because these couplings are
sumed to occur in the contacts, the coefficientsGc are
assumed not to be renormalized by electron-electron
teractions. The edges of the two-dimensional electr
gas are assumed to be sharply confined, and the
teraction short ranged, so that the low lying collectiv
excitations consist of a single branch of edge magn
toplasmons with linear dispersionv ­ yk. Then the
conductance at zero temperature is simplyG ­ gsss1 2

2jGcj2f1 1 cossuout 1 fdgddd e2

h , where uout is the field-
dependent phase accumulated by an electron after trav
ing the outer edge state. I have chosen this model
the bare interferometer because it is the simplest one
allows for a measurement of the phasef; more sophis-
ticated models, including ones whereGc is renormalized
by interactions, have been studied in a different conte
elsewhere [6,7].

The dynamics of edge states in the fractional quantu
Hall effect regime is governed by Wen’s chiral Luttinge
liquid (CLL) theory [8]

S6 ­
1

4pg

Z L

0
dx

Z b

0
dt ≠xf6s6i≠tf6 1 y≠xf6d ,

(1)

wherer6 ­ 6≠xf6y2p is the charge density fluctuation
for right (1) or left (2) moving electrons. Canonica
quantization in momentum space is achieved by deco
posing the chiral scalar fieldf6 into a nonzero-mode
contributionf

p
6 satisfying periodic boundary conditions

and a zero-mode partf0
6. Imposing periodic bound-

ary conditions on the bosonized electron fieldc6sxd ­
s2pad21y2eiqf6sxde6iqpxyL (a is a microscopic cutoff
length) leads to the requirement that the chargeN6 ;RL

0 dx r6 be an integer multiple ofg. The transmission
coefficient in the noninteractings g ­ 1d limit can also be
calculated from scattering theory; this limit will be dis
cussed in detail elsewhere.
amics.
The study of mesoscopic effects in the CLL requires a careful treatment of the zero-mode dyn
I shall make extensive use here of the retarded electron propagatorG6sx, td ; 2iQstd khc6sx, td, c

y
6s0djl for the

finite-size CLL. In the presence of an AB fluxF ­ wF0 (with F0 ; hcye) and additional charging energyU,
the grand-canonical zero-mode Hamiltonian corresponding to (1) isH0

6 ­
1
2 qDesN6 6 gwd2 1

1
2 UN2

6 2 mN6,
where De ; 2pyyL. I then obtain f0

6sx, td ­ 62pN6sx 7 ytdyL 2 gx6 1 gsm 7 wDedt 2 gUN6t, where
fx6, N6g ­ i, and (atT ­ 0)

G6sx, td ­ 6s i
L dqspadq21Qstde6iqpsx7ytdyLeism7wDedt ke62piqNsx7ytdyLe2iUNtl Im

√
e2iUty2

sinq psx 7 yt 6 iadyL

!
. (2)
t

The Fourier transformG6sx, vd is particularly interesting:
For the caseU ­ 0, it is simply related to the Green’s
function for noninteracting (q ­ 1) chiral electrons [9],

G6sx, vd ­ G
q­1
6 sx, vd 3

e
12q
F

sq 2 1d!

q21Y
j­1

sv 2 vjd .

(3)
Herevj ; f j 1 fracs m

De 7 wdgDe, where fracsxd is the
difference betweenx and its closest integer, andeF ;
yya is an effective Fermi energy. Whereas in theq ­
1 case the propagator has poles at each of thevj, in
the interacting case the firstq 2 1 poles (abovem) are
removed.This effect, which can be regarded as a remnan
of the Coulomb blockade for particles with short-range



VOLUME 80, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 JUNE 1998

er
.
n

n

,

r

s
e
s

r

of

m

interaction, is a consequence of the factorq in the first term
of the zero-mode HamiltonianH0

6. Unlike an ordinary
Coulomb blockade, however, the energy gap here, eq
to sq 2 1dDe, is exactly quantized. At higher frequencie
or in the largeL limit where v ¿ De, the additional
factor becomesvq21ysq 2 1d! e

q21
F . Upon turning onU

a conventional Coulomb blockade develops, with a g
given byU 1 sq 2 1dDe.

The transmission coefficient for the equivalent scatter
in Fig. 1(d) can be shown to be given by theratio of
retarded propagatorstsed ; Gsxf, xi, edyGbaresxf, xi, ed,
with Gbare referring to the bare interferometer, which i
the appropriate generalization of the Fisher-Lee result [1
to this interacting system. The proof involves derivin
an expression for the source-drain conductance of
interferometer with an arbitrary inserted scatterer, a
extracting the phase shift caused by the latter. For t
purpose of calculatingt we may neglect finite-size effects
in the leads and assumeGbaresxf, xi, ed ­ Gbaresd, ed,
where d is the size of the inserted scatterer. I tur
now to a summary of transmission coefficients for th
configurations shown in Fig. 2; details of the calculation
shall be given elsewhere.

(A) Single weak tunneling point.—I begin with the
simple case of one weak tunneling point atx ­ x0 con-
necting the inner and outer edge states as shown schem
cally in Fig. 2(A). In the fractional regime, quasiparticle
tunneling, which is allowed in this configuration, di
verges at low temperature, driving the system to t
configuration shown in Fig. 2(B) [11]. In the intege
regime S ­ S0 1 dS, where S0 ­ Sin 1 Sout is the
sum of actions of the form (1) for the inner and oute
edge states, respectively, anddS ­

Rb

0 dtfyGcoutsx0, td
c̄insx0, td 1 c.c.g is the weak coupling between them
To leading nontrivial order perturbation theory yield
t ­ 1 1 y2jGj2Gins0, edGoutsa, ed, where d has been

FIG. 2. Four configurations of the chiral interferomete
(A) One weak tunneling point connecting the inner and out
edge states. (B) One strong tunneling point. (C) Two we
tunneling points. (D) A quantum dot weakly connected to th
incident edge states.
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taken to be of the order ofa. The Green’s function
Ginsx, vd diverges at resonances associated with the inn
edge state, invalidating low-order perturbation theory
However, it is possible to sum the perturbation expansio
to all orders, resulting in

t ­
1 1 y2jGj2Gins0, ed fGoutsa, ed 2 Gouts0, edg

1 2 y2jGj2Gins0, edGouts0, ed
.

(4)

Note that in the CLL it is necessary to distinguish betwee
G6sa, ed and G6s0, ed, because G6sx, vd is pro-
portional to the unit step functionQs6xd. At zero
temperature (andU ­ 0) a simple expression for the
phase shift in this configuration is possible, namely
tanf ­ 2

1
2 jGj2 cotsuiny2d f1 2

1
16 jGj4 cot2suiny2dg21,

whereuin is the phase accumulated by an electron afte
circling the inner edge state [12].

(B) Single strong tunneling point.—Next I consider the
strong coupling limit of a single quantum-point contact, a
shown in Fig. 2(B). In this case there is no quasiparticl
tunneling. The essential part of the interferometer i
described by a single CLL,S0 ­ S1, taken to be right
moving, anddS ­

Rb

0 dtfyGc1sx1, tdc̄1sx2, td 1 c.c.g.
Perturbation theory yields

t ­
G1sLin, ed 2 yGG1sa, ed2 2 yGpG1sLin, ed2

G1sd, ed
,

(5)

and, at zero temperature (andU ­ 0),

tanf ­ f1 1 2GseyeFdq21cscsuindys q 2 1d!g tanuin ,

(6)

where Lin is the length of the inner edge state. [Fo
simplicity I have assumed in Eq. (6) thatG is real and that

FIG. 3. Phase of the transmission coefficient as a function
energy for configurations B and D. HereDf ; f 2 2peyein,
with ein ; 2pyyLin. The thin curves show the caseq ­ 1 and
the thick onesq ­ 3. The phase in configuration D is similar
to that in B except for abrupt shifts caused by the quantu
dot resonances; in theq ­ 3 case the lowest resonances are
blocked by interactions [see discussion following Eq. (3)].
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s
d is again of the order ofa.] This expression shows that
for G ­ 0, f varies linearly witheyein (ein ; 2pyyLin)
5396
with slope2p; for finite G the phase oscillates about thi
linear variation as shown in Fig. 3.
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(C) Two weak tunneling points.—This configuration is similar to that in case (A), and to leading ord

t ­ 1 1 y2

√X
i

jGij
2

!
Gins0, edGoutsa, ed 1 y2G1Gp

2
GinsLin 2 d, edGoutsa, ed2

Goutsd, ed
1 y2Gp

1G2Goutsd, edGinsd, ed , (7)

whered is now the distance between the two quantum-point contacts.
(D) Quantum dot.—Finally I consider the case of tunneling through a quantum dot weakly coupled to

interferometer edge states, as shown in Fig. 2(D). In this configuration quasiparticle tunneling is not allowe
Coulomb blockade effects are important in the quantum dot. The interferometer is described byS0 ­ S1 1 SD, where
SD is the CLL action for the edge state in the quantum dot that includes an additional charging energyU, and the weak
coupling of the quantum dot to the leads is described bydS ­

P
i

Rb

0 dtfyGic1sxi , tdc̄Dsxi , td 1 c.c.g, with i ­ 1, 2.
To leading nontrivial order (suppressing thee dependence of the Green’s functions),

t ­
G1sLind
G1sdd

1 y2

√X
i

jGij
2

!
G1sadG1sLindGDs0d

G1sdd
1 y2G1Gp

2
G1sad2GDsLDy2d

G1sdd
1 y2Gp

1G2
G1sLind2GDsLDy2d

G1sdd
,

(8)

where LD is the circumference of the quantum dot edge state. The first term in (8) describes transm
via the inner edge state; the orderjGi j

2 contributions describe the same, apart from an additional tunneling e
on and back off the quantum dot at pointxi . The term proportional toG1G

p
2 describes a direct tunneling through the do

and the orderGp
1G2 term describes transmission via the inner edge state, then backwards through the quantum d

finally around the inner edge state again. The propagatorGDsx, vd diverges at the quantum dot resonances, invalidat
(8), and it is again necessary to sum the perturbation expansion to all orders; the result (for equalGi) is

t ­
G1sLind 1 y2jGj2fG1sad2GDsLDy2d 1 2DG1sLindGDs0dg 1 y4jGj4D2G1sLind fGDs0d2 2 GDsLDy2d2g

G1sdd h1 2 y2jGj2f2G1s0dGDs0d 1 G1sLindGDsLDy2dg 1 y4jGj4G1s0d2fGDs0d2 2 GDsLDy2d2gj
, (9)
where D ; G1sa, ed 2 G1s0, ed. A similar resumma-
tion method has also been applied to a quantum dot tha
not part of an interferometer [13]. The energy-depende
phase for typical quantum dot parameters is shown
Fig. 3.

The non-Fermi-liquid nature of the transmission coe
ficient tsed in each configuration manifests itself as fol
lows: At a fixed energye, the phase shiftf as a function
of magnetic field is the same as in a Fermi liquid (q ­ 1),
but the effective coupling constants depend one. How-
ever, the energy dependence oftsed at fixed field (see
Fig. 3), which can be probed by varying the temperatu
or bias voltage, is dramatically different than in the Ferm
liquid case.
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