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Phase-Coherent Transport through a Mesoscopic System: A New Probe
of Non-Fermi-Liquid Behavior
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A novel chiral interferometer is proposed that allows for a direct measurement of the phase of the
transmission coefficient for transport through a variety of mesoscopic structures in a strong magnetic
field. The effects of electron-electron interaction on this phase are investigated with the use of finite-
size bosonization techniques combined with perturbation theory resummation. New non-Fermi-liquid
phenomena are predicted in the fractional quantum Hall effect regime that may be used to distinguish
experimentally between Luttinger and Fermi liquids. [S0031-9007(98)06311-X]

PACS numbers: 71.10.Pm, 72.10.—-d, 73.23.—-b, 73.40.Hm

Resistance measurements have long been used asstates, there will be no magnetoconductance oscillations at
spectroscopy of mesoscopic systems, as have other spedh, because the electrons will travel from source to drain
troscopies such as optical absorption. For example, without circling flux [5]. Therefore, weak phase-coherent
measurement of the tunneling current through a quanturtunneling points are introduced in Fig. 1(c) (denoted by
dot as a function of temperature, voltage, and magnetidashed lines) to make a viable interferometer, although in
field yields information about the electronic many-body
states present there. Unfortunately, important information
is lost in conventional tunneling spectroscopy because
only the amplitudelz| of the complex-valued transmis-
sion coefficient = |t|e’? is measured. In a recent series
of beautiful experiments, Yacobsgt al. [1], Buks et al.

[2], and Schusteet al. [3] have succeeded in measuring
both the phase and amplitude of the transmission coef-
ficient for tunneling through a quantum dot. The phase
was measured by inserting a quantum dot into one arm of
a mesoscopic interferometer ring and observing the shift
in the Aharonov-Bohm (AB) magnetoconductance oscilla-
tions, thereby converting a phase measurement to a multi-
probe conductance measurement. The experiments done
in weak magnetic field used a ring-shaped semiconductor
interferometer as shown schematically in Fig. 1(a). AB
oscillations in the conductance occur as the fibxen-
closed by the ring varies. In Fig. 1(b) a phase-coherent
scatterer with transmission coefficient= |t|e/? is in-
serted into one arm of the interferometer, resulting in a
shift of the phase of the magnetoconductance oscillations.

The properties of a ring interferometer in a strong mag-
netic field are striking_ly different than that in weak ﬁ?,ld FIG. 1. (a) Semiconductor interferometer in zero field. A
because of the formation of edge states. Under conditiongso-dimensional electron gas (shaded region) is connected to
in which the quantum Hall effect is observed, namely,source and drain contacts. (b) Phase-coherent scatterer (solid
when the Fermi energy in the bulk of the sample is inblack circle) with transmission coefficientinserted into one
a mobility gap, the extended states responsible for tran&fm- (c) Interferometer in the quantum Hall effect regime,

where edge states (solid lines) are formed. The dashed lines

port lie at the device boundaries [4]. A bare Interferome'represent weak tunneling points. With no scatterers inserted

ter in the quantum Hall regime is shown schematically inthe inner edge state is disconnected from the outer one and
Fig. 1(c). The source and drain contacts, denoted by thdoes not affect transport properties. (d) General configuration
hatched regions, are assumed to be completely phase dé-the interferometer in the s_trong-fielq case. The solid black

coherent. Even in the absence of inserted scatterers, tijiiCle denotes the transmission coefficientesulting from a

S . coupling to the inner edge state caused by the insertion of
chirality of the edge states dramatically changes the N&4n arbitrary phase-coherent scatterer. By unitaritig a pure

ture of the underlying AB interference: First, if there is phase. Comparing cases (b) and (d) suggests the designation
no coherent transport between the left and right outer edgehiral interferometer” for the latter.
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a real system the coherence length in the contacts mighésidual coherence necessary for strong-field interferome-
be large enough to observe oscillations. Second, in a chtry, as discussed above. Because these couplings are as-
ral system the AB oscillations are caused by interferenceumed to occur in the contacts, the coefficiehtsare
between the direct path from source to drain along on@assumed not to be renormalized by electron-electron in-
edge of the ring and paths containing any number of windteractions. The edges of the two-dimensional electron
ings around the ring having a given chirality. Whereas ingas are assumed to be sharply confined, and the in-
the weak-field case the AB effect leads to both constructeraction short ranged, so that the low lying collective
tive and destructive interference (poles and zeros in thexcitations consist of a single branch of edge magne-
probability to propagate around the ring), the AB effect intoplasmons with linear dispersiom = vk. Then the

a chiral system therefore leads to constructive interferenceonductance at zero temperature is simply= g(1 —
(poles) only [6]. 2IT.[1 + codou + ¢)])5, where 6,y is the field-

We are now in a position to understand the effect ofdependent phase accumulated by an electron after travers-
inserting a mesoscopic phase-coherent scatterer, such amg the outer edge state. | have chosen this model for
guantum-point contact or a quantum dot, into one arm ofhe bare interferometer because it is the simplest one that
the strong-field interferometer. Elastic scattering betweellows for a measurement of the phage more sophis-
the inner and outer edge states is now possible, couplinicated models, including ones whele is renormalized
them together in a phase-coherent fashion. Because tiy interactions, have been studied in a different context
coupling to the inner edge state occurs in one arm onlyelsewhere [6,7].
electrons scattered to the inner edge state must eventuallyThe dynamics of edge states in the fractional quantum
return to the outer edge state of that same arm. Thereforélall effect regime is governed by Wen's chiral Luttinger
the effect of any inserted scatterers is to introduce atiquid (CLL) theory [8]
equivalent scatterer with transmission coefficigrghown

as a black circle in Fig. 1(d). Usuallyresults from the ¢ _ L defﬁdra b+(xid, e + v )
transmission through an inserted mesoscopic structure in~  4wg Jo 0 e e e
parallel with the inner edge state of the ring. Comparing

the equivalent circuits shown in Figs. 1(b) and 1(d), we (1)

see that they are distinguished by the chiral nature of thevherep- = =49, ¢+ /2 is the charge density fluctuation
latter. | shall therefore refer to the strong-field ring asfor right (+) or left (—) moving electrons. Canonical
a chiral interferometer. An immediate consequence of quantization in momentum space is achieved by decom-
the chirality is that current conservation requiréa case posing the chiral scalar field+ into a nonzero-mode
1(d) to be a pure phase?. contribution > satisfying periodic boundary conditions,

The purpose of this paper is to present a brief sumand a zero-mode pa?. Imposing periodic bound-
mary of the rich physics of the chiral interferometer. Theary conditions on the bosonized electron fietd (x) =
model | shall adopt here for the interferometer is as fol{27a)~!/2¢i4%=We*iamx/L (4 js a microscopic cutoff
lows: Two mesoscopic filling factog = 1/g (with ¢  length) leads to the requirement that the chalge =
an odd integer) edge states are coupled to source ang dx p- be an integer multiple of. The transmission
drain contacts. Weak phase-coherent tunneling pointsoefficient in the noninteractingg = 1) limit can also be
with reflection coefficien”. (with |T'.| < 1) couple the calculated from scattering theory; this limit will be dis-
left and right edge states near the contacts to mimic |theussed in detail elsewhere.

The study of mesoscopic effects in the CLL requires a careful treatment of the zero-mode dynamics.
| shall make extensive use here of the retarded electron propa@ator,t) = —i0O(r) <{¢/t(x,t),¢,//l(0)}> for the
finite-size CLL. In the presence of an AB fluk = ¢®, (with &, = hc/e) and additional charging energy,
the grand-canonical zero-mode Hamiltonian corresponding to (14%s= %qu(Nt + gp) + %UN?_, — N+,
where Ae = 27rv/L. | then obtain ¢%(x,t) = =27 N~(x ¥ vt)/L — gx+ + g(u * ¢Ae)t — gUN~t, where
[x+,N+] =i, and (atT = 0)

. —iUt/2
G:(x,t) = + iNg q—l@t +igm(xFvt)/L ji(uFoAe)t ; *F2migN(xFvt)/L ,—iUNt Im : e ) 2
L(60) = = ra) O ()e ellsesen (g em( ) @

The Fourier transfornd+ (x, w) is particularly interesting:| Herew; = [j + frad4= ¥ ¢)]A€, where fra¢x) is the
For the caselU = 0, it is simply related to the Green's difference betweenx and its closest integer, ane: =

function for noninteractingg = 1) chiral electrons [9], v/a is an effective Fermi energy. Whereas in the=

. et gzl 1 case the propagator has poles at each ofdhgin

G+(x,0) = GL (x,0) X —— [] (0 — w)). the interacting case the firgt — 1 poles (aboveu) are
(g — D! j=1 ' removed. This effect, which can be regarded as a remnant

(3) of the Coulomb blockade for particles with short-range
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interaction, is a consequence of the fagtam the firstterm taken to be of the order ofi. The Green’s function
of the zero-mode Hamiltonia®?®. Unlike an ordinary Gi,(x, ) diverges at resonances associated with the inner
Coulomb blockade, however, the energy gap here, equaldge state, invalidating low-order perturbation theory.
to (g — 1)Ae, is exactly quantized. At higher frequencies However, it is possible to sum the perturbation expansion
or in the largeL limit where w > Ae, the additional to all orders, resulting in
factor becomew?~!/(g — 1)!61?_1. Upon turning onl/ 5112
a conventional Coulomb blockade develops, with a gap ; — 1+ v?[T°Gin(0, €) [Gour(@, €) — Gour(0, €)]
given byU + (¢ — 1)Ae. 1 — v2|T2Gin (0, €)Gout (0, €)

The transmission coefficient for the equivalent scatterer (4)
in Fig. 1(d) can be shown to be given by thatio of  Note that in the CLL it is necessary to distinguish between
retarded propagators(e) = G(xy,xi, €)/Gbare (X1, %i,€),  G.(a,e) and G-(0,€), because G-(x,w) is pro-
with Gpaee referring to the bare interferometer, which is portional to the unit step functio®(+x). At zero
the appropriate generalization of the Fisher-Lee result [1 mperature (and/ = 0) a simple expression for the
to this interacting system. The proof involves derivingphase shift in this configuration is possible, namely,
an expression for the source-drain conductance of thf%\nqb _ _%mz cot(0;, /2)[1 — %IFI‘* co(6;,/2)]°1,

interferometer with an arbitrary inserted scatterer, a”‘i'/vhere 0 is the phase accumulated by an electron after
extracting the phase shift caused by the latter. For th‘éircling the inner edge state [12].

purpose of calculating we may neglect finite-size effects (B) Single strong tunneling poirt:Next | consider the
in the leads and assUMGare (xr, xi, €) = Grare(d, €),  strong coupling limit of a single quantum-point contact, as
where d is the size of the inserted scatterer. | tWUMgpown in Fig. 2(B). In this case there is no quasiparticle
now to a summary of transmission coefficients for theynneling. The essential part of the interferometer is
configurations shown in Fig. 2; details of the calculationsyegcriped by a single CLLS, = S., taken to be right

shall be given elsewhere. : _ (B v
: . . . , moving, anddS = [§ dr[vl ¢+ (x1, 7)i+(x0, 7) + C.CJ.
(A) Single weak tunneling poirtl begin with the Pertur%ation theor){(i/ields Y b, g (02

simple case of one weak tunneling pointxat x, con-

necting the inner and outer edge states as shown schemati- G (1., €) — vI'G. (a, €)> — vI*G(Liy, €)?
cally in Fig. 2(A). In the fractional regime, quasiparticle = G.(d.€) ,
tunneling, which is allowed in this configuration, di- e (5)

verges at low temperature, driving the system to the

configuration shown in Fig. 2(B) [11]. In the integer and, at zero temperature (abd= 0),

regime S = Sp + 65, where Sy = Sin + Soue IS the o

sum of actions of the form (1) for the inner and outer tan® = [1 + 2I'(e/ep)?" csdbin)/(q — 1)!]tanb, ,
edge states, respectively, afd = | {f dr[vT ou(xo, 7) (6)
Yin(x0, 7) + c.c] is the weak coupling between them.

To leading nontrivial order perturbation theory yields Where Lin is the length of the inner edge state. [For
t =1+ v2T|2Giy (0, €)Goui(a, €), where d has been Simplicity I have assumed in Eq. (6) thitis real and that
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FIG. 3. Phase of the transmission coefficient as a function of
energy for configurations B and D. Hefep = ¢ — 27€/ €,
FIG. 2. Four configurations of the chiral interferometer: with €;,, = 27w v/L;,. The thin curves show the cage= 1 and

(A) One weak tunneling point connecting the inner and outerthe thick onesy; = 3. The phase in configuration D is similar
edge states. (B) One strong tunneling point. (C) Two weako that in B except for abrupt shifts caused by the guantum
tunneling points. (D) A quantum dot weakly connected to thedot resonances; in the = 3 case the lowest resonances are
incident edge states. blocked by interactions [see discussion following Eq. (3)].
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d is again of the order of.] This expression shows that with slope2sr; for finite I' the phase oscillates about this
for I' = 0, ¢ varies linearly withe/€;, (i, = 27v/Liy) | linear variation as shown in Fig. 3.

(C) Two weak tunneling points:This configuration is similar to that in case (A), and to leading order

(Lin —d, E)Gout(aa 6)2
Gout(d’ 6)

r=1+ vz(z |Fi|2>cin(o, €)Goula, €) + v?I'T; Gin + VI TyGou(d, €)Gin(d, €), (7)

whered is now the distance between the two quantum-point contacts.

(D) Quantum dot—Finally | consider the case of tunneling through a quantum dot weakly coupled to the
interferometer edge states, as shown in Fig. 2(D). In this configuration quasiparticle tunneling is not allowed, but
Coulomb blockade effects are important in the quantum dot. The interferometer is descrifieerby, + Sp, where
Sp is the CLL action for the edge state in the quantum dot that includes an additional charging €naryy the weak
coupling of the quantum dot to the leads is described By= > fﬁ dr[vT (x;, T)p(x;, 7) + c.c], with i = 1,2.

To leading nontrivial order (suppressing thelependence of the Green'’s functions),

_ G+(Lin) 2 12 G+(a)G+(Lin)Gp(0)
~ G (,er’l ) G+ (d)

G (a)*Gp(Lp/2)
G+(d)

G+(Lin)*Gp(Lp/2)
G+(d) ’
(8)

where Lp is the circumference of the quantum dot edge state. The first term in (8) describes transmission
via the inner edge state; the ordd?;|> contributions describe the same, apart from an additional tunneling event
on and back off the quantum dot at point The term proportional t&'; "> describes a direct tunneling through the dot,

and the ordefl’; T, term describes transmission via the inner edge state, then backwards through the quantum dot, and
finally around the inner edge state again. The propadaidx, «) diverges at the quantum dot resonances, invalidating

(8), and it is again necessary to sum the perturbation expansion to all orders; the result (fdr;ecual

+ v21“1I‘§‘

+ vzl“fl“z

_ G+(Lin) + V’ITP[G+(a)*Gp(Lp/2) + 2AG+(Lin)Gp(0)] + v*|T[*A’G . (Lin) [Gp(0)* — Gp(Lp/2)*]
G+(d){1 — v[TI’[2G+(0)Gp(0) + G+ (Lin)Gp(Lp/2)] + vHT*G+(0)*[Gp(0)* — Gp(Lp/2)’ ]}
where A = Gi(a,e) — G+(0,€). A similar resumma-| *Electronic address: mgeller@hal.physast.uga.edu
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