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Strong-Coupling Expansion for the Hubbard Model
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A strong-coupling expansion for models of correlated electrons in any dimension is presented. The
method is applied to the Hubbard modeldrdimensions and compared with numerical resultg i 1.
Third order expansion of the Green'’s function suffices to exhibit both the Mott metal-insulator transition
and a low-temperature regime where antiferromagnetic correlations are strong. It is predicted that some
of the weak photoemission signals observed in one-dimensional systems such ag SiQui@® become
stronger as temperature increases away from the spin-charge separated state. [S0031-9007(98)06393-5]

PACS numbers: 71.10.Fd, 24.10.Cn, 71.10.Ca, 71.10.Hf

Organic conductors, cuprate ladder compounds, andihe results are summarized by the crossover diagram
high-T. superconductors are but a few of the condensedf Fig. 1, which shows some analogies with one of the
matter systems currently driving the intense experimentgbublished d = « phase diagrams [17]. We conclude
and theoretical efforts on strongly correlated electrons irwith a prediction for 1D systems of current experimental
low dimension § = 1 ord = 2). Angle-resolved photo- interest [2].
emission experiments (ARPES) on 2D and 1D materials First, let us present the strong-coupling expansion itself.
[1,2] are beginning to probe the spectral weiglik, ),  Consider a HamiltonianH = H° + H'', where the
but have not yet given definitive answers to questions ofinperturbed partH © is diagonal in a certain variable
prior interest such as spin-charge separation or the relatigisay a site variable), and let us denote collectively by
between the Mott transition and antiferromagnetic (AF)o (say a spin variable) all of the other variables of the
correlations. On the theoretical side, the Hubbard modgbroblem. This Hamiltonian involves fermions, and is
(HM) [3] is the simplest one that includes the interplay supposed to be normal ordered in terms of the annihilation

between the strong screened Coulomb repulsion and thghd creation operators,(p. HO may be written as a
kinetic band energy. In one dimension, the exact solusum overi of on-site Hamiltonians involving only the
tion of the HM [4] does not allow actual calculation of peratorScm at sitei: HO = Z-h-(cT Cio).
correlation functions, but several numerical studies [5_8]gtrong-coulp;rling expansion of the HMHL is the atomic
have investigated the one-particle spectral function that iFm't' namely, & ( o )= U tot ) il often
observed in ARPES. Other methods (bosonization [0 NaMely, hilciq, cig) = Ucyejcicy (we will ofte
11], renormalization group [12,13], conformal field theory use u = {]/2 fO]I' _convemence). We suppose that the
: : perturbation /! is a one-body operator of the form
[14]) have led to important nonperturbative results, but,” "~ = ¥ L .
in addition to being restricted to the lowest energy exci-?1 = 2o 2.ij VijCirCjo- FOrthe HM,H Tis ”*‘e kinetic
tations, they involve parameters that are absent from théerm. Introducing the Grassmann field, (7), yi, (7), the
microscopic Hamiltonian. For thé = » [15—18] case, Partition function at some temperature= 1/ may be
all quantities of interest can be calculated in an essendritten in the Feynman path-integral formalism:
tially exact way, but the extrapolation to low dimension

is problematic. Several attempts to develop systematic

strong-coupling expansions [19,20] did not yield the spec- _ 1.4
tral weight. 5, 0%
The purpose of this Letter is twofold. First, we
construct a strong-coupling perturbation theory that can = 1 conductor
be applied to a number of models amy dimension, and, ogl DoTange
second, we use it to compute the Green’s function of —
the half-filed HM. This allows us to discuss the Mott ~ *%4C . T X
transition from the viewpoint of the density of states. The 04 R
effects of antiferromagnetic correlations ditk, w) are 0.2 : o
discussed, for simplicity, only in 1D. Despite the absence nsulator
of phase transitions in 1D, the qualitative behavior of 05 1 15 ) 25 3
A(k, w) allows us to define crossovers between regions of F (xu)

parameter space where the system behaves somewhat likgs. 1. Crossover diagram of the half-filed 1D Hubbard
a metal, an insulator, or a short-range antiferromagnetnodel with Coulomb repulsio® = 2u and hopping.
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B
zZ= f[dy* dy] eXIO—[O dT‘Z %Z(T)(% - M)’}’io(T) + Z hi(y7(7), yie (7)) + Z Vii¥ie(T)vie ()}
io i ijo
(1)

We use the letter&, b, .. .) to denote sets such s o, 7); | and an infinite number of interaction terms
for instance, -1 / R.
SRIy* ] = Z by W b, -%lGal-gR ;
1--Or

2
8 X . (RY* (o5 ’
At Y Viiyl(DYie(1) = D Varyivs R . s
0 ijo ab where theGZi..zR = (Ya,- Yax Yby- - Vb, 0,c are the con-

1--UR
A first difficulty arises: There is no Wick theorem nected correlation functions of the unperturbed system.
becauseH ° is quartic instead of quadratic. We solve The primed summation reminds us that the fields in each
this problem by means of a Grassmannian Hubbardterm share the same value of the site index. We may now
Stratonovich transformation [21], which consists inUS€ Wick’s theorem and usual perturbation theory for the

expressing the perturbation part of the action in Eq. (1)/'S: tg‘? free propagator being, and the vertices being
as a Gaussian integral over an auxiliary Grassmann fielf€ G*’s. The number of auxiliary field propagators de-
Yio(7), 45 (7). Then, the integral over the original termines the order i (|V;;| = 1 for the HM) of a given

variables can be performed, antican be rewritten in diagram. Finally, the relation between the Green’s func-
the form tion G., = —(va7Y}) of the original fermions and that of

the auxiliary field V., = —(y45) is (in matrix form)
3 = —v~ 1+ v-'VV-L If T denotes the self-
Z = f[d¢* dy] eXp—[So[tﬂ*,lﬁ] + Z SR [y*, ]t g‘theg//s one hasG = (I-1 — V;3_I’110 es the self-energy
R=1 , _

The above method was applied to the HM
H = 2ch;}c;rlcilc” -t Z (c;rgcj(, + H.c)
i (i.jyor
at half-filling up to order?®. The result forG is a rational
| function ofiw,,:

The action has a free part

Solr*, ] = = D XV Naphs »
ab

m = 2tc(k)

iw, 6dt*u’iw,

N =2 [Gwn)? — 2T

+ 6t3c(k)<

[(w,)* — u?]? [(wn)* — u?}*

(Bu/2) tantBu/2) | w2iw,) ﬂ)}‘l o

whered is the dimension of the hypercubic lattice, and coefficients, functions of the hopping verify conditions
c(k) = Zi=1 cogk,,). Here, we face a second difficulty, CO. If we expand the exadj, in powers oft to some
namely, thatG(k, iw,) has pairs of complex conjugate finite order, which is what a strong-coupling expansion
poles. This violates the Kramers-Kronig relations anddoes, we destroy its continued fraction structure. If
leads to negative spectral weight. Note that even in weakinstead we replace; (r) andb,(¢) in G; by their expansion
coupling theory, truncation of the series fér leads to to some finite order, the result should be LR since we
high-order poles giving negative spectral weight. Sinceexpect conditions CO to hold for the truncated coefficients
we know G up to orders? only, any function having the (at least forr/u small).
same Taylor expansion &3 to this order isa priori as Therefore, to obtain a LR approximation, we seek
good an approximation. A physically acceptable solutiorfrequency-independent, () and b,(¢), such thatG, and
should be causal and have a positive spectral weight, th& have the same expansion up to order Equating the
is, be a sum of simple real poles with positive residuesseries ins for G and G; at all frequencies determines
We call such a function Lehmann representable (LR).  uniquely the leading terms in theexpansion ot () and
In order to obtain a LR approximation, we need theb,;(r). As soon as some,(¢) is found to be zero up to the
following theorem, reported in Ref. [22]: Aational required precision necessary to obtain theerm of G,
function is LRif and only ifit can be written as a finite all a,(z) andb,(t), p > [ become unnecessary.
Jacobi continued fraction The above procedure generalizes what is done in
a0 a a weak-coupling theory. There, Wick's theorem allows a
G/liw,) = - - _ , resummation of one-particle reducible diagrams, which
iwy + bi= iwy + b= dw, + by gives Dyson’s equation. If the self-energy is LR (i.e., has
with b, real anda; > 0 (thereafter conditions CO). an underlying continued fraction structure), the Green’s
According to this theorem, the exact Green’s functionfunction inherits this property due to the form of the
of any finite system is a Jacobi continued fraction, whoseveak-coupling free propagator.
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We were able to deduce from Eq. (2) the following continued fraction:
1 u? 6dt’ u?
iw, + 2tc(k)— iw, — 3B tanHBu/2)c(k)/u— iw, — 2tc(k)/d— iw, + tc(k)/d’

Giliw,) = ®3)

which verifies the conditions CO, and has exactly the If we decreaséd further from pointB, we enter a regime
same Taylor expansion a up to orders® included. thatis beyond the domain of validity of our approach. In-
This means thatll of the moments [23] ofG, are the deed, in contradiction with the results of Refs. [2,8,11],
same as those of the exact solution except for terms dhe spectral function becomes similar to that of free par-
order+*. Furthermore, any LR rational function sharing ticles, following a—2¢ cosk dispersion, except for a gap
this property reduces to a continued fraction whoseat the Fermi energy fok = 77 /2. We expect our expan-
coefficients differ from those of Eq. (3) only by terms sion to be valid if theb;(¢)’s in Eq. (3) are small compared
smaller than the precision achieved here [24]. to w, whose lowest-order value is This leads us to the

Expansion to orders for the half-filled HM suf- conditionst/u < 0.5 and3(t/u)® < T/u, fulfilled by the
fices to exhibit both the Mott transition and the effectpoints under the dashed line in Fig. 1. However, these
of AF correlations on the spectral weighi(k, w) =  conditions may be too stringent because the o limit
lim,—o- —2ImG(k, w + in). Thereis no rigorous defi- also happens to be correctly given by our solution Eq. (3).
nition of the Mott transition in terms of one-particle Furthermore, a free particle dispersion relation, with a gap
properties, but one can use, as a heuristic criterion, thepened at the Fermi level, is what is expected at large
appearance of spectral weight at zero frequency. In thand smallT for an itinerant antiferromagnet. Figure 3
density of statesV(w) = [7_A(k, w)d?k/(2m)?, ast  (point C) illustrates this behavior. The parameters have
increases from zero, the two symmetric Hubbard bandthe same value as in the Monte Carlo (MC) calculations
located atx and —u in the atomic limit widen, and even- of Ref. [5] (U = 4¢, B = 20/t). The general distribution
tually mix for r beyond some critical value. The latter of the spectral weight, and the dispersion relation of the
may be obtained by demanding that a poleGtrosses peaks [5] are well accounted for by our solution. We be-
the Fermi level for som&. ForT — oo, the critical value lieve that peak 1 contributes to the large uncertainty (due
ofrist, = u 1+ J1 + 12d2/(2d+/3) [25]. This gives mainly to the maximum entropy method itself) on the max-
U, =32t for d = 1, to be compared with/, = 3.5¢ 1Mma of A(k, w) reported in Fig. 2 of Ref. [5] fok near O
found in the Hubbard-III [3] approximation. At finit&,
we cannot calculate. analytically, but Fig. 1 sketches a
numerical evaluation (fa = 1) in the (T, t) plane of the
line where the gap vanishes. The value ofjfrows upon k
lowering 7', and there is no Mott transition at zero tem-
perature, in agreement with the exact result of Ref. [4].

The effects of AF correlations show up at Iy as /A
illustrated in Fig. 2 by the plot ofA(k, w) for point B
of Fig. 1 (k becomest because we discuss the 1D case /2 -
for definiteness). A(k, w) has four delta peaks (a finite
width 7 is added for clarity) given by dispersion relations 3mn/4 -
wi(k) (i =11to 4 as in Fig. 2). The spectral weight is
an even function ok, and particle-hole symmetry ensures L
thatA(k + 7, —w) = A(k, ). While at small and high
T (point A), wz(k) was minimum fork = 0, whenT is

lowered down to poinB, the minimum ofw,(k) moves = |[7%

continuously fromk = 0 towardsk = 7 /2 (Fig. 2), and X 16} 1645
peak 2 loses weight for values @&f much smaller than g Lal . 156
7 /2. These changes reflect the AF short-range order tha ‘
gradually builds up wheff becomes smaller than the AF 12 | # 14.8
superexchangd = 2¢*>/u of the equivalent:-J model.

The approximate cell doubling in direct space translates I v 14
into a nearlyr-periodic dispersion for peak 2, although .17 2 7 132
the 27 periodicity of its weight and of (k) reminds us oY i

that the state remains paramagnetic. This is why we chos o 053 oS 055 :

to define the AF crossover line of Fig. 1 as the points where ’ ‘ ' k/m

k= Olceases to be the minimum ‘DfZ(kz)' In this regime, FIG. 2. (above) Spectral functioA(k, w) for point B (r =
the width of band 2 is of ordef = 2¢°/u whatever the 0254, 7 = 0.06u or U = 8, T = 0.241). 7 (see text) was
value oft, supporting the above interpretation. set to 0.02. (below) Dispersion relation of the peaks.
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