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A strong-coupling expansion for models of correlated electrons in any dimension is presented.
method is applied to the Hubbard model ind dimensions and compared with numerical results ind ­ 1.
Third order expansion of the Green’s function suffices to exhibit both the Mott metal-insulator transi
and a low-temperature regime where antiferromagnetic correlations are strong. It is predicted that
of the weak photoemission signals observed in one-dimensional systems such as SrCuO2 should become
stronger as temperature increases away from the spin-charge separated state. [S0031-9007(98)06
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Organic conductors, cuprate ladder compounds, a
high-Tc superconductors are but a few of the condens
matter systems currently driving the intense experimen
and theoretical efforts on strongly correlated electrons
low dimension (d ­ 1 or d ­ 2). Angle-resolved photo-
emission experiments (ARPES) on 2D and 1D materia
[1,2] are beginning to probe the spectral weightAsk, vd,
but have not yet given definitive answers to questions
prior interest such as spin-charge separation or the relat
between the Mott transition and antiferromagnetic (AF
correlations. On the theoretical side, the Hubbard mod
(HM) [3] is the simplest one that includes the interpla
between the strong screened Coulomb repulsion and
kinetic band energy. In one dimension, the exact so
tion of the HM [4] does not allow actual calculation o
correlation functions, but several numerical studies [5–
have investigated the one-particle spectral function tha
observed in ARPES. Other methods (bosonization [9
11], renormalization group [12,13], conformal field theor
[14]) have led to important nonperturbative results, bu
in addition to being restricted to the lowest energy exc
tations, they involve parameters that are absent from
microscopic Hamiltonian. For thed ­ ` [15–18] case,
all quantities of interest can be calculated in an esse
tially exact way, but the extrapolation to low dimensio
is problematic. Several attempts to develop systema
strong-coupling expansions [19,20] did not yield the spe
tral weight.

The purpose of this Letter is twofold. First, we
construct a strong-coupling perturbation theory that c
be applied to a number of models inany dimension, and,
second, we use it to compute the Green’s function
the half-filled HM. This allows us to discuss the Mot
transition from the viewpoint of the density of states. Th
effects of antiferromagnetic correlations onAsk, vd are
discussed, for simplicity, only in 1D. Despite the absen
of phase transitions in 1D, the qualitative behavior
Ask, vd allows us to define crossovers between regions
parameter space where the system behaves somewhat
a metal, an insulator, or a short-range antiferromagn
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The results are summarized by the crossover diagra
of Fig. 1, which shows some analogies with one of th
published d ­ ` phase diagrams [17]. We conclude
with a prediction for 1D systems of current experimenta
interest [2].

First, let us present the strong-coupling expansion itse
Consider a HamiltonianH ­ H 0 1 H 1, where the
unperturbed partH 0 is diagonal in a certain variablei
(say a site variable), and let us denote collectively b
s (say a spin variable) all of the other variables of th
problem. This Hamiltonian involves fermions, and is
supposed to be normal ordered in terms of the annihilati
and creation operatorsc

syd
is . H 0 may be written as a

sum overi of on-site Hamiltonians involving only the
operatorsc

syd
is at site i: H 0 ­

P
i hisc

y
is , cisd. For a

strong-coupling expansion of the HM,H 0 is the atomic
limit; namely, hisc

y
is , cisd ­ Uc

y
i"c

y
i#ci#ci" (we will often

use u ­ Uy2 for convenience). We suppose that th
perturbationH 1 is a one-body operator of the form
H 1 ­

P
s

P
ij Vijc

y
iscjs. For the HM,H 1 is the kinetic

term. Introducing the Grassmann fieldgisstd, g
?
isstd, the

partition function at some temperatureT ­ 1yb may be
written in the Feynman path-integral formalism:

FIG. 1. Crossover diagram of the half-filled 1D Hubbard
model with Coulomb repulsionU ­ 2u and hoppingt.
© 1998 The American Physical Society 5389
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Z ­
Z

fdg? dgg exp2
Z b

0
dt

(X
is

g?
isstd

√
≠

≠t
2 m

!
gisstd 1

X
i

hisssg?
isstd, gisstdddd 1

X
ijs

Vijg?
isstdgjsstd

)
.

(1)
.
ch
w
e

-

c-
We use the letterssa, b, . . .d to denote sets such assi, s, td;
for instance,Z b

0
dt

X
ijs

Vijg?
isstdgjsstd ­

X
ab

Vabg?
a gb .

A first difficulty arises: There is no Wick theorem
becauseH 0 is quartic instead of quadratic. We solv
this problem by means of a Grassmannian Hubba
Stratonovich transformation [21], which consists i
expressing the perturbation part of the action in Eq. (
as a Gaussian integral over an auxiliary Grassmann fi
cisstd, c

?
isstd. Then, the integral over the origina

variables can be performed, andZ can be rewritten in
the form

Z ­
Z

fdc? dcg exp2

(
S0fc?, cg 1

X̀
R­1

SR
intfc

?, cg

)
.

The action has a free part

S0fc?, cg ­ 2
X
ab

c?
a sV 21dabcb ,
390
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and an infinite number of interaction terms

SR
intfc

?, cg ­
21

sR!d2

X
hal ,blj

0
c?

a1
. .c?

aR
cbR . .cb1 G

Rc
a1. .aR
b1. .bR

,

where theG
Rc
a1. .aR
b1. .bR

­ kga1 . .gaR g
?
bR

. .g?
b1

l0,c are the con-

nected correlation functions of the unperturbed system
The primed summation reminds us that the fields in ea
term share the same value of the site index. We may no
use Wick’s theorem and usual perturbation theory for th
c ’s, the free propagator beingV , and the vertices being
the GRc ’s. The number of auxiliary field propagators de
termines the order inV (jVijj ­ t for the HM) of a given
diagram. Finally, the relation between the Green’s fun
tion Gab ­ 2kgag

?
b l of the original fermions and that of

the auxiliary fieldVab ­ 2kcac
?
b l is (in matrix form)

G ­ 2V 21 1 V 21V V 21. If G denotes the self-energy
of thec ’s, one hasG ­ sG21 2 V d21.

The above method was applied to the HM

H ­ 2u
X

i

c
y
i"c

y
i#ci#ci" 2 t

X
ki,jls

scy
iscjs 1 H.c.d

at half-filling up to ordert3. The result forG is a rational
function of ivn:
1
Gsk, ivnd

­ 2tcskd

1

(
ivn

sivnd2 2 u2 1
6dt2u2ivn

fsivnd2 2 u2g3 1 6t3cskd

√
sbuy2d tanhsbuy2d

fsivnd2 2 u2g2 1
u2f2sivnd2 2 u2g

fsivnd2 2 u2g4

!)21

, (2)
n
If

e
ts

k

in
a

ch
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where d is the dimension of the hypercubic lattice, an
cskd ­

Pd
m­1 cosskmd. Here, we face a second difficulty,

namely, thatG sk, ivnd has pairs of complex conjugate
poles. This violates the Kramers-Krönig relations an
leads to negative spectral weight. Note that even in wea
coupling theory, truncation of the series forG leads to
high-order poles giving negative spectral weight. Sin
we knowG up to ordert3 only, any function having the
same Taylor expansion asG to this order isa priori as
good an approximation. A physically acceptable solutio
should be causal and have a positive spectral weight, t
is, be a sum of simple real poles with positive residue
We call such a function Lehmann representable (LR).

In order to obtain a LR approximation, we need th
following theorem, reported in Ref. [22]: Arational
function is LR if and only if it can be written as a finite
Jacobi continued fraction

GJ sivnd ­
a0

ivn 1 b12

a1

ivn 1 b22
· · ·

aL21

ivn 1 bL
,

with bl real andal . 0 (thereafter conditions CO).
According to this theorem, the exact Green’s functio

of any finite system is a Jacobi continued fraction, who
d

d
k-

ce

n
hat
s.

e

n
se

coefficients, functions of the hoppingt, verify conditions
CO. If we expand the exactGJ in powers oft to some
finite order, which is what a strong-coupling expansio
does, we destroy its continued fraction structure.
instead we replacealstd andblstd in GJ by their expansion
to some finite order, the result should be LR since w
expect conditions CO to hold for the truncated coefficien
(at least fortyu small).

Therefore, to obtain a LR approximation, we see
frequency-independentalstd and blstd, such thatGJ and
G have the same expansion up to ordert3. Equating the
series int for G and GJ at all frequencies determines
uniquely the leading terms in thet expansion ofalstd and
blstd. As soon as somealstd is found to be zero up to the
required precision necessary to obtain thet3 term of GJ ,
all apstd andbpstd, p . l become unnecessary.

The above procedure generalizes what is done
weak-coupling theory. There, Wick’s theorem allows
resummation of one-particle reducible diagrams, whi
gives Dyson’s equation. If the self-energy is LR (i.e., h
an underlying continued fraction structure), the Green
function inherits this property due to the form of th
weak-coupling free propagator.
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We were able to deduce from Eq. (2) the following continued fraction:

GJ sivnd ­
1

ivn 1 2tcskd2
u2

ivn 2 3bt3 tanhsbuy2dcskdyu2

6dt2

ivn 2 2tcskdyd2

u2

ivn 1 tcskdyd
, (3)
n-
],

ar-

se

3).
ap
e
3
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he
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which verifies the conditions CO, and has exactly th
same Taylor expansion asG up to order t3 included.
This means thatall of the moments [23] ofGJ are the
same as those of the exact solution except for terms
order t4. Furthermore, any LR rational function sharing
this property reduces to a continued fraction whos
coefficients differ from those of Eq. (3) only by terms
smaller than the precision achieved here [24].

Expansion to ordert3 for the half-filled HM suf-
fices to exhibit both the Mott transition and the effec
of AF correlations on the spectral weightAsk, vd ­
limh!01 22 Im G sk, v 1 ihd. There is no rigorous defi-
nition of the Mott transition in terms of one-particle
properties, but one can use, as a heuristic criterion, t
appearance of spectral weight at zero frequency. In t
density of statesNsvd ­

Rp

2p Ask, vd ddkys2pdd, as t
increases from zero, the two symmetric Hubbard ban
located atu and2u in the atomic limit widen, and even-
tually mix for t beyond some critical value. The latte
may be obtained by demanding that a pole ofG crosses
the Fermi level for somek. ForT ! `, the critical value

of t is tc ­ u
q

1 1
p

1 1 12d2ys2d
p

3 d [25]. This gives
Uc . 3.2t for d ­ 1, to be compared withUc . 3.5t
found in the Hubbard-III [3] approximation. At finiteT ,
we cannot calculatetc analytically, but Fig. 1 sketches a
numerical evaluation (ford ­ 1) in the sT , td plane of the
line where the gap vanishes. The value oftc grows upon
lowering T , and there is no Mott transition at zero tem
perature, in agreement with the exact result of Ref. [4].

The effects of AF correlations show up at lowT , as
illustrated in Fig. 2 by the plot ofAsk, vd for point B
of Fig. 1 (k becomesk because we discuss the 1D cas
for definiteness). Ask, vd has four delta peaks (a finite
width h is added for clarity) given by dispersion relation
viskd (i ­ 1 to 4 as in Fig. 2). The spectral weight is
an even function ofk, and particle-hole symmetry ensure
thatAsk 1 p , 2vd ­ Ask, vd. While at smallt and high
T (point A), v2skd was minimum fork ­ 0, when T is
lowered down to pointB, the minimum ofv2skd moves
continuously fromk ­ 0 towardsk ­ py2 (Fig. 2), and
peak 2 loses weight for values ofk much smaller than
py2. These changes reflect the AF short-range order th
gradually builds up whenT becomes smaller than the AF
superexchangeJ ­ 2t2yu of the equivalentt-J model.
The approximate cell doubling in direct space translat
into a nearlyp-periodic dispersion for peak 2, although
the 2p periodicity of its weight and ofv1skd reminds us
that the state remains paramagnetic. This is why we cho
to define the AF crossover line of Fig. 1 as the points whe
k ­ 0 ceases to be the minimum ofv2skd. In this regime,
the width of band 2 is of orderJ ­ 2t2yu whatever the
value oft, supporting the above interpretation.
e
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If we decreaseT further from pointB, we enter a regime
that is beyond the domain of validity of our approach. I
deed, in contradiction with the results of Refs. [2,8,11
the spectral function becomes similar to that of free p
ticles, following a22t cosk dispersion, except for a gap
at the Fermi energy fork . py2. We expect our expan-
sion to be valid if theblstd’s in Eq. (3) are small compared
to v, whose lowest-order value isu. This leads us to the
conditionstyu & 0.5 and3styud3 & Tyu, fulfilled by the
points under the dashed line in Fig. 1. However, the
conditions may be too stringent because thet ! ` limit
also happens to be correctly given by our solution Eq. (
Furthermore, a free particle dispersion relation, with a g
opened at the Fermi level, is what is expected at largt
and smallT for an itinerant antiferromagnet. Figure
(point C) illustrates this behavior. The parameters ha
the same value as in the Monte Carlo (MC) calculatio
of Ref. [5] (U ­ 4t, b ­ 20yt). The general distribution
of the spectral weight, and the dispersion relation of t
peaks [5] are well accounted for by our solution. We b
lieve that peak 1 contributes to the large uncertainty (d
mainly to the maximum entropy method itself) on the ma
ima of Ask, vd reported in Fig. 2 of Ref. [5] fork near 0

FIG. 2. (above) Spectral functionAsk, vd for point B (t ­
0.25u, T ­ 0.06u or U ­ 8t, T ­ 0.24t). h (see text) was
set to 0.02. (below) Dispersion relation of the peaks.
5391
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FIG. 3. (above) Spectral functionAsk, vd for point C (t ­
0.5u, T ­ 0.025u or U ­ 4t, T ­ 0.05t, b ­ 20yt) with
h ­ 0.02. (below) Dispersion relation of the peaks.

andp. For other values ofk, peak 1 could not be resolved
in Ref. [5] because of its small weight and because of t
magnitude of the time slice, unlikely to detect high-energ
features. Thus, our results for pointC appear correct. Our
method definitely fails in the shaded area of Fig. 1, whe
spin-charge separation occurs, but outside this region o
solution is reliable under the dashed line, and uncontroll
(but not necessarily bad) above it.

The cuprate chain material SrCuO2 studied in Ref. [2]
happens to fall in the shaded regime. Nevertheless, o
results allow us to predict that features dispersing on a sc
J, like peak 3 in Fig. 2, should appear atpy2 # k # p

upon raisingT . Hints of this finiteT effect have already
been seen in the “question-mark” features in Fig. 1
Ref. [2].

In summary, we presented a general method for co
structing strong-coupling expansions and applied it to th
half-filled Hubbard model. We showed how the Mot
transition and AF correlations manifest themselves in th
single-particle properties. Finally, we gained further in
sight into ongoing ARPES experiments on the propagati
of one hole in an AF correlated Mott insulator. Doping an
two-particle correlations are accessible within the sam
approach.
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