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Theory of Enhanced Reversed Shear Mode in Tokamaks
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It is shown that toroidal-magnetic-field ripple-induced particle flux can drive poloidalE 3 B speed
to bifurcate over the local maximum of the nonlinear poloidal (or parallel) viscosity. Here,E is the
electric field, andB is the magnetic field. This mechanism, together with the turbulence suppre
due to the radial gradient of theE 3 B and diamagnetic angular velocity, is employed to explain t
enhanced reversed shear mode observed in the core region of tokamaks. [S0031-9007(98)0634
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An improved plasma confinement regime (H mode) has
been observed in the edge region of many tokamaks a
stellarators [1–6]. It is initiated by a sudden increase
the magnitude of the poloidalE 3 B speed and followed
by the turbulence suppression which leads to better plas
confinement [2,4]. HereE is the electric field, andB is the
magnetic field. A quantitative theory based on the bifu
cation of the poloidalE 3 B Mach numberUpm over the
local maximum of the nonlinear plasma viscosity and th
subsequent turbulence suppression due to the radial gr
ent of theE 3 B and diamagnetic angular velocity is in
good agreement with both electrode induced and natura
occurringH modes [7,8]. Here, we extend theH-mode
theory to explain the improved plasma confineme
regime—enhanced reverse shear (ERS) mode—in
core region [9,10]. Indeed, it is observed in Tokama
Fusion Test Reactor (TFTR) that there is a sudden jum
in the radial electric field prior to the onset of the ER
mode [11]. The corresponding value ofUpm is greater
than unity. This phenomenon is the same as that in
H mode. Furthermore, because the slope of the rad
electric field changes sign in the bifurcation layer, th
appropriate bifurcation quantity is the radial electric fiel
and not the gradient of the radial electric field. Confin
ment improvement theory based on the bifurcation ofUpm

is consistent with this observation.
It is obvious that the ion orbit loss mechanism whic

is responsible for the bifurcation of the poloidalE 3 B
speed in the naturally occurringH mode is not effec-
tive in the core region because the number of particl
that intersect the plasma boundary is small. One the
fore has to find a different mechanism to driveUpm ;
Vkiyyti 2 cEryytiBp over the local maximum of the par-
allel (or poloidal) viscosity. Here,Vki is the ion parallel
flow, c is the speed of light,Er is the radial electric field,
Bp is the poloidal magnetic field strength, andyti is the ion
thermal speed. There are such mechanisms. One poss
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mechanism is the momentum input associated with the
jected neutral particle beam. The other is the toroid
magnetic-field ripple-induced particle flux. Because a
enhanced reversed shear mode exists even in the bala
neutral particle beam injection operations, we focus on t
bifurcation of Upm driven by the ripple-induced particle
flux. Note that ripple-trapped particle flux can drive bifur
cation has already been demonstrated in Refs. [12,13].
Ref. [12], it is shown that electron1yn flux can cause a ra-
dial electric field to bifurcate to a more positive value. I
Ref. [13], ion1yn flux is used to drive the radial electric
field to bifurcation in the stellaratorH-mode theory.

There are two types of ripple-induced particle flux. On
is due to ripple trapping [14]. In the relatively colli-
sional regime, it contributes to the1yn flux [15]. The
other is due to the modification of the trajectories
the toroidally trapped particles (i.e., bananas) and bar
toroidally trapped or circulating particles by the magnet
field ripple. This class of orbits is not trapped in the ripp
well. In the low collisionality regime, it contributes to the
stochastic ripple plateau flux [16,17]. The constitutive r
lations between ripple-induced particle flux and the com
ponents of the viscous tensor are adequately understo
We employ these constitutive relations in a momentu
equation.

The momentum equation isX
a

nama
dVa

dt
­

1
c

J 3 B 2 =

√X
a

pa

!

2 = ?

√X
a

pa

!

1

√X
a

Sma 2
X
a

maVaSna

!
, (1)

where the subscripta indicates the plasma species,na is
the plasma density,ma is the mass,Va is the flow velocity,
J is the plasma current,pa is the plasma pressure,pa is
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the viscous tensor,Sma is the momentum source, andSna is
the particle source. Note that the particle source associa
with gas puffing or pellet injection reduces velocity. Th
dydt operator in Eq. (1) isdydt ­ ≠y≠t 1 Va ? =. The
steady state parallel component of Eq. (1) is*

B ? = ?
X

a
pa

+
­

*
B ?

X
a

Sma

+

2

*
B ?

X
a

maVaSna

+
, (2)

where the angular brackets denote flux surface averag
Because we are interested in the case whereUpm , 1
but jVajyyta , 1, the convective termVa ? =Va can be
neglected. Here,yta is the thermal speed of speciesa.
The steady state toroidal component of Eq. (1) is*

Bt ? = ?
X
a

pa

+
­

*
Bt ?

X
a

Sma

+

2

*
Bt ?

X
a

maVaSna

+
. (3)

We employ here Hamada coordinates:B ­ Bt 1 Bp ­
c 0=V 3 =u 2 x 0=V 3 =z , where Bt is the toroidal
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magnetic field,Bp is the poloidal magnetic field,c 0 ­
B ? =z , x 0 ­ B ? =u, u is the poloidal angle,z is the
toroidal angle, andV is the volume enclosed in the
flux surface [18]. Note thatkBt ? J 3 Bl is related to
≠kE ? =V ly≠t through Ampère’s law and vanishes a
steady state. Equations (2) and (3) completely determ
the flow velocity Va within the flux surface. To the
leading order of gyroradius expansionVa ­ Vkan̂ 1 V'a,
andV'a ­ cB 3 =FyB2 1 cB 3 =paynaeaB2, where
n̂ ­ ByB, F is the electrostatic potential, andea is the
electric charge. BecauseF ­ FsV d and pa ­ pasV d,
Va ? =V ­ 0. Thus, there are two unknowns: paralle
flow Vka and=F ? =V to be determined from Eqs. (2) and
(3). For simplicity, we consider only electron-ion plasma
Because electron friction is much larger than electro
viscous force in large aspect ratio tokamaks,Vki ø Vke to
the leading order of the ratio of electron viscous force
the electron friction force.

From the general expressions for the plasma viscosity
the plateau regime, we can evaluate ripple plateau visc
ity for a model rippled tokamakB ­ B0s1 2 e cosu 2

d cosNz d, whereB0 is B on the magnetic axis,N is the
number of toroidal magnetic field coils,is the inverse as-
pect ratio, andd is the ripple amplitude to obtain [19]
kBt ? = ? palrp ­ kB ? = ? palrp

­

p
p

4
nama

y2
ta

Rq
C1B0sNqd2d

√
B2

p

B

!2
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(
Vka

yta

√
B
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!2

1

√
cEr

Bpyta
2
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neBpyta
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qka
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√
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2
5
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#)
, (4)
s-
te

at
ch

i-

tal
where prime denotesdydr, R is the major radius,r is the
local minor radius,C1 ­ 2, q is the safety factor,qka is
the parallel heat flow,Ta is the temperature, and subscri
rp indicates the ripple plateau regime. We have appro
mated Hamada coordinates with cylindrical coordinates
Eq. (4). Note that electron ripple plateau viscosity is mu
smaller than that of ions and can be neglected. Beca
we are interested in the caseUpm , 1 andBpyB ø 1, we
conclude ripple plateau viscosity mainly damps toroid
flow. Indeed, forTi ­ 5 keV, R ­ 2.6 m, q ­ 2.5, N ­
20, andd ­ 1.3 3 1023, the toroidal momentum damp
pt
xi-
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ing time tM is t
21
M ­ s

p
py2dC1sytiyRqd sNqd2y2d .

11.6 s21 or tM ­ 0.086 s. Because this damping time is
much shorter than the diffusive neoclassical toroidal vi
cosity [20], we neglect the latter contribution here. No
that the contribution from thee cosu variation of B to
kB ? = ? pl is ignored in Eq. (4) because we assume th
toroidally trapped particles are in the banana regime whi
contributes to the nonlinear viscosity.

Ripple trapping induced particle flux has several coll
sionality regimes. Here, we only employ the1yn flux G1yn

calculated in Refs. [15,21] to demonstrate the fundamen
bifurcation physics. The corresponding viscosity is [13]
kBp ? = ? pil1yn ­ 2 kBt ? = ? pil1yn ­ 2
e
c

BpBG1yn

­ 2
64Gsad
9s2pd3y2

nie
2d3y2

√
cTi

eBr

!2
27.4
ni

"√
p0

i

pi
2

eEr

Ti

!
1 2.37

T 0
i

Ti

# √
eBBp

c

!
, (5)
,

na
where a ­ eysNqdd, and ni is ion-ion-collison fre-
quency. Note thatGsad is a function that accounts
for the variation of the local ripple well depth
and, for a ¿ 1, Gsad . 0.02ya3 [15]. It is ob-
vious from Eq. (5) kB ? = ? pil1yn ­ 0. Because
electron 1yn flux is smaller than that of ions, it is
neglected.
The nonlinear resonant plasma viscosity due to bana
and circulating particles is [22,23]

kB ? = ? p ln ­ namaB2

√
m1aUua 1

2
5

m2a
qua

pa

!
, (6)

where the subscriptn indicates nonlinear viscosity,Uua ­
sytayBd fVkayyta 2 cErysBpytad 1 cp0

aysnaeaytaBpdg,
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n-
and quaypa ­ sytayBd fqkayspaytad 1
5
2 cT 0

ayseaytaBpdg.
Because Vke ø Vki ø yte, and cErysBpyted ø 1,
electron viscosity is not affected in the regime whe
Upm , 1, standard electron viscosity coefficients [2
apply. The ion nonlinear resonant viscosity coe
cients are [22,23]sm1i , m2id ­

R`

jUpmj dx x4e2x2 fskBkpsdy
skB 1 kpsdg s1, x2 2

5
2 d, wherekpssxd ­ snie2y2

p
p d 3R1

21 dys1 2 3y2d snpxynid 3 hs y 1 Upmyxd2 1 fnp 3

e3y2nT sxdynixg2j21, np ­ niRqyse3y2ytid, nT ­ 3nDsxd 1

nEsxd is the anisotropy relaxation frequency,kBsxd ­
1.46

p
e nDs8y3

p
p d s1 2 3U2

pmyx2dFs1 1 U2
pmyx2d23y2,

F ­ s1 2 U2
pmyx2d 1 snkynDdU2

pmyx2, nD, nE, and nk

are defined in Ref. [24]. In the limit ofjUpmj ! 0,
Eq. (6) reproduces standard viscosity coefficients
connect smoothly all collisionality regimes.
e
]
-
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The nonlinearity in Eqs. (2) and (3) is in nonlinea
viscosity shown in Eq. (6). Because of this nonlinearit
Upm can have bifurcated solutions. To show this, fo
simplicity, we assumed particle sourceSna vanishes. The
momentum source can be eliminated by assumingkB ?P

a Smal ø kBt ?
P

a Smal and subtracting Eq. (3) from
Eq. (2) to obtain*

Bp ? = ?
X
a

pa

+
­ 0 , (7)

which is basically the poloidal momentum balanc
equation. BecausekB ? = ? paln ­ kBp ? = ? paln in
Hamada coordinates, the explicit expression for Eq.
is kBp ? = ?

P
a paln 1 kBp ? = ?

P
a pal1yn ­ 0. Sub-

stituting Eqs. (5) and (6) into (7), we obtain a dimensio
less bifurcation equation:
Mim1i

Mem1e
sUpm 2 Ad ­ 2Upm 2 B 2

1
Nq

32Gsad
9s2pd3y2

1
npenpd

√
ne

p
e

m1e
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TeMe

!1y2 "
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√
Upm 2
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yti
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, (8)
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wherenpe ­ neRqysytee3y2d, ne is the electron-electron
collision frequency,npd ­ niRysytiNd3y2d, A ­ 2fcy
seytiBpdg sp0

iyni 1 m2iT
0
i ym1id, B ­ 2fcyseytiBpdg 3

sp0
eyni 1 m2eT 0

eym1ed, and C ­ 2fcyseBpytidg 3

sp0
iyni 1 2.37T 0

i d. Parallel heat flows are ignored in
Eq. (8) because heat frictions are larger than heat visco
ties in a large aspect ratio tokamak and to the leading or
qki ø qke ø 0. Note thatsVkiyytid in Eq. (8) denotes the
coupling between Eq. (8) and Eq. (3). However, becau
jUpmj , 1 and jVkiyyti j , 1, we ignore sVkiyytid in
Eq. (8) and thus decouple Eqs. (3) and (8).

Equation (8) is a nonlinear equation forUpm. The
solution is found graphically by plotting the right side an
left side of the equation versusUpm as shown in Figs. 1–
3. The parameters used arene ­ 3 3 1019 cm23,
A ­ B ­ 0.2, Te ­ 5.5 keV, B ­ 4.6 T, R ­ 2.6 m,
a ­ 0.8 m, e ­ 0.1, N ­ 20, q ­ 2.5, d ­ 1.3 3 1023,
and Vkiyyti ­ 0. In Fig. 1, for Ti ­ 5.5 keV and
C ­ 0.8, there is only one solution, andUpm , 1. This

FIG. 1. Right-hand side (RHS) and left-hand side (LHS) o
Eq. (8) versusUpm. There is one solution which correspond
to the conventional confinement mode.
si-
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se

d

f
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is the conventional solution. AsC and Ti increase to
C ­ 2.75 andTi ­ 6.5 keV, there can be three solution
as shown in Fig. 2. One of the new solutions, the o
in the middle, is unstable. The other stable new solut
is in the Upm . 1 regime. WhenC and Ti increase
further to C ­ 3.0 and Ti ­ 7.5 keV, the conventional
solution disappears, and only the stableUpm . 1 solution
exists. Note that the most effective way to increaseC
is to increase the ion temperature gradient because
numerical coefficient in front ofdTiydr is larger than
that of dneydr. When the heating power increase
both Ti and C increase. AsTi and C increase,Upm
increases and eventually bifurcates fromUpm , 1 to
Upm . 1 regime. This sudden increase ofUpm is similar
to the observed abrupt jump ofEr in the ERS mode in
TFTR. The bifurcated value ofUpm is about 2 in this
example. The observedUpm is greater than unity [11].

After bifurcation, the turbulence fluctuation level is re
duced by a factor of1yf1 1 ksv0d2g, wherev0 is the radial

FIG. 2. As Ti and C increase, the value ofUpm increases.
Here, there are three solutions. The one in the middle
unstable. The solution with the largest value ofUpm is the
new stable solution, which corresponds to the ERS mode.
5355
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FIG. 3. WhenTi andC increase further, only the ERS mode
solution exists.

gradient of theE 3 B and diamagnetic angular velocity,
k is a normalization constant, and plasma confinement i
proves [25–27].

The fact that magnetic shear is reversed is not employ
explicitly in the theory. It could be that reversed magnet
shear stabilizes magnetohydrodynamics (MHD) activitie
such as sawteeth, and therefore reduces magnetic stres
sociated with the perturbedJ 3 B force. Magnetic stress
increases nonambipolar electron loss and may prevent
furcation ofUpm. It could also be that turbulence fluctua
tion levels are lower inside theqmin radius [28], therefore
it is easier to increaseTi anddTiydr with heating power
inside theqmin radius, which in turn facilitates the bifurca-
tion. Hereqmin is the minimum value ofq.

The plasma parameters in Figs. 1–3 are at the t
end of the1yn regime. If Ti increases further, ripple
trapping viscosity will move into then regime [14], and
its magnitude will decrease asn decreases. This is the
likely cause for the ultimate relaxation ofUpm. The other
possible cause is the magnetic stress associated with
MHD activity observed after bifurcation. The effect o
neutral change exchange momentum loss [29] on the va
of Upm can be important because, for high temperatu
plasmas, nonlinear viscosity is weak. These issues w
be addressed separately.

In summary, we develop a theory for enhanced revers
shear mode [30]. The physical process is as follow
(i) Reversed magnetic shear stabilizes MHD activitie
which reduces magnetic stress and reduces the turbule
fluctuations inside theqmin radius; (ii) when the heating
power increases, bothTi anddTiydr increase. This leads
to bifurcation of Upm; (iii) after Upm bifurcation, the
turbulence fluctuation level reduces by a factor of1yf1 1

ksv0d2g; (iv) evolution of the plasma profiles relaxesUpm;
(v) however,sv0d2 is still substantial to suppress turbulenc
fluctuations and improve plasma confinement.
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