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Theory of Enhanced Reversed Shear Mode in Tokamaks
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It is shown that toroidal-magnetic-field ripple-induced patrticle flux can drive poldidad B speed
to bifurcate over the local maximum of the nonlinear poloidal (or parallel) viscosity. Hers, the
electric field, andB is the magnetic field. This mechanism, together with the turbulence suppression
due to the radial gradient of thB X B and diamagnetic angular velocity, is employed to explain the
enhanced reversed shear mode observed in the core region of tokamaks. [S0031-9007(98)06348-0]

PACS numbers: 52.55.Fa, 52.25.Fi

An improved plasma confinement reginfé (node) has mechanism is the momentum input associated with the in-
been observed in the edge region of many tokamaks arjdcted neutral particle beam. The other is the toroidal-
stellarators [1-6]. It is initiated by a sudden increase ifmagnetic-field ripple-induced particle flux. Because an
the magnitude of the poloidd X B speed and followed enhanced reversed shear mode exists even in the balanced
by the turbulence suppression which leads to better plasmeeutral particle beam injection operations, we focus on the
confinement [2,4]. Her& is the electric field, and® isthe  bifurcation of U, driven by the ripple-induced particle
magnetic field. A quantitative theory based on the bifur-flux. Note that ripple-trapped particle flux can drive bifur-
cation of the poloidaE X B Mach numbetU,,, over the cation has already been demonstrated in Refs. [12,13]. In
local maximum of the nonlinear plasma viscosity and theRef. [12], it is shown that electroly » flux can cause a ra-
subsequent turbulence suppression due to the radial gradiial electric field to bifurcate to a more positive value. In
ent of theE X B and diamagnetic angular velocity is in Ref. [13], ion1/» flux is used to drive the radial electric
good agreement with both electrode induced and naturallfield to bifurcation in the stellaratdif-mode theory.
occurringH modes [7,8]. Here, we extend th&-mode There are two types of ripple-induced particle flux. One
theory to explain the improved plasma confinements due to ripple trapping [14]. In the relatively colli-
regime—enhanced reverse shear (ERS) mode—in th&onal regime, it contributes to the/v flux [15]. The
core region [9,10]. Indeed, it is observed in Tokamakother is due to the modification of the trajectories of
Fusion Test Reactor (TFTR) that there is a sudden jumghe toroidally trapped particles (i.e., bananas) and barely
in the radial electric field prior to the onset of the ERStoroidally trapped or circulating particles by the magnetic
mode [11]. The corresponding value 0f,, is greater field ripple. This class of orbits is not trapped in the ripple
than unity. This phenomenon is the same as that in thevell. In the low collisionality regime, it contributes to the
H mode. Furthermore, because the slope of the radiatochastic ripple plateau flux [16,17]. The constitutive re-
electric field changes sign in the bifurcation layer, thelations between ripple-induced particle flux and the com-
appropriate bifurcation quantity is the radial electric fieldponents of the viscous tensor are adequately understood.
and not the gradient of the radial electric field. Confine-We employ these constitutive relations in a momentum
ment improvement theory based on the bifurcatio&/pf  equation.

is consistent with this observation. The momentum equation is

It is obvious that the ion orbit loss mechanism which dv, 1
is responsible for the bifurcation of the poloidEl X B MaMa= = = = J X B — V(Z pg)
speed in the naturally occurring mode is not effec- a a

tive in the core region because the number of particles _v. (Z’T )
that intersect the plasma boundary is small. One there- — 7

fore has to find a different mechanism to drilg,, =

Vii/vi — cE,/v.B, over the local maximum of the par- + ZSma - ZmaVaSna>s (1)
allel (or poloidal) viscosity. Herey); is the ion parallel a a

flow, ¢ is the speed of lightE, is the radial electric field, where the subscripi indicates the plasma species, is
B, is the poloidal magnetic field strength, anglis the ion  the plasma densityy, is the massV, is the flow velocity,
thermal speed. There are such mechanisms. One possibjeis the plasma currenp,, is the plasma pressure,, is
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the viscous tensos,, is the momentum source, afigh is ~ magnetic field,B, is the poloidal magnetic field)’ =
the particle source. Note that the particle source associatell - V/, y' = B - V@, 6 is the poloidal angle{ is the
with gas puffing or pellet injection reduces velocity. Thetoroidal angle, andV is the volume enclosed in the
d/dt operator in Eq. (1) igl/dt = 9/ot + V, - V. The flux surface [18]. Note thatB; - J X B) is related to

steady state parallel component of Eq. (1) is o(E - VV)/dr through Ampere’'s law and vanishes at
steady state. Equations (2) and (3) completely determine
<B -V Z?Ta> = <B : Zsma> the flow velocity V, within the flux surface. To the

leading order of gyroradius expansi¥p = V| i + V_,,

andV,, = ¢cB X V®/B?> + ¢B X Vp,/n.e,B?, where

- <B ’ ZmaVaSna>’ () 7 = B/B, ® is the electrostatic potential, ang is the

“ electric charge. Becaus® = ®(V) and p, = p.(V),
where the angular brackets denote flux surface averagingz.a -VV = 0. Thus, there are two unknowns: parallel
Because we are interested in the case wheégg ~ 1 flow v, andV® - VV to be determined from Egs. (2) and
but |V,|/ve <1, the_convectlve ternv, - VV, can.be (3). For simplicity, we consider only electron-ion plasmas.
neglected. Herey,, is the thermal speed of species  Because electron friction is much larger than electron

The steady state toroidal component of Eq. (1) is viscous force in large aspect ratio tokamakg, ~ V., to
B the leading order of the ratio of electron viscous force to
B, - V- Z"a =\B:- Zsma the electron friction force.

From the general expressions for the plasma viscosity in
the plateau regime, we can evaluate ripple plateau viscos-
- (B «VaSna ). (3 ; .
< ! %-m > 3) ity for a model rippled tokamalB = By(1 — € cosf —
We employ here Hamada coordinateB: = B, + B, = 8 cosN /), whereBy is B on the magnetic axisy is the
W'YV X VO — x'VV X V¢, where B, is the torgidal number of toroidal magnetic field coilsjs the inverse as-
’ | pect ratio, ands is the ripple amplitude to obtain [19]

<Bt -V 77a>rp = <B -V 77a>rp

2

VT vtza 2 B%’
= —n,m,— C1By(Ngo —
4nquC10(CI)B

2 / 2 /
P8 65 e) () 2]
v \ Bp B,vy, neB,v, 5| Pavia \ Bp 2 eqBpvy,

where prime denoteg/dr, R is the major radiusy is the | ing time 7y is 7' = (V7/2)Ci(vii/Rq) (Ng82/2) =
local minor radiusC; = 2, ¢ is the safety factorg, is  11.6 s™! or 7y = 0.086 s. Because this damping time is
the parallel heat flowT, is the temperature, and subscript much shorter than the diffusive neoclassical toroidal vis-
rp indicates the ripple plateau regime. We have approxicosity [20], we neglect the latter contribution here. Note
mated Hamada coordinates with cylindrical coordinates irthat the contribution from the cosf variation of B to
Eq. (4). Note that electron ripple plateau viscosity is much(B - V - r) is ignored in Eq. (4) because we assume that
smaller than that of ions and can be neglected. Becauderoidally trapped particles are in the banana regime which
we are interested in the cagg, ~ 1andB,/B < 1,we  contributes to the nonlinear viscosity.
conclude ripple plateau viscosity mainly damps toroidal Ripple trapping induced particle flux has several colli-
flow. Indeed, forT; = 5 keV,R = 2.6 m,q = 2.5,N =  sionality regimes. Here, we only employ thév flux I/,
20, andé = 1.3 X 1073, the toroidal momentum damp- calculated in Refs. [15,21] to demonstrate the fundamental
| bifurcation physics. The corresponding viscosity is [13]

e
By, -V -aihp=—(B; - V-a),= . B,BI'y,
2 / !
‘ . / . /| (eBB
= — Mni6253/2 C_T’ E pi _ ek + 2_371 ¢55p , (5)
9(27)3/2 eBr | v; Di T; T; c
where @ = €/(Ngé8), and v; is ion-ion-collison fre- | The nonlinear resonant plasma viscosity due to banana

guency. Note thatG(a) is a function that accounts and circulating particles is [22,23]

for the variation of the local ripple well depth, )

and, for @ > 1, G(a) =0.02/a® [15]. It is ob- (B-V-m), = nama32<,u1aUea + = uaa q(;a>’ (6)
vious from Eq.(5) (B-V - @), =0. Because 5 Pa
electron 1/v flux is smaller than that of ions, it is where the subscriptindicates nonlinear viscosity/y, =
negleCted- (vta/B) [V||a/vta - CEr/(prta) + Cpl;/(naeavlaBp)]v
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and qoa/pa = Wia/B) [qa/(Pavia) + %CTQ/(eavap)]- The nonlinearity in Eqgs. (2) and (3) is in nonlinear
Because V|, = V| < v,, and cE,/(B,v,) << 1, Viscosity shown in Eq. (6). Because of this nonlinearity,
electron viscosity is not affected in the regime whereU,n can have bifurcated solutions. To show this, for
Upm ~ 1, standard electron viscosity coefficients [24] simplicity, we assumed particle sourg, vanishes. The
apply. The ion nonlinear resonant viscosity coeffi-momentum source can be eliminated by assumiBg
cients are [22, 23],u1,,,u2,) = f|U jdx xte [(kgkps)/ D Sma) = (B: - 3.4 Sma) and subtracting Eq. (3) from
(k5 + kpo)] (1,62 — 3), whererp,(x) = (vie2/2/7) x  E (2) o obtain

SL dy(1 = 3y%) (ex/vi) X A(y + Upm/x)? + [ve X v _

e 2vr(x)/vix P}, v = viRq /(e ?vy;), v = 3vp(x) + B, -V Z"ﬂ =0, (7)
ve(x) is the anisotropy relaxation frequencyg(x) = _ _ . _

1.46/€ vp(8/37) (1 — 3U§m/x2)[F(1 + Ugm/xz)%/z, which is basically the poloidal momentum balance
F=( - U2 = /x?) + (V||/VD)Upm/x , vp, vp, and v equation. Bec_auséB -V wa).” = (B, - V_- Ty, IN
are defined in Ref. [24]. In the limit ofUpy| — O, Hamada coordinates, the explicit expression for Eq. (7)
Eq. (6) reproduces standard viscosity coefficients thal® (Bp ~ V - i Ta)n + (Bp -V -3, @)1 = 0. Sub-

connect smoothly all collisionality regimes. stituting Egs. (5) and (6) into (7), we obtain a dimension-
less bifurcation equation:

M 1 32G(a) 1 (v Tmi \" Vi =

M, i1, (Upm A) Upm B Ng 92 )3/2 V*ev*é( 1 )(TeMg> 27.4| Upm v cl|, (8
wherev., = v.Rq/(vc€ 3/2) p, is the electron- eIectroH is the conventional solution. A€ and 7; increase to
collision frequency Veo = le/(v,lNSW) A= —[c/ C=275andT; = 6.5 keV, there can be three solutions
(evyB p)](p,/nl + w2 T/ 1), B= —[c/(eviB,)] X as shown in Fig. 2. One of the new solutions, the one
(pl/ni + w2 T/ 1), and C = —[c/(epr,i)] X in the middle, is unstable. The other stable new solution
(pi/ni +2.37T)). Parallel heat flows are ignored in is in the U,, > 1 regime. WhenC and T; increase
Eq. (8) because heat frictions are larger than heat viscosiurther to C = 3.0 and T; = 7.5 keV, the conventional
ties in a large aspect ratio tokamak and to the leading ordesolution disappears, and only the stablg, > 1 solution
qii = qe = 0. Note that(V|;/v,;) in Eq. (8) denotes the exists. Note that the most effective way to incre@se
coupling between Eq. (8) and Eq. (3). However, becausis to increase the ion temperature gradient because the
|Upm| ~ 1 and |V};/v,| < 1, we ignore (V|;/v,;) in  numerical coefficient in front oWT;/dr is larger than
Eqg. (8) and thus decouple Egs. (3) and (8). that of dn./dr. When the heating power increases,

Equation (8) is a nonlinear equation fdr,,,. The both T; and C increase. AsT; and C increase,Upn,
solution is found graphically by plotting the right side andincreases and eventually bifurcates froth,, < 1 to
left side of the equation versus,,, as shown in Figs. 1- U, > 1 regime. This sudden increase @, is similar
3. The parameters used are, =3 X 10" cm™3, to the observed abrupt jump &, in the ERS mode in
A=B=02 T,=55keV, B=46T, R=26m, TFTR. The bifurcated value o/, is about 2 in this
a=08m,e=01N=20,¢g=25208=13X 1073, example. The observed,,, is greater than unity [11].

and Vii/vi = 0. In Fig.1, for T; = 5.5 keV and After bifurcation, the turbulence fluctuation level is re-
C = 0.8, there is only one solution, and,,, < 1. This  duced by afactor of/[1 + «(®')?], wherew' is the radial

20 T T T T 20 T T T T T
> 2 RHS
@ 10 e RHS i 2 10 - 4
5 =
® N
N =
S £
E 5 -10
Ie] =z
b4
-20 1 L 1 L 1
-3 2 1 0 1 2 3
1]

FIG. 2. AsT; and C increase, the value ol/,,, increases.
FIG. 1. Right-hand side (RHS) and left-hand side (LHS) ofHere, there are three solutions. The one in the middle is
Eq. (8) versusU,,,. There is one solution which corresponds unstable. The solution with the largest value @, is the

to the conventional confinement mode. new stable solution, which corresponds to the ERS mode.
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