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Molecular Dynamics Simulation of Taylor-Couette Vortex Formation
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The formation of toroidal Taylor vortices in a fluid contained within the annular region bounded by
two concentric cylinders, the inner one of which rotates, has been observed using molecular dynamics
simulation. The quantitative nature of the vortices has been examined over a range of supercritical Tay-
lor numbers. The Fourier amplitudes of the fundamental radial velocity mode and its low-order harmon-
ics have been analyzed; despite the microscopic system size their functional dependence on the Taylor
number is in excellent agreement with theory and experiment. [S0031-9007(98)06397-2]

PACS numbers: 47.32.Cc, 02.70.Ns, 47.15.-x, 47.20.-k

One of the many fascinating instabilities that occur inthe Taylor instability [11], namely, that the coefficiers
hydrodynamics is the formation of toroidal vortices in ain the Fourier expansion for (e.g.) the radial velocity at a
fluid confined to an annular gap between concentric rofixed radial distances from the axis, as a function of axial
tating cylinders. The phenomenon is named after Taylompositionz,
who carried out experimental studies and provided a hydro-
dynamic stability analysis of the effect [1]. In this Letter v,(z,€) = Z A,(e)codnglz + z0]), @
we report on a numerical study of this flow instability at the n=1
atomistic level using a molecular dynamics approach. Thevheregq is the wave number of the fundamental mode, can
simulations will be shown to not only produce the samebe expanded as
kind of flow patterns as are observed experimentally, but . n/2 )
to do this in a quantitatively correct manner. Anle) = ane"(1 + ape +ane’ +..). (2)

Consider an experimental cell for which the inner andThe offsetz, is included to allow a limited amount of
outer cylinder radii are; andr,, with d = r, — r; the  variation in the axial positions of the vortices. White
width of the annulus, anéy = r;/r, the radius ratio. If is ostensibly a small quantity, the results are found to obey
the outer cylinder is at rest, and the angular velocity of thehese predictions over a much larger range. (The problem
inner cylinder isw, then the nature of the flow depends onhas also been studied by means of computational fluid
the dimensionless Taylor numbef, = 4[(1 — 7)/(1 +  dynamics [12].)

1)]R?, whereR = r;dw/v is the Reynolds number, and  Molecular dynamics (MD) methods have, over the past
v the kinematic viscosity [2] (the more general case wher@lecade, been used in the study of flow instability at
the outer cylinder also rotates is not considered here). Amicroscopic scales. Work has been confined to two-
low T the flow is purely azimuthal (Couette flow), but at a dimensional flows: both vortex shedding in obstructed flow
critical value,T., secondary flow patterns appear that havg13] and convective roll formation in the Rayleigh-Bénard
the form of regularly spaced axisymmetric vortices. Aproblem [14] have been modeled. The surprising outcome
perturbation treatment of the Navier-Stokes equations [3pf these simulations is not only that familiar macroscopic
provides the basis for computirig. in terms of the flow phenomena are reproduced in such minuscule systems—
parameters. At higheT additional laminar instabilities the typical size is no more than a few hundred angstroms—
appear (azimuthal waves), and eventually turbulence [4].but that quantitative aspects of the behavior also agree with

Various experimental techniques have been used to meaentinuum results. The obvious question of whether the
sure one or more components of the flow velocity field,kinds of systems that can be handled by MD simulation in
which can be analyzed to establish the dependenee-en three dimensions are adequate to reproduce structured flow
(T — T.)/T. (or the corresponding quantity based®n  behavior typified by the Taylor instability has not been
These techniques include ion conduction [5], anemomeaddressed to date. As will become eminently clear from
try [6], and laser-Doppler velocity probes [7—10]; betweenthis first application of MD to complex three-dimensional
them, the experiments have examined all three velocitflows, not only does MD reproduce the phenomenon, it
components (radial, azimuthal, and axial). The spatiallydoes so in excellent quantitative agreement with theory and
varying velocity fields can be Fourier analyzed; this allowsexperiment, microscopic system size (and other deviations
the determination of the dependence of both the funda- from macroscopic fluid behavior) notwithstanding.
mental mode that dominates the vortex structure, and the We consider a soft-sphere fluid in which particles in-
leading-order harmonics that account for deviations fronteract through a short-range repulsive potentiély) =
a purely sinusoidal form. The behavior has been show#de[(a/r)'? — (o/r)®], with a cutoff atr, = 2!/°¢0. Re-
to agree with the predictions of a theoretical analysis ofluced MD units are employed in whigh = 1 ande = 1.
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Standard MD techniques [15], with certain additional fea- Despite the limited system size and the use of only one
tures that are described below, are used in carrying out thguadrant these simulations nevertheless require 125000
simulations; the equations of motion are integrated usingarticles in order to ensure a mean dengity= 0.5. Ex-
the leapfrog method, with a time step of 0.005 (MD units).amination of the time dependence of the flow compo-
The curved cylinder walls act as both nonslip boundanents reveals that while the final azimuthal velocity is
ries and thermal reservoirs. The walls themselves areeached after approximately)’ steps, the radial velocity
geometrically smooth. In order to produce a nonslip(an estimate based on the average of the maximum abso-
effect, each particle colliding with the wall has all lute inward and outward values) requires twice as long to
memory of its previous velocity erased, and is reflectecachieve its final state for the largaestconsidered, and six
back into the system with a new velocity having a randontimes as long for the smallest. Measurements were begun
direction and fixed magnitude; for the wall correspondingonly after the system had reached a steady flow state.
to the rotating inner cylinder the local (tangential) wall Because of the comparatively large systems and the
velocity is added to this vector. This mechanism islong sequences of time steps required, the computations
sufficient to drive the fluid rotation and dissipate thewere carried out on a parallel computer. Four processing
thermal energy generated by the sheared flow. The topodes of an IBM/SP2 were used; the system was sub-
and bottom end caps of the annular region are stationanjivided into slabs along the cylinder axis and the contents
and reflect incident particles elastically; the use of slipof the slabs assigned to distinct nodes. Each slab can
boundaries at the ends avoids creating a second sourcelod processed almost independently, except for particles
sheared flow that would distort the vortices (an effect thahear slab boundaries whose coordinates must be shared
is unavoidable experimentally). between the nodes responsible for the adjacent slabs, and
In order to reduce the number of particles required forthe possible movement of particles between slabs [15].
the simulation only one quadrant of the annular cell is ex- The time-dependent evolution of the flow observed for
plicitly modeled. Special periodic boundaries are used taw = 0.1 (the highest rotation rate considered) is sum-
account for the effect of particles in the absent quadrantsnarized in Fig. 1 as a sequence of snapshots showing
whenever a particle exits through either of these boundastreamlines derived from the radial and axial velocity
ries it is returned via the perpendicular boundary withcomponents of the azimuthally averaged flow. A selec-
position and velocity components suitably interchangedion of images corresponding to key stages of the run is
and sign-adjusted; interactions across these boundaries afeown ¢ denotes the time); each image represents the av-
also treated appropriately. Provided the secondary flowsrage over 5000 steps using2a X 100 spatial grid for
are axisymmetric this modification should not alter the be-averaging the particle velocities in the radial and axial di-
havior; experiment [16] indicates thatif is not too small, rections. The final state shown—a set of four counterro-
effects such as wavy vortices appear only for> R.  tating (toroidal) Taylor vortices—persists for the remain-
and, furthermore, this class of instability is suppressed under of the run £10° steps).
lessL > d [17]. The radial increase in the axially averaged density
The results described here are for cylinders with radiis found to be almost linear, and at = 0.1 the total
r; =50 andr, = 75 (n = 2/3), and a series of angular variation across the annulus 25%; for smaller
velocities in the range» = 0.05-0.1. Each simulation the density variation is reduced. There is also a smaller
run begins with the particles situated on the sites of axial density variation that is almost sinusoidal. While it
lattice between the two cylinders and assigned randors clear that this system is not the incompressible fluid
initial velocities. The inner cylinder is initially at rest, addressed by hydrodynamics, the deviations are by no
but is gradually accelerated to the correcbver the first means excessive. It turns out that only a limited range of
10° steps of the run. p values is useful: lowep implies fewer particles, but at
The annular width{ = 25) is practically the smallest the same time the systematic density variations across the
for which well-developed vortices can be readily ob-system become larger, which in turn makes comparison
served; a width of only 20 leads to the much slower dewith theory questionable; at higher, vortex formation
velopment of unstable vortices. Given that experimentalljpecomes more difficult. The choice of for this work
observed vortices have an almost square cross section tf@erefore represents a compromise.
result also predicted by theory), the system length is setto The axial dependence of the mean (azimuthally and
L = 100; consequently, if vortex formation actually oc- radially averaged) radial velocityy,(z), is shown in
curs, four vortices should develop. This indeed is exactlyFig. 2 for severalw values. The results are based on
what happens. Preliminary examination of other cylinde20 sets of measurements over the fin@l steps, and
lengths shows that fat = 75 there are also four rolls, but their rms spread provides the error estimates. Both these
only two atL = 50, whereas foi. = 125 six rolls man- results, and the corresponding azimuthal velocities (not
age to form. Roll nucleation occurs near the end caps; thehown), closely resemble the experimental measurements
number of rolls is always even, and at the cylinder end$5,7,10]. At the smallest» there is no radial flow; when
the radial flow is directed inwards. radial flow begins the dependence is almost sinusoidal,
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but deviations appear a& increases, with the radial
outflow becoming significantly faster than the inflow.

The form of v,(z) calls for Fourier analysis similar
to that used in treating the experimental data, leading to
the expansion in Eq. (1). The smooth curves included
in Fig. 2 show the results of this calculation; here the
fundamental £ = 1) mode and the first two harmonics
are included, with wave number= 3.17/d. Clearly, the
principal features of the data are represented reasonably
accurately by just three Fourier terms; adding a further
harmonic has no noticeable effect on the fit. Typical
error bars are shown; these reflect the fluctuations in the
measurements that occur between samples.

Stability analysis [4] predicts thay = 3.14/d; the
slightly largerq value needed here—the change produces
a 1% shift in the positive peak positions, leading to a mar-
ginally improved fit for largerw —is readily attributed
to finite-size effects such as relatively thick radial bound-
ary layers. The value afy (used to accommodate slight
deviations from axial symmetry) is adjusted for the best
fit; its value lies in the range-1.8—+0.8 (for different
w), a less than 2% shift along the axis. It should be re-
membered that unlike the four vortices obtained here, ex-
perimentallyL > d and there are therefore many more
vortices, so that Fourier analysis can exclude the end vor-
tices that have been distorted by additional shear effects.

Theory [11] predicts that the Fourier coefficiertts(e)
should have the form shown in Eq. (2). Experiments
agree with this prediction, and the ability to fit the MD
results to theory would provide convincing evidence that
the MD approach captures the hydrodynamics in a quan-
titatively correct manner. The problem is that an “effec-
tive” Taylor number cannot be evaluated directly because
it is a function of the viscosity, which in turn depends on
the density, temperature, and shear rate, all of which vary
substantially across the system. The results of the fit to
the theoretical prediction are independentothowever;
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FIG. 2. Axial (z) variation of the mean radial velocity,(z)
FIG. 1. Sequence of snapshots fer= 0.1 in which stream-  with fits based on the first three terms of the Fourier expansion;
lines (azimuthally averaged) are used to show various stages tie peaks become larger and the harmonics more pronounced
vortex development. asw increases¢ = 0.055, 0.06, 0.07, 0.08, 0.1).
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024 [T T T T T T T T T the extremely small length and time scales addressed by
e 1 MD, but imply that MD is capable of becoming a useful
tool for investigating complex flows. Indeed, the route
to understanding the microscopic mechanisms underlying
transitions between spatially distinct flow states is likely
to require detailed MD analysis of suitably defined
correlation functions in the transition region. Further
study of the Taylor and other three-dimensional flow
problems is currently in progress
Partial support for this work was provided by a grant
Fx S from the Ministry of Science. The calculations were
o.ooog’L*-""rio*'S' — '1'0' — 'I‘S' S— carried out on the IBM/SP2 computer at the Inter-
' ’ ) : : University Computation Center.
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FIG. 3. The data points show the first three Fourier am-
plitudes of the mean radial velocity plotted as functions of
€ = (T — T.)/T.; the curves are based on fits to the theory
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