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The formation of toroidal Taylor vortices in a fluid contained within the annular region bounded
two concentric cylinders, the inner one of which rotates, has been observed using molecular dyn
simulation. The quantitative nature of the vortices has been examined over a range of supercritica
lor numbers. The Fourier amplitudes of the fundamental radial velocity mode and its low-order har
ics have been analyzed; despite the microscopic system size their functional dependence on the
number is in excellent agreement with theory and experiment. [S0031-9007(98)06397-2]

PACS numbers: 47.32.Cc, 02.70.Ns, 47.15.–x, 47.20.–k
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One of the many fascinating instabilities that occur i
hydrodynamics is the formation of toroidal vortices in
fluid confined to an annular gap between concentric r
tating cylinders. The phenomenon is named after Taylo
who carried out experimental studies and provided a hydr
dynamic stability analysis of the effect [1]. In this Lette
we report on a numerical study of this flow instability at th
atomistic level using a molecular dynamics approach. T
simulations will be shown to not only produce the sam
kind of flow patterns as are observed experimentally, b
to do this in a quantitatively correct manner.

Consider an experimental cell for which the inner an
outer cylinder radii areri and ro , with d ­ ro 2 ri the
width of the annulus, andh ­ riyro the radius ratio. If
the outer cylinder is at rest, and the angular velocity of th
inner cylinder isv, then the nature of the flow depends o
the dimensionless Taylor number,T ­ 4fs1 2 hdys1 1

hdgR2, whereR ­ ridvyn is the Reynolds number, and
n the kinematic viscosity [2] (the more general case whe
the outer cylinder also rotates is not considered here).
low T the flow is purely azimuthal (Couette flow), but at a
critical value,Tc, secondary flow patterns appear that hav
the form of regularly spaced axisymmetric vortices. A
perturbation treatment of the Navier-Stokes equations [
provides the basis for computingTc in terms of the flow
parameters. At higherT additional laminar instabilities
appear (azimuthal waves), and eventually turbulence [4

Various experimental techniques have been used to m
sure one or more components of the flow velocity field
which can be analyzed to establish the dependence one ­
sT 2 TcdyTc (or the corresponding quantity based onR).
These techniques include ion conduction [5], anemom
try [6], and laser-Doppler velocity probes [7–10]; betwee
them, the experiments have examined all three veloc
components (radial, azimuthal, and axial). The spatia
varying velocity fields can be Fourier analyzed; this allow
the determination of thee dependence of both the funda
mental mode that dominates the vortex structure, and
leading-order harmonics that account for deviations fro
a purely sinusoidal form. The behavior has been show
to agree with the predictions of a theoretical analysis
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the Taylor instability [11], namely, that the coefficientsAn

in the Fourier expansion for (e.g.) the radial velocity at
fixed radial distances from the axis, as a function of ax
positionz,

yr sz, ed ­
X
n$1

Ansed cossnqfz 1 z0gd , (1)

whereq is the wave number of the fundamental mode, c
be expanded as

Ansed ­ aneny2s1 1 an1e 1 an2e2 1 . . .d . (2)

The offsetz0 is included to allow a limited amount of
variation in the axial positions of the vortices. Whilee

is ostensibly a small quantity, the results are found to ob
these predictions over a much larger range. (The probl
has also been studied by means of computational fl
dynamics [12].)

Molecular dynamics (MD) methods have, over the pa
decade, been used in the study of flow instability
microscopic scales. Work has been confined to tw
dimensional flows: both vortex shedding in obstructed flo
[13] and convective roll formation in the Rayleigh-Bénar
problem [14] have been modeled. The surprising outco
of these simulations is not only that familiar macroscop
phenomena are reproduced in such minuscule system
the typical size is no more than a few hundred angstroms
but that quantitative aspects of the behavior also agree w
continuum results. The obvious question of whether t
kinds of systems that can be handled by MD simulation
three dimensions are adequate to reproduce structured
behavior typified by the Taylor instability has not bee
addressed to date. As will become eminently clear fro
this first application of MD to complex three-dimensiona
flows, not only does MD reproduce the phenomenon,
does so in excellent quantitative agreement with theory a
experiment, microscopic system size (and other deviatio
from macroscopic fluid behavior) notwithstanding.

We consider a soft-sphere fluid in which particles in
teract through a short-range repulsive potential,V srd ­
4efssyrd12 2 ssyrd6g, with a cutoff atrc ­ 21y6s. Re-
duced MD units are employed in whichs ­ 1 ande ­ 1.
© 1998 The American Physical Society 5337
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Standard MD techniques [15], with certain additional fea
tures that are described below, are used in carrying out t
simulations; the equations of motion are integrated usin
the leapfrog method, with a time step of 0.005 (MD units)

The curved cylinder walls act as both nonslip bounda
ries and thermal reservoirs. The walls themselves a
geometrically smooth. In order to produce a nonsli
effect, each particle colliding with the wall has all
memory of its previous velocity erased, and is reflecte
back into the system with a new velocity having a random
direction and fixed magnitude; for the wall correspondin
to the rotating inner cylinder the local (tangential) wal
velocity is added to this vector. This mechanism i
sufficient to drive the fluid rotation and dissipate the
thermal energy generated by the sheared flow. The t
and bottom end caps of the annular region are stationa
and reflect incident particles elastically; the use of sli
boundaries at the ends avoids creating a second source
sheared flow that would distort the vortices (an effect tha
is unavoidable experimentally).

In order to reduce the number of particles required fo
the simulation only one quadrant of the annular cell is ex
plicitly modeled. Special periodic boundaries are used
account for the effect of particles in the absent quadran
whenever a particle exits through either of these bound
ries it is returned via the perpendicular boundary wit
position and velocity components suitably interchange
and sign-adjusted; interactions across these boundaries
also treated appropriately. Provided the secondary flow
are axisymmetric this modification should not alter the be
havior; experiment [16] indicates that ifh is not too small,
effects such as wavy vortices appear only forR ¿ Rc

and, furthermore, this class of instability is suppressed u
lessL ¿ d [17].

The results described here are for cylinders with rad
ri ­ 50 andro ­ 75 (h ­ 2y3), and a series of angular
velocities in the rangev ­ 0.05 0.1. Each simulation
run begins with the particles situated on the sites of
lattice between the two cylinders and assigned rando
initial velocities. The inner cylinder is initially at rest,
but is gradually accelerated to the correctv over the first
105 steps of the run.

The annular width (d ­ 25) is practically the smallest
for which well-developed vortices can be readily ob
served; a width of only 20 leads to the much slower de
velopment of unstable vortices. Given that experimental
observed vortices have an almost square cross section
result also predicted by theory), the system length is set
L ­ 100; consequently, if vortex formation actually oc-
curs, four vortices should develop. This indeed is exact
what happens. Preliminary examination of other cylinde
lengths shows that forL ­ 75 there are also four rolls, but
only two atL ­ 50, whereas forL ­ 125 six rolls man-
age to form. Roll nucleation occurs near the end caps; t
number of rolls is always even, and at the cylinder end
the radial flow is directed inwards.
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Despite the limited system size and the use of only on
quadrant these simulations nevertheless require 125 0
particles in order to ensure a mean densityr ø 0.5. Ex-
amination of the time dependence of the flow compo
nents reveals that while the final azimuthal velocity i
reached after approximately105 steps, the radial velocity
(an estimate based on the average of the maximum ab
lute inward and outward values) requires twice as long
achieve its final state for the largestv considered, and six
times as long for the smallest. Measurements were beg
only after the system had reached a steady flow state.

Because of the comparatively large systems and t
long sequences of time steps required, the computatio
were carried out on a parallel computer. Four processin
nodes of an IBM/SP2 were used; the system was su
divided into slabs along the cylinder axis and the conten
of the slabs assigned to distinct nodes. Each slab c
be processed almost independently, except for particl
near slab boundaries whose coordinates must be sha
between the nodes responsible for the adjacent slabs, a
the possible movement of particles between slabs [15].

The time-dependent evolution of the flow observed fo
v ­ 0.1 (the highest rotation rate considered) is sum
marized in Fig. 1 as a sequence of snapshots showi
streamlines derived from the radial and axial velocit
components of the azimuthally averaged flow. A selec
tion of images corresponding to key stages of the run
shown (t denotes the time); each image represents the a
erage over 5000 steps using a25 3 100 spatial grid for
averaging the particle velocities in the radial and axial d
rections. The final state shown—a set of four counterro
tating (toroidal) Taylor vortices—persists for the remain
der of the run (ø106 steps).

The radial increase in the axially averaged densit
is found to be almost linear, and atv ­ 0.1 the total
variation across the annulus isø25%; for smaller v

the density variation is reduced. There is also a small
axial density variation that is almost sinusoidal. While i
is clear that this system is not the incompressible flui
addressed by hydrodynamics, the deviations are by
means excessive. It turns out that only a limited range
r values is useful: lowerr implies fewer particles, but at
the same time the systematic density variations across
system become larger, which in turn makes compariso
with theory questionable; at higherr, vortex formation
becomes more difficult. The choice ofr for this work
therefore represents a compromise.

The axial dependence of the mean (azimuthally an
radially averaged) radial velocity,yr szd, is shown in
Fig. 2 for severalv values. The results are based on
20 sets of measurements over the final105 steps, and
their rms spread provides the error estimates. Both the
results, and the corresponding azimuthal velocities (n
shown), closely resemble the experimental measureme
[5,7,10]. At the smallestv there is no radial flow; when
radial flow begins thez dependence is almost sinusoidal
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FIG. 1. Sequence of snapshots forv ­ 0.1 in which stream-
lines (azimuthally averaged) are used to show various stages
vortex development.
of

but deviations appear asv increases, with the radia
outflow becoming significantly faster than the inflow.

The form of yrszd calls for Fourier analysis similar
to that used in treating the experimental data, leading
the expansion in Eq. (1). The smooth curves includ
in Fig. 2 show the results of this calculation; here th
fundamental (n ­ 1) mode and the first two harmonic
are included, with wave numberq ­ 3.17yd. Clearly, the
principal features of the data are represented reason
accurately by just three Fourier terms; adding a furth
harmonic has no noticeable effect on the fit. Typic
error bars are shown; these reflect the fluctuations in
measurements that occur between samples.

Stability analysis [4] predicts thatq ­ 3.14yd; the
slightly largerq value needed here—the change produc
a 1% shift in the positive peak positions, leading to a ma
ginally improved fit for largerv —is readily attributed
to finite-size effects such as relatively thick radial boun
ary layers. The value ofz0 (used to accommodate sligh
deviations from axial symmetry) is adjusted for the be
fit; its value lies in the range21.8 10.8 (for different
v), a less than 2% shift along the axis. It should be
membered that unlike the four vortices obtained here,
perimentallyL ¿ d and there are therefore many mor
vortices, so that Fourier analysis can exclude the end v
tices that have been distorted by additional shear effec

Theory [11] predicts that the Fourier coefficientsAnsed
should have the form shown in Eq. (2). Experimen
agree with this prediction, and the ability to fit the MD
results to theory would provide convincing evidence th
the MD approach captures the hydrodynamics in a qu
titatively correct manner. The problem is that an “effe
tive” Taylor number cannot be evaluated directly becau
it is a function of the viscosity, which in turn depends o
the density, temperature, and shear rate, all of which v
substantially across the system. The results of the fit
the theoretical prediction are independent ofn, however;

FIG. 2. Axial (z) variation of the mean radial velocityyrszd
with fits based on the first three terms of the Fourier expansi
the peaks become larger and the harmonics more pronoun
asv increases (v ­ 0.055, 0.06, 0.07, 0.08, 0.1).
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FIG. 3. The data points show the first three Fourier am
plitudes of the mean radial velocity plotted as functions o
e ­ sT 2 TcdyTc; the curves are based on fits to the theor
that include only lineare corrections.

we therefore simply assume thatn ­ 1, a value typical
of equilibrium simulations under the kinds of condition
prevailing here [18], and use this to computeR and
T . Given this assumption, the values ofR covered by
the present simulations range from 75 to 125 (T range:
4500–12 500). The predicted critical value isRc ­ 76.6
(corresponding toTc ­ 4690) [4].

The value ofTc, and the coefficients of theAnsed ex-
pansions in Eq. (2) to linear order ine, can be obtained
using least-squares fits to the Fourier results (refined
timates ofTc are also obtained in a similar manner from
experimental data). First, independent estimates ofTc are
extracted from the fits toA1 and A2; the values obtained
are 4244 and 4223. These differ by less than 1%, so us
their mean (which happens to correspond to a value ofRc

only 5% below the theoretical value), and repeating the fi
to obtain the expansion coefficients, yieldsa1 ­ 0.1554
anda11 ­ 20.0355 for the fundamental,a2 ­ 0.0676 and
a21 ­ 20.183 for the first harmonic,a3 ­ 0.0196 and
a31 ­ 20.283 for the second. Thee dependence of the
first three Fourier amplitudes is shown in Fig. 3. Thes
fits are of similar quality to those obtained experimentall
(The error estimates shown are obtained by repeating
analysis for each of the 20 sets of measurements.) Si
the lineare corrections already provide an essentially pe
fect fit over the range0 , e , 2 there is no need to in-
clude the quadratic terms.

In conclusion, the results presented in this Lett
show that molecular dynamics simulation is capable
capturing the details of the Taylor flow instability in a
quantitatively correct manner. The simulations not on
establish that continuum hydrodynamics remains valid
5340
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the extremely small length and time scales addressed
MD, but imply that MD is capable of becoming a usefu
tool for investigating complex flows. Indeed, the rout
to understanding the microscopic mechanisms underlyi
transitions between spatially distinct flow states is likel
to require detailed MD analysis of suitably defined
correlation functions in the transition region. Furthe
study of the Taylor and other three-dimensional flow
problems is currently in progress

Partial support for this work was provided by a gran
from the Ministry of Science. The calculations were
carried out on the IBM/SP2 computer at the Inter
University Computation Center.
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