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Forced Symmetry Breaking as a Mechanism for Bursting
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A robust mechanism generating regular or irregular bursts of large dynamic range near thre
is described. The mechanism arises in the interaction between oscillatory modes of odd and
parity in systems of large but finite aspect ratio, and provides an explanation for the burs
behavior observed in binary fluid convection by Sullivan and Ahlers [Phys. Rev. A38, 3143 (1988)].
[S0031-9007(98)06353-4]
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Bursts of activity, be they regular or irregular, are a com
mon occurrence in physical and biological systems. F
example, they are characteristic of neural activity whe
they are typically associated with bistability [1]. In hydro
dynamics the term is used to describe bursts of turbule
activity interspersed with laminar behavior [2] or the inter
mittent destruction of coherent structures in the wall regio
of turbulent boundary layers [3]. A different type of burst
like behavior, not associated with turbulence, has been
ported in binary fluid convection, for example, in3Hey4He
mixtures [4]. Here, despite constant heat input, the co
vective heat transport (as measured byN 2 1, whereN is
the Nusselt number) takes place in a sequence of irre
lar bursts as shown in Fig. 1. Although different in detai
the bursts in these hydrodynamical systems are all fou
near the onset (e ­ 0) of an instability. Moreover, the
systems exhibiting this type of behavior all have a su
stantial degree of symmetry. This suggests that the bur
are not the result of a sequence of bifurcations resulti
in more and more complex dynamics but are instead t
consequence of a single bifurcation in a system with sym
metry. For example, the boundary layer bursts have be
successfully attributed to the presence of structurally stab
heteroclinic cycles in the interaction between two stead
spanwise modes with wave numbers in a1:2 ratio [3].
With periodic boundary conditions and reflection symme
try in the spanwise direction the system has O(2) sym
metry; in the resulting dynamical systems description th
fixed points are associated with the presence of coher
structures and the recurrent excursions along the hete
clinic cycle with the observed bursts. In this Letter w
identify a different mechanism for producing bursts. Th
mechanism provides a natural explanation for the behav
observed in Fig. 1 and also involves the interaction of tw
modes, but now the modes are oscillatory and the symm
try group is only a reflectionZ2. The resulting bursts have
a large dynamical range and are not the result of a stru
turally stable heteroclinic connection. Moreover, it is th
bursts that are associated with the fixed points of a suita
dynamical system, while the excursions between them c
respond to the laminar phase.
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We consider a slender system with left-right reflection
symmetry (such as a narrow rectangular convection ce
undergoing an oscillatory instability from the trivial state.
In such a system the first two unstable modes typicall
have opposite parity under reflection; moreover, becaus
the neutral stability curve for the unbounded system ha
a parabolic minimum these set in in close successio
as the bifurcation parameter is increased. We write th
perturbation from the trivial state as

Csx, y, td ­ e
1

2 Rehz1f1sx, yd 1 z2f2sx, ydj 1 Osed ,

(1)

where e ø 1, f6s2x, yd ­ 6f6sx, yd, and y denotes
the transverse variables. The complex amplitudesz6std
satisfy the equations [5]

Ùz6 ­ fl 6 Dl 1 isv 6 Dvdgz6

1 Asjz1j2 1 jz2j2dz6 1 Bjz6j2z6 1 Cz̄6z2
7 .

(2)

FIG. 1. Bursts in binary fluid convection with separation ratio
S ­ 20.021. (a) e ­ 3 3 1024; (b) e ­ 3.6 3 1023. The
amplitude of the bursts decreases with increasinge while their
frequency increases. After Ref. [4].
© 1998 The American Physical Society 5329
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In these equations the nonlinear terms have identical (co
plex) coefficients because of an approximate interchan
symmetry between the odd and even modes. The res
ing D4 symmetry [5] is weakly broken wheneverDl fi 0
and/orDv fi 0, a consequence of the finite aspect ratio o
the system. To identify the bursts we introduce the chan
of variables

z6 ­ r
2 1

2 sin

µ
u

2
1

p

4
6

p

4

∂
eis6f1cdy2

and a new timelike variablet defined bydtydt ­ r21.
In terms of these variables Eqs. (2) become

dr

dt
­ 2rf2AR 1 BRs1 1 cos2 ud 1 CR sin2 u cos2fg

2 2sl 1 Dl cosudr2, (3)

du

dt
­ sinufcosus2BR 1 CR cos2fd 2 CI sin2fg

2 2Dlr sinu , (4)

df

dt
­ cosusBI 2 CI cos2fd 2 CR sin2f 1 2Dvr ,

(5)

where A ­ AR 1 iAI , etc., together with a decoupled
equation for cstd. The amplitude of the disturbance
is measured byr ; jz1j2 1 jz2j2 ­ r21; thus r ­ 0
corresponds to infinite amplitude states. Equations (3
(5) show that the restriction to the invariant subspac
S ; hr ­ 0j is equivalent to takingDl ­ Dv ­ 0 in
(4) and (5). The resultingD4-symmetric problem has three
generic types of fixed points [6]:u solutions with cosu ­
0, cos2f ­ 1; y solutions with cosu ­ 0, cos2f ­ 21;
andw solutions with sinu ­ 0. These states correspond
to (infinite amplitude) periodic oscillations in time becaus
of the decoupled phasecstd. In the binary fluid context
theu, y, andw solutions represent mixed parity traveling
wave states localized near one of the container wal
mixed parity chevron (or counterpropagating) states, a
pure even (u ­ 0) or odd (u ­ p) parity chevron states,
respectively [5]. Depending onA, B, andC the subspaceS
may contain additional fixed points and/or limit cycles [6]
In our scenario, a burst occurs forl . 0 when a trajectory
follows the stable manifold of a fixed point (or a limit
cycle) P1 [ S that isunstablewithin S. The instability
within S then kicks the trajectory towards another fixe
point (or limit cycle)P2 [ S. If this point has an unstable
r eigenvalue the trajectory escapes fromS towards a
r . 0 fixed point (or limit cycle), forming a burst. If
Dl and/orDv fi 0 this fixed point may itself be unstable
to perturbations of typeP1 and the process then repeats
The scenario thus requires that at least one of the branc
in the D4-symmetric system be subcritical (P1) and one
supercritical (P2).

Experimentally, bursts are observed for separatio
ratios S ­ 20.021 and S ­ 20.044 for 3Hey4He
5330
m-
ge
ult-

f
ge

)–
e

e

ls,
nd

.

d

.
hes

n

mixtures [4] and, for example,S ­ 20.032 for
ethanolywater mixtures [7]; these fall within the range
20.0799 , S , 20.0138 for typical 3Hey4He mixtures
and 20.150 , S , 20.0042 for typical ethanolywater
mixtures for which traveling waves are subcritical an
standing waves supercritical [8]. We focus therefore o
parameter values for which theu solutions are subcritical
and they, w solutions supercritical whenDl ­ Dv ­ 0.
When Dl and/or Dv fi 0 two types of oscillations in
su, fd are possible: rotations and librations (see Fig. 2
These oscillations are coupled to excursions in amplitud
Figure 3 shows the resulting sequence of large amplitu
bursts; these arise from repeated excursions towards
infinite amplitude (r ­ 0) u solutions. Irregular bursts
are also readily generated: Figure 4 shows bursts aris
from chaotic rotations. Figures 5(a) and 5(b) provide
partial summary of the different solutions of Eqs. (3)–(5
and their stability properties; a detailed description o
the origin of the complexity revealed in these figure
is given elsewhere [9]. Here we focus on its physica
consequences.

In Fig. 6 we show thesx, td plots of the sequences
of bursts corresponding to the trajectories shown
Fig. 2. The bursts in Fig. 6(a) are generated as
result of successive visits todifferent but symmetry-
related infinite amplitudeu solutions [cf. Fig. 2(a)]; in
Fig. 6(b) the generating trajectory makes repeated vis
to the sameinfinite amplitudeu solution [cf. Fig. 2(b)].

FIG. 2. Stable periodic rotations and librations at (a)l ­ 0.1
and (b)l ­ 0.1253, respectively, forDl ­ 0.03, Dv ­ 0.02,
A ­ 1 2 1.5i, B ­ 22.8 1 5i, C ­ 1 1 i. The 1 signs
indicate infinite amplitudeu solutions responsible for the bursts,
while squares and diamonds indicate infinite amplitudey
solutions and finite amplitude periodic oscillations.
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FIG. 3. Time series showing periodic bursts corresponding
the trajectories in Fig. 2.

These plots are constructed using the approxima
expression f6 ­ he2gx1ix 6 egx2ixj cospx

L , where
g ­ 0.15 1 0.025i, L ­ 80, and 2

L
2 # x #

L
2 . The

former state is typical of the blinking state identified in
binary fluid convection in rectangular containers [10];
is likely that the irregular bursts shown in Fig. 1 are du
to such a state. The latter is a new state which we cal
winkingstate; winking states may be stable but often coe
ist with stable chevronlike states which are more likely t
be observed in experiments in which the Rayleigh numb
is ramped upwards (see Fig. 5). The blinking state
Fig. 6(a) closely resembles the state reported in Ref. [
and attributed there to burstlike solutions of a sing
complex Ginzburg-Landau equation with a destabilizin
nonlinearity and periodic boundary conditions. Howeve
the data in Ref. [7] indicate that whenL ­ 40.6 the bursts

FIG. 4. Time series showing bursts from chaotic rotations
l ­ 0.072. This solution describes a chaotic blinking stat
because the trajectory makes successive visits to different
symmetry-related infinite amplitudeu solutions.
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are localized preferentially near the sidewalls and hen
that the sidewalls play a critical role at thisL provided
e & 0.009. For largere (for the givenL) or largerL (for
the givene) the burst mechanism described here is like
superseded by that outlined in Ref. [7].

The bursts described here are the result of oscillatio
in amplitude between two modes of opposite parity a
“frozen” spatial structure. They occur very close t
onset (e ­ 3 3 1024 in Ref. [4]) so that the spatial
structure is well approximated by the linear eigenfunctio
The presence of bursts requires at least one of
branches in theD4-symmetric system to be subcritical
Moreover, a large aspect ratioL is required for the
approximate interchange symmetry to hold; if the size
theD4 symmetry-breaking termsDl, Dv is increased too
much the bursts fade away and are replaced by sma
amplitude, higher frequency states. For example,
Dv ¿ Dl averaging eliminates theC terms responsible
for the bursts. Thus bursts will not be present ifL is

FIG. 5. Partial bifurcation diagrams for (a)C ­ 1 1 i and
(b) C ­ 0.9 1 i with the remaining parameters as in Fig.
showing the time average ofr for different solutions as a func-
tion of l. Solid (dashed) lines indicate stable (unstable) so
tions. The branches labeledu, y, w, and qp (quasiperiodic)
may be identified in the limit of largejlj with branches in
the corresponding diagrams whenDl ­ Dv ­ 0 (insets). All
other branches correspond to bursting solutions which may
blinking or winking states. Circles, squares, and diamonds
the diagram indicate Hopf, period-doubling, and saddle-no
bifurcations, respectively.
5331



VOLUME 80, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 JUNE 1998

e
of
in
it
ge
he
ur

ed

d
ds

th
e
ed

],
mo

e

try
6).

E

,

.
.

.

FIG. 6. The perturbationC from the trivial state represented
in a space-time plot showing (a) a periodic blinking state (
which successive bursts occur at opposite sides of the contain
from the trajectory in Fig. 2(a), and (b) the periodic winking
state (in which successive bursts occur at the same side of
container) for the trajectory in Fig. 2(b).

too small or e too large; cf. Fig. 1. The mechanism
described here is similar in spirit to that put forward
by Newell et al. [11] but differs in that ours applies
in fully dissipative driven systems and relies on th
5332
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presence of reflection symmetry. However, both involv
global connections to infinity and hence are capable
describing bursts of arbitrarily large dynamical range
contrast to the mechanism of Ref. [3]. Consequently
is possible that the burst amplitude can become lar
enough that secondary instabilities not captured by t
ansatz (1) can be triggered. Such instabilities could occ
on very different scales and result inturbulent rather
than just large amplitude bursts. It should be emphasiz
that the physical amplitude of the bursts isOse

1

2 d and
so approaches zero ase # 0; cf. Eq. (1). Thus despite
their large dynamical range the bursts are fully an
correctly described by the asymptotic expansion that lea
to Eqs. (2). In particular, the mechanism is robust wi
respect to the addition of small fifth order terms [12]. W
expect that the mechanism identified here will be detect
in other systems with approximateD4 symmetry such as
lasers [13], spring-supported fluid-conveying tubes [14
and the Faraday system [15], as it has been in dyna
theories of magnetic field generation in the Sun [16].
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