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Forced Symmetry Breaking as a Mechanism for Bursting

J. Moehlis and E. Knobloch
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A robust mechanism generating regular or irregular bursts of large dynamic range near threshold
is described. The mechanism arises in the interaction between oscillatory modes of odd and even
parity in systems of large but finite aspect ratio, and provides an explanation for the bursting
behavior observed in binary fluid convection by Sullivan and Ahlers [Phys. Re38,/8143 (1988)].
[S0031-9007(98)06353-4]

PACS numbers: 47.20.Ky, 05.45.+b, 47.20.—k

Bursts of activity, be they regular or irregular, are acom- We consider a slender system with left-right reflection
mon occurrence in physical and biological systems. Fosymmetry (such as a narrow rectangular convection cell)
example, they are characteristic of neural activity wheraindergoing an oscillatory instability from the trivial state.
they are typically associated with bistability [1]. In hydro- In such a system the first two unstable modes typically
dynamics the term is used to describe bursts of turbulertiave opposite parity under reflection; moreover, because
activity interspersed with laminar behavior [2] or the inter-the neutral stability curve for the unbounded system has
mittent destruction of coherent structures in the wall regiora parabolic minimum these set in in close succession
of turbulent boundary layers [3]. A different type of burst- as the bifurcation parameter is increased. We write the
like behavior, not associated with turbulence,shas been rgerturbation from the trivial state as

orted in binary fluid convection, for example,jide/*He 1
Enixtures [4]. &ere, despite constant heaE[) input, the con—ly(x’y’t) = e Refzofr(x,y) + 2 f-(x. )} + O(e),
vective heat transport (as measured\by- 1, whereN is (1)

the Nusselt number) takes place in a sequence of irregiihere ¢ « 1 fe(=x,y) = *f+(x,y), and y denotes

lar bursts as shown in Fig. 1. Although different in detail, {1a transverse variables. The complex amplituge§)
the bursts in these hydrodynamical systems are all foungatisfy the equations [5] -

near the onsete(= 0) of an instability. Moreover, the
systems exhibiting this type of behavior all have a sub- z+ = [A = A + i(0 * Aw)]z=
stantial degree of symmetry. This suggests that the bursts + Alze? + 1z2-1P)zs + BlzslPze + Cz2z2.
are not the result of a sequence of bifurcations resulting - T o
in more and more complex dynamics but are instead the (2)
consequence of a single bifurcation in a system with sym-
metry. For example, the boundary layer bursts have been
successfully attributed to the presence of structurally stable
heteroclinic cycles in the interaction between two steady
spanwise modes with wave numbers inl:d ratio [3].
With periodic boundary conditions and reflection symme-
try in the spanwise direction the system has O(2) sym-
metry; in the resulting dynamical systems description the
fixed points are associated with the presence of coherent
structures and the recurrent excursions along the hetero- T T T
clinic cycle with the observed bursts. In this Letter we (b)
identify a different mechanism for producing bursts. This
mechanism provides a natural explanation for the behavior
observed in Fig. 1 and also involves the interaction of two
modes, but now the modes are oscillatory and the symme-
try group is only a reflectio®,. The resulting bursts have 0500 ' o) 500
a large dynamical range and are not the result of a struc- t
turally stable heteroclinic connection. Moreover, it is the L . . . . .
bursts that are associated with the fixed points of a suitabIFIG' 1. Bursts in binary f|UId7C.OI‘lveCtI0n with separation ratio
_ A xeadp $ = —0021. @e=3xX10"% (b) e =36 x 1073, The
dynamical system, while the excursions between them colmplitude of the bursts decreases with increaginghile their
respond to the laminar phase. frequency increases. After Ref. [4].
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In these equations the nonlinear terms have identical (commixtures [4] and, for example,§ = —0.032 for
plex) coefficients because of an approximate interchangethanofwater mixtures [7]; these fall within the range
symmetry between the odd and even modes. The result-0.0799 < S < —0.0138 for typical *He/*He mixtures
ing D4 symmetry [5] is weakly broken whenevAmn # 0 and —0.150 < § < —0.0042 for typical ethanolwater
and/orAw # 0, a consequence of the finite aspect ratio ofmixtures for which traveling waves are subcritical and
the system. To identify the bursts we introduce the changstanding waves supercritical [8]. We focus therefore on

of variables parameter values for which thesolutions are subcritical
(8 - T\ ieoru and thev, w solutions supercritical wheAiA = Aw = 0.
x =p 2 sm(; + e = 7)6” oty When AA and/or Aw # 0 two types of oscillations in

(6, ¢) are possible: rotations and librations (see Fig. 2).
These oscillations are coupled to excursions in amplitude.
Figure 3 shows the resulting sequence of large amplitude
bursts; these arise from repeated excursions towards the
infinite amplitude p = 0) u solutions. Irregular bursts
are also readily generated: Figure 4 shows bursts arising
from chaotic rotations. Figures 5(a) and 5(b) provide a
partial summary of the different solutions of Egs. (3)—(5)

and a new timelike variable defined bydr/dt = p~!.

In terms of these variables Egs. (2) become
Z—p = —p[2Ag + Bg(1 + cos @) + CgsSir? 6 cos2¢ ]
.

— 2(A + Axcosd)p?, (3)

a6 _ sing[cosf(—Br + Crc0oS2¢) — C;Sin2¢]

dr and their stability properties; a detailed description of
) the origin of the complexity revealed in these figures
— 2AApsing, (4) is given elsewhere [9]. Here we focus on its physical
do _ consequences.
ar cosf(B; — C;c082¢) — Crsin2¢ + 2Awp, In Fig. 6 we show the(x, ) plots of the sequences

of bursts corresponding to the trajectories shown in

() Fig. 2. The bursts in Fig. 6(a) are generated as a
where A = Ap + iA;, etc., together with a decoupled result of successive visits tdifferent but symmetry-
equation for¢(r). The amplitude of the disturbance related infinite amplitudex solutions [cf. Fig. 2(a)]; in
is measured by = |z.|> + |z-|> = p~!; thus p = 0  Fig. 6(b) the generating trajectory makes repeated visits
corresponds to infinite amplitude states. Equations (3)+o the sameinfinite amplitudeu solution [cf. Fig. 2(b)].
(5) show that the restriction to the invariant subspace
> = {p = 0} is equivalent to takingAA = Aw = 0 in
(4) and (5). The resultingp4-symmetric problem has three 2
generic types of fixed points [6} solutions with co® = 0
0,c0s2¢ = 1; v solutions with co® = 0,cos2¢ = —1; 18
andw solutions with sire = 0. These states correspond
to (infinite amplitude) periodic oscillations in time because 16
of the decoupled phasg(r). In the binary fluid context
theu, v, andw solutions represent mixed parity traveling 14
wave states localized near one of the container walls,
mixed parity chevron (or counterpropagating) states, and 1.
pure evend{ = 0) or odd @ = ) parity chevron states,
respectively [5]. Depending oh, B, andC the subspac®
may contain additional fixed points and/or limit cycles [6].
In our scenario, a burst occurs far> 0 when a trajectory 0 (b)

2 T T T T T

follows the stable manifold of a fixed point (or a limit '8 o T
cycle) P, € X that isunstablewithin X. The instability
within %, then kicks the trajectory towards another fixed 16| @ + iy

point (or limit cycle)P, € 3. If this point has an unstable

p eigenvalue the trajectory escapes frantowards a 14
p > 0 fixed point (or limit cycle), forming a burst. If )
A X and/orAw # 0 this fixed point may itself be unstable 1.2 1 1'5 2 2'5 3 e
to perturbations of typ&; and the process then repeats. ' ' '
The scenario thus requires that at least one of the branchE¥s. 2. Stable periodic rotations and librations at {aj 0.1

; } ; i and (b)A = 0.1253, respectively, forAA = 0.03, Aw = 0.02,
in the D4-symmetric system be subcriticaP{) and one A1~ 15 B—-28+5 C—1+i The-+ signs
supercritical 5).

; . indicate infinite amplituder solutions responsible for the bursts,
Experimentally, bursts are observed for separatiofyhile squares and diamonds indicate infinite amplitude
ratios S = —0.021 and S = —0.044 for 3He/*He solutions and finite amplitude periodic oscillations.
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are localized preferentially near the sidewalls and hence
that the sidewalls play a critical role at this provided

€ < 0.009. For largere (for the givenL) or largerL (for

the givene) the burst mechanism described here is likely
superseded by that outlined in Ref. [7].

The bursts described here are the result of oscillations
in amplitude between two modes of opposite parity and
“frozen” spatial structure. They occur very close to
onset € =3 X 107* in Ref. [4]) so that the spatial
structure is well approximated by the linear eigenfunction.
The presence of bursts requires at least one of the

0 1 L 1 1 1 1 1 t
0 20 40 60 80 100 120 140

FIG. 3. Time series showing periodic bursts corresponding to
the trajectories in Fig. 2.

These plots are constructed using the approximate
expression f. = {e 7¥tix = o¥x~¥}cos™=  where

y = 0.15 + 0025/, L = 80, and —5 < x = 5. The
former state is typical of the blinking state identified in
binary fluid convection in rectangular containers [10]; it
is likely that the irregular bursts shown in Fig. 1 are due
to such a state. The latter is a new state which we call a
winkingstate; winking states may be stable but often coex-
ist with stable chevronlike states which are more likely to
be observed in experiments in which the Rayleigh number
is ramped upwards (see Fig. 5). The blinking state in
Fig. 6(a) closely resembles the state reported in Ref. [7]
and attributed there to burstlike solutions of a single
complex Ginzburg-Landau equation with a destabilizing
nonlinearity and periodic boundary conditions. However,
the data in Ref. [7] indicate that whén= 40.6 the bursts

1} J -
0 1 1 1 1 t
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branches in theD,-symmetric system to be subcritical.
Moreover, a large aspect ratib is required for the
approximate interchange symmetry to hold; if the size of
the D, symmetry-breaking term& A, Aw is increased too
much the bursts fade away and are replaced by smaller
amplitude, higher frequency states.
Aw > A ) averaging eliminates th€ terms responsible
for the bursts. Thus bursts will not be presentLifis

For example, if
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FIG. 5. Partial bifurcation diagrams for (&) = 1 + i and

(b) C = 0.9 + i with the remaining parameters as in Fig. 2
showing the time average offor different solutions as a func-
tion of A. Solid (dashed) lines indicate stable (unstable) solu-
tions. The branches labeled v, w, and gp (quasiperiodic)
may be identified in the limit of largéA| with branches in

the corresponding diagrams whan = Aw = 0 (insets). All
FIG. 4. Time series showing bursts from chaotic rotations abther branches correspond to bursting solutions which may be
Circles, squares, and diamonds in
because the trajectory makes successive visits to different bilhe diagram indicate Hopf, period-doubling, and saddle-node

A = 0.072. This solution describes a chaotic blinking state blinking or winking states.

symmetry-related infinite amplitude solutions.

bifurcations, respectively.
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FIG. 6. The perturbation? from the trivial state represented

presence of reflection symmetry. However, both involve
global connections to infinity and hence are capable of
describing bursts of arbitrarily large dynamical range in
contrast to the mechanism of Ref. [3]. Consequently it
is possible that the burst amplitude can become large
enough that secondary instabilities not captured by the
ansatz (1) can be triggered. Such instabilities could occur
on very different scales and result tarbulent rather
than just large amplitude bursts. It should be emphasized

that the physical amplitude of the bursts (Ds(eé) and
so approaches zero as| 0; cf. Eq. (1). Thus despite
their large dynamical range the bursts are fully and
correctly described by the asymptotic expansion that leads
to Egs. (2). In particular, the mechanism is robust with
respect to the addition of small fifth order terms [12]. We
expect that the mechanism identified here will be detected
in other systems with approximafg, symmetry such as
lasers [13], spring-supported fluid-conveying tubes [14],
and the Faraday system [15], as it has been in dynamo
theories of magnetic field generation in the Sun [16].
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