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Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders
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In this Letter we present an experimental analysis of the acoustic transmission of a two-dimensional
periodic array of rigid cylinders in air with two different geometrical configurations: square and
triangular. In both configurations, and above a certain filling fraction, we observe an overlap, in the
range of the audible frequencies, between the attenuation peaks measured along the two high-symmetry
directions of the Brillouin zone. This effect is considered as the fingerprint of the existence of a full
acoustic gap. Nevertheless, the comparison with our calculation of band structures shows that the
triangular lattice has band states in that frequency range. We calldeafrbands This contradictory
result is explained by looking at the symmetry of the deaf bands; they cannot be excited by experiments
of sound transmission. [S0031-9007(98)06295-4]

PACS numbers: 43.20.+g, 42.25.Bs, 52.35.Dm

In the late 1980s, several authors [1,2] showed thalation of the acoustic bands that allows the interpretation
a transparent material can become opaque for any lighdf the experimental observations.
wave vector provided that a strong modulation of the The experiments have been performed in an anechoic
refractive index in the three dimensions of the space&hamber. The dimension of the chamifrx 6 X 3 m?)
is attained. These systems were called photonic-bands not much larger than the sample size. Therefore, sound
gap (PBG) materials because of the analogy to thevaves are not full plane waves when the wave fronts
behavior of electrons in crystals; in the same manner asach the samples. The samples, that we call minimalist
electrons are allowed in certain energy bands, photonsculptures, are build up by hanging cylindrical bars on
in PBG materials can exist only in certain frequencya frame with square or triangular symmetry. The frame
bands. can rotate around the vertical axis, so one can explore

One of the advantages of PBG materials is that theny direction of thek wave vector perpendicular to the
underlying theory can be applied to other types ofcylinder axis. We used hollow and full stainless steel
waves like sound or elastic waves [3]. The crucialcylinders as well as wood cylinders, the results being
parameter that allows the appearance of gaps in PB@ractically independent of this factor. Cylinders with
materials is the ratio between the dielectric constant irdiameterd = 1, 2, 3, and 4 cm, respectively, have been
the scatterers and in the host. For sound and elastjgarallelly arranged in square configurations with lattice
waves two parameters determine the gaps: the densigonstantz = 5.5 and 11 cm, respectively. For triangular
and the velocity ratio. A great effort has already beerconfigurations the lattice constant was 6.35 and 12.7 cm.
put in the theoretical study of these kinds of wavesThe change of the parameters,and d, allowed us to
[4—6]. To the best of our knowledge, the experimentalstudy filling fractions of volume occupied by cylinders
studies of band-gap materials based on classical waves am@nging from 0.006 up to 0.41 for the square symmetry,
mostly restricted to electromagnetic waves. Some of uand 0.005 up to 0.36 for triangular symmetry. We have
showed that some minimalist sculptures have propertieBuilt up sculptures with a finite numbe¥, of elements;
of sound-band-gap materials [7]. This work has stirredrom 100 to 500 elements. The results obtained show
interest [8,9] about whether this sort of structure presentthat the location of the Bragg peak for the diffraction
full band-gap effects. Also, experiments performed inis independent ofN, while the attenuation intensity
two-dimensional composite materials have been reporteithcreases withv. We use a sound source B & K 4204
that show localization of bending waves [10], and theand two microphones, one as a reference and the second
formation of ultrasonic full band gap [11]. one to detect the sound transmitted through the sculpture.

The goal of this Letter is the experimental study of A dual channel signal analyzer type B & K 2148 has been
the sound attenuation by two-dimensional (2D) periodicused through all the experiments.
distributions of sound scatters in air with square and trian- To perform the theoretical calculation we have consid-
gular arrangements. We also present a theoretical calcered infinite cylinders along theaxis. We have to solve
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the following eigenvalue equation for the pressure wavesis. In this method the pressure is expanded as a superpo-
p(r) in the 2D space = (x,y): sition of a finite numbeM of localized functionsp,(r):

Vp)\ _— 5, p(r) M ,

v < p(r) ) Y 2m)pr)’ (1 Pux(x,y) = Zbize""Rdn(r - R). (2)
wherew is the frequency of a harmonic eigenmode, and _ _’:1 . K _
¢(r) and p(r) are the sound velocity and the density, R defines the Bravais lattice of the system. Each localized
respectively, that are dependent on the position. function ¢;(r) is a pro;:luct of one-dimensional cubk

Since the systems are periodic, the Bloch's theoSPlines, i.e., piecewis€--smooth cubic polynomials [12].
rem asserts thap(r) is of the form p(r) = p,x(r) =  Plugging expansion (2) in the wave equation (1) produces
1k (r)e’™® T whereu,  (r) is a function with the same pe- the following matrix equation:
riodicity as the underlying lattice. The usual approach to + @2 _
solve this equation is the plane-wave (PW) method [8,9]. [AK) + 0, () EK)]b =0,
Here, we employ a novel variational method developed|byvhere the matrix elements are

3)

A(k) = f S0 A, dr + 3 MR [ SO A, — Rydr + 3 e R f $ir — R) A, dr. (4)
R R

Eijk) = f¢i(r)f¢j(r)dr + Zeik'R] ¢i(r)Epi(r — R)dr
R

+ Ze_ik'Rf ¢i(r — R)E ¢;(r)dr (5)
R

andb is a matrix column with the coefficients. ! [13] are used to solve Eq. (3). Notice that the method
It can be demonstrated that operatafs =V - (%), is variational, the coefficient$; being the variational

and F = % are self-adjoints. The resulting matrices parameters. Therefore a sufficient number of localized

are Hermitian and sparse, and specially designed routindgnctions must be employed to guarantee the convergence
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FIG. 1. Attenuation spectra for acoustic waves incident alond tkiedirection (i.e., alond100]) in different square arrangements

of rigid cylinders in air. The lattice constant is 11 cm. Each sculpture sample differs in the diaimetehe cylinders. v is

the filling fraction. The inset shows the comparison between the limits of the attenuation peak observed (full dots) and band gap
calculated (continuous lines).
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' long thel'M direction (i.e., along th€110] direction). On the
FIG. 2. Sound attenuation vs frequency for an arrangemen f oo
of rigid cylinders of diameter 3 cm in a square lattice with gontrary, mode 2 cannot be excited by such a wave and it is

periodicity 11 cm. The arrows indicate the limits of the gapsdeafto the incident sound.
calculated (right panel). Acoustic bands calculated by our ) )
variational method for the sculpture sample described abovéhis apparently strange behavior can be explained by the
(left panel). particular symmetry of the states. Physically, we can fig-
ure out this effect by looking at the pressure field pattern
of the numerical results. 100 functions are enough to gedf the eigenmodes plotted in Fig. 3. This figure shows
results comparable to those obtained by the PW methodhe two modes with lowest frequencies near Miepoint
In what follows we will describe the results obtained usingof the first BZ. While mode 1 has the proper symmetry
a velocity and density ratio of 17.2 and 2069, respectivelyio be excited by an incident plane wave traveling along
corresponding to stainless steel rigid cylinders in air. the[110] direction, mode 2 has the planes of equal phase
In Fig. 1 we show the attenuation spectra of differentalong the perpendicular direction and consequently can-
square lattice samples taken for acoustic waves With not be excited by such a wave. We call the latter mode
vectors along thel'X direction. The inset shows the deaf,in a manner similar to that reported by other authors
comparison between theoretical and experimental bander the case of two-dimensional PBG materials [14,15].
gap edges of the first acoustic gap at tiepoint of In effect, when we discard thdeaf bandsthe resulting
the Brillouin zone (BZ). The agreement between theoryeffective gap (1.98—-2.58 kHz) practically coincides with
and measurements is fairly good in view of the finitethe attenuation peak measured.
dimension of the sculpture samples. Notice that spectra of Fig. 2 do not coincide with
In Fig. 2 we plot the spectra for the case of cylindersprevious measurements reported by some of us in open
of diameter 3 cm in a square lattice with periodicity of air [7]. The sound could be reflected in the surrounding
11 cm and the corresponding band structure. AtXhe buildings. The resulting wave vector mixing produces a
point the first calculated gap appears in a frequency resound attenuation spectrukavector independent.
gion (1.37-1.64 kHz) in close agreement with the experi- For triangular arrangements, Table | shows the range
mental attenuation peak (1.38—1.70 kHz). Regarding thef frequencies at which the attenuation band appears
attenuation peak observed along th#& direction (1.97— along the I'X direction for all the systems analyzed.
2.56 kHz), the theory predicts the existence of two band#ttenuation peaks with bandwidths below 0.24 kHz are
in this range of frequencies (the second and third bandsot detected due to experimental accuracy. Along the
in Fig. 2) that would produce the transmission of soundI'M direction an effect, induced by the existence of deaf

TABLE I. Summary of results for the first attenuation gap along In¢ direction for an array of rigid cylinders in air with
triangular symmetry.

Lattice constant (cm)  Cylinder diameter (cm)Filling fraction (v)  X; — X, measured (kHz) X, — X, calculated (kHz)

6.35 1 0.022 Not observed 2.94 — 3.18
6.35 2 0.089 2.84 — 3.30 2.66 — 3.33
6.35 3 0.202 2.39 — 3.33 240 — 3.44
6.35 4 0.360 2.16 — 3.30 2.22 — 3.37
12.7 1 0.006 Not observed 1.52 — 1.56
12.7 2 0.022 Not observed 1.47 — 1.59
12.7 3 0.051 1.35 — 1.64 1.40 — 1.63
12.7 4 0.089 1.30 — 1.67 1.32 — 1.67
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