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A Monte Carlo scheme is proposed to obtain boundary conditions for the photon-diffusion equation.
For a turbid medium with interfaces to nonscattering media, we introduce an interpolated boundary,
at a distance of a few transport-mean-free paths from the physical boundary, which acts as the
secondary source emitting photons in various directions. The ratio of the fluence rate to the flux is
evaluated at both the interpolated and the physical boundaries. The derived boundary conditions are
compared with other works and are supported by an independent simulation of an effective source term.
[S0031-9007(98)06369-8]

PACS numbers: 42.25.Gy, 87.59.Wc
al
er
ld
s
of

ce.
n
n

se
d
rt
of

D.
le
D

ne
re

r.
ta

tic
lu-
ve
e a
the
er-
[8].
eds
ns
la-

el
er-
ed
of

ed

e

In the last decade, much attention has been focus
on the applications of far-red and near-infrared diffusing
light probes to biomedical investigations such as bloo
oximetry and direct imaging of breast tumors. Biologica
tissues have some interesting optical properties in t
band between about 600 and 1300 nm, which class
them as turbid media. Since their absorption coefficien
smad are always negligible compared with the scatterin
coefficientssmsd [1], most propagating photons experienc
a large number of scattering events before they finally a
absorbed or emerge from tissues through interfaces. In t
case, one can easily conclude the diffusion approximati
in regions not very close to a light source or boundar
which assumes that the radiance is primarily isotrop
except a small directional term representing the avera
energy flux. With this approximation, the transport theor
can be reduced to the diffusion equation [2], which ha
a close solution form in an infinite homogeneous turb
medium. However, in most practical situations one ha
to consider the boundary effects, which introduce muc
complexity.

Many researchers are devoted to finding an appropri
boundary condition using various methods [3–6]. A
oversimplified choice is to set the fluence rateF ­
0 at the physical surface, which obviously invalidate
the diffusion approximation and is totally unphysica
More sophisticated treatments include finding the rat
of fluence rate to its normal derivative at the boundar
or equivalently, a distance outside the turbid mediu
at which the diffusion part of the fluence rate can b
extrapolated to zero. In the presence of a planar absorb
(refractive index matches between the inside and t
outside of the turbid medium) interface, the solutio
of the Milne equation gives an extrapolation length o
about 0.7lp (lp is the note of the transport-mean-free
path) for isotropic scatters. When the refractive inde
mismatches between the turbid medium and the ou
medium (e.g., the air), one has to consider the effec
of internal reflection. That means the boundary is no
partially absorbing. Haskellet al. [3] have evaluated
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the ratio of the fluence rate to the flux at the physic
surface, following the partial-current treatment of Keijz
et al. [6]. They argued that Fresnel reflection wou
relieve violation of the diffusion approximation thu
warranting the expression of the radiance in terms
the fluence rate and the flux at the physical surfa
Their results rely importantly on the effective reflectio
coefficientReff, which was evaluated on the assumptio
that the radiance incident on the surface satisfiesP1
approximation. However, this could not be the ca
in many realistic conditions. Freund [4] also include
an effective reflection coefficient in both the transpo
theory and the Milne theory, then obtained two sets
approximate boundary conditions for 1D, 2D, and 3
He took the results from Milne theory as preferab
because it involves the photon density directly. For 3
models, the extrapolation lengths provided by the Mil
theory are very close to those given in the literatu
[3]. Nonetheless, Jianget al. [7] recently claimed that
the ratio determined experimentally is much smalle
Unfortunately, they did not give details of how their da
were obtained and even did not provide the value.

The Monte Carlo method stands alone when analy
approaches have difficulties in giving a satisfactory so
tion of a problem. It has been frequently used to sol
transport problems. Ordinary Monte Carlo models trac
huge number of photon trajectories from the source to
detector. Then a variety of optical properties charact
izing the light-propagation process can be estimated
To extract an appropriate boundary condition, one ne
to have a close look at the statistic behavior of photo
near the interface. So we developed a specified simu
tion scheme accounting for this end.

As shown in Fig. 1, a semi-infinite turbid medium mod
is considered with a planar interface to a nonscatt
ing medium, say, the air, and with light sources locat
deep inside the turbid medium. To take advantage
the diffusion approximation, we introduce an interpolat
boundary, a plane a fewlp’s away from the physical
boundary. It is in the thin slab restricted by both th
© 1998 The American Physical Society 5321
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FIG. 1. Geometry of a semi-infinite turbid medium with a
planar interface to the air. Two shaded planes, the physi
boundary (right) and the interpolated boundary (left), restri
a thin slab in which photon trajectories are traced. In o
simulation, all photons entering the slab are emitted by
secondary point source located at the origin, as illustrated
the three sample trajectories labeled 1, 2, and 3.

interpolated and the physical surfaces that photon traj
tories are traced. Each area element on the interpola
surface acts as a secondary source that emits photons
the slab. Then these photons are traced until they ev
tually leave the slab through either the interpolated or t
physical boundary. Since the thickness of the slab is rat
small, there are generally limited scattering events occ
ring for a single trajectory. So we can implement our sim
lation totally according to the physical picture withou
much simplification while keeping the computation tim
acceptable.

The origin of the coordinate system is located at the i
terpolated surface while the normal pointing outward c
incides with the polar axis. We use the polar angleu and
azimuthal anglew characterizing the flight direction of a
photon. For simplicity, the secondary source of an ar
element around the origin can be replaced by a point sou
at, say, the origin without any disadvantage. When a ph
ton is launched into the slab, its initial direction is ran
domly generated with a probability density determined b
the angular distribution of the radiance, which is unknow
at this moment. Nevertheless, the diffusion approximati
makes the situation better by writing down the radian
Ls$sd in terms of only the fluence rateF and the flux$J,

Ls$sd ­
1

4p
F 1

3
4p

$J ? $s , (1)

where $s is a unit vector, andF and $J are defined as the
following:
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F ­
Z Z

4p
Ls$sd dV , (2a)

$J ­
Z Z

4p
Ls$sd$s dV . (2b)

Without loss of generality, our model possesses tran
port symmetry along any direction in the interpolated
plane, so we can rewrite Eq. (1) as

Lsud ­
1

4p
F 1

3
4p

Jz cosu . (3)

Because the ratio ofJz to F needs to be evaluated in
the process of simulation, we do not know the probability
density related toLsud in advance. The following pro-
cedure is adopted to overcome this difficulty. At first,
a certain number of photons fly into the slab in random
directions with a probability densityWsud in accord with
uniform radiance. The photons finally returning back con
tribute to Lsud with py2 , u , p ; thus bothJz and F

obtain rough values at this time. These values, of cours
will not satisfy Eq. (3). Next, we need to launch addi-
tional photons gradually with theW sud modified by a
multiplication factor cosu, which comes from the flux
term, until Eq. (3) achieves self-consistency. Then th
ratio of the fluence rate to the flux at the interpolated
boundaryRint is eventually obtained together withRphy ,
the corresponding value at the physical boundary.

Modeling of the scattering process has been discuss
in the literature [9]. The path lengthl between two
subsequent scattering events is sampled according
Beer’s law, in terms of the scattering mean-free pat
length ls. It is well accepted that a single scattering
event possesses cylindrical symmetry with respect to th
incident direction, while the polar angle of scattering
us is determined by the light-scattering phase function
fsusd. For biological tissues, the Henyey-Greenstein
sH-Gd phase function is regarded as a good approximatio
of an actual phase function measured experimentally, so
is adopted in our simulations. The only parameter for thi
kind of phase function is an asymmetry factorg, which is
a characteristic anisotropy of scattering inus. In the case
of nonabsorbing media, the transport-mean-free path ca
be defined as

lp ­
ls

s1 2 gd
. (4)

We have made simulations for models with scattering pa
rameters in the range typically found in biological tissues
Table I provides results for media with no absorption
sma ­ 0d and with the refractive indexn ­ 1.33. Vari-
ous anisotropy factorg and thickness of the slabd in
the scale oflp have been used to yield the ratioFy3j $Jj at
both the interpolated and the physical surfaces. Bearing
mind that the flux is given by Fick’s law$J ­ 2lp=Fy3
and remains unchanged along thez axis, one can easily
figure out that the ratioFy3j $Jj will decrease by 1 with
dylp increasing by a unit in the area where the diffusion
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TABLE I. The ratio of the fluence rate to the flux and
corresponding extrapolation length for media withn ­ 1.33,
ma ­ 0.

Fy3j $Jj
Interpolated Physical

dylp g boundary boundary Dylp

0.7 2.12 6 0.01 2.12 6 0.01 1.12 6 0.01
0.8 2.06 6 0.01 2.54 6 0.01 1.06 6 0.011
0.9 2.00 6 0.01 3.60 6 0.01 1.00 6 0.01

0.7 3.12 6 0.02 2.12 6 0.04 1.12 6 0.02
0.8 3.06 6 0.02 2.49 6 0.05 1.06 6 0.022
0.9 3.00 6 0.02 3.62 6 0.07 1.00 6 0.02

0.7 4.13 6 0.02 2.19 6 0.04 1.13 6 0.02
0.8 4.07 6 0.02 2.51 6 0.05 1.07 6 0.023
0.9 4.03 6 0.02 3.67 6 0.07 1.03 6 0.02

0.7 5.16 6 0.03 2.15 6 0.04 1.16 6 0.03
0.8 5.13 6 0.03 2.51 6 0.05 1.13 6 0.034
0.9 5.03 6 0.03 3.61 6 0.07 1.03 6 0.03

theory is valid. The values for ratios at various inte
polated boundaries demonstrate that the diffusion the
keeps valid up to onelp inside the physical surface, a
shown in the third column of Table I. These values lea
to an extrapolation length which can act as an approp
ate boundary condition for solving the diffusion equa
tion inside the turbid medium correctly. For example,
medium withg ­ 0.9 and refractive indexn ­ 1.33 has
an extrapolation length1.0lp, obviously smaller than1.7lp

given in the literature [3]. In fact, the extrapolated leng
will increase gradually when the anisotropy factor ge
smaller and will be rather close to1.5lp with isotropic
scatters. This has never been indicated in former wor
For biomedical tissues, the typical value ofg is found be-
tween 0.7 and 0.95. So the correction we give is rema
able. The values for ratios listed in the fourth colum
show strong violation of the diffusion approximation. I
we extrapolate these values to zero, we will obtain mu
larger extrapolation lengths, as predicted by Freund [
Therefore, they are useless in this case. We also tes
many kinds of phase functions other than theH-G phase
function, but found trivial differences. Simulations fo
various refractive indexes indicate that the increasing s
face reflection will yield a larger extrapolation length, a
l

hile
TABLE II. Values of the dipole moments (DM) for various transport lengths (TL) in a mode
medium withg ­ 0.8, n ­ 1.33. The strength of incident light is set to unit. RS is the rel-
ative strength which represents the portion of photons remaining in the turbid medium, w
APD stands for the average penetration depth.

TLylp 50 75 100 125

RS 0.523 6 0.001 0.477 6 0.001 0.421 6 0.001 0.381 6 0.001

APDylp 2.540 6 0.004 3.206 6 0.004 3.768 6 0.004 4.288 6 0.004

DM: Dylp ­ 1.06 4.05 6 0.01 4.07 6 0.01 4.07 6 0.01 4.08 6 0.01
Dylp ­ 1.7 4.77 6 0.01 4.68 6 0.01 4.61 6 0.01 4.56 6 0.01
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one can expect intuitively. In the presence of a totally a
sorbing interface, our model gives an extrapolation leng
0.7lp, almost independent ofg.

Next, we provide an example to show the importan
of our findings. Let us still consider a semi-infinit
turbid medium. Now a light source is placed outsid
and is collimated to irradiate the surface perpendicular
Evaluation of the signals collected by a detector depend
lot on the modeling of the light source. It is well accepte
that any detector at a large separation from the sou
would see an isotropic point source located onelp into the
medium. To include the boundary effect, one can resor
the method of image. The original source can be repla
by an effective one with the dipole moment determin
by the boundary condition as in the following:

dipole moment­ slight source strengthd 3 s2lp 1 2Dd ,
(5)

where D is the extrapolation length. Since our mod
gives a much smallerD, the predicted dipole moments ge
smaller correspondingly. To validate our data, anoth
simulation has been conducted to estimate the effec
source term. We traced photons from the entrance po
to reach a given transport path length and obtain
corresponding spatial distribution. Then the center
mass (average penetration depth of photon) was evalua
Since a portion of photons would have escaped throu
the boundary, the longer the path we allow photons
transport, the fewer photons remained, and the dee
the center of mass located into the turbid mediu
However, a consistent dipole moment should be achiev
independent of the transport path length provided t
they are sufficiently large. This can be done on
with appropriate boundary conditions. Table II show
the results for a model medium with refractive inde
1.33 andg ­ 0.8. The dipole moments related to ou
extrapolation lengthsDylp ­ 1.06d are almost identical in
contrast to the constantly decreasing values derived w
the boundary conditionsDylp ­ 1.7d. Furthermore, they
are rather close to that predicted by Eq. (5).

In conclusion, our model provides a numerical meth
to find boundary conditions for the diffusion equatio
At the physical boundary, the fluence rate always dom
nates the flux when internal reflection exists. This fa
5323
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however, does not necessarily mean that the diffusi
approximation also survives there. Generally, the ratio
the physical surface and the related extrapolation length
too large to be appropriate. On the other hand, the ra
at an interpolated boundary leads to correct extrapolati
lengths for biomedical tissues. Also, our model makes
easy to estimate the angular distribution of the radian
emerged from a turbid medium.
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