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Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions
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Within a microcanonical scenario we numerically study Mrsized linear chain classical inertial
XY model including ferromagnetic couplings which decrease with distance™4s(a = 0). We
show that forN — o (thermodynamic limit): (i) The energy per particiey/N scales likeN* =
(N'=* — 1)/(1 — a); (i) The properly scaled maximum Lyapunov exponafit* tends, forEy /(NN*)
above a threshold, to zero for and only ter= 1. These results are analogous to those observed in low-
dimensional and in self-organized critical dissipative systems. This entire picture suggests a connection
with the nonextensive thermostatistics recently introduced by one of us. [S0031-9007(98)06314-5]

PACS numbers: 05.45.+b, 05.20.—y, 05.70.Ce, 64.60.Lx

Ergodicity is the basis of standard statistical mechanics Let us consider the following/ = 1 classical Hamil-
and thermodynamics. The typical situation is as followstonian (with periodic boundary conditions):
A large Hamiltonian system with nonlinear short-range 9 — 1 iLZ N 1 Z 1 — cog6; — 6;)
interactions has its microscopic dynamics characterized by T LT 9 L P&
a Lyapunov spectrum [1,2], whose largest value generi- a sl Y
cally remains strictly positiveven at the thermodynamic = Ex + Ep (a=0; Fij = 1,2,3,..), (_1)
limit (N — «). In other words, its sensitivity to the Where, without loss of generality, we have considered
initial conditions is the standard oneexponentigl ~ unit momenta of inertia and unit flrst-.nelghbor couphng
Consequently, the predominant microscopic dynamica$onstants, and wherés;,L;} are conjugate canonical
behavior is chaotic, which implies a quick occupation ofPairs. Since the model is essentially defined on an
practically all the allowed phase space. It is within thisV-Sized ring, every pair of (classical) spins determines,
scenario that Boltzmann-Gibbs (BG) statistics is founded@long the ring, two “distances” and not one: thewhich
thus yielding the usualextensivethermodynamics (en- We consider in the Hamiltonian is thainimal one. The
tropy, internal energy, free energy, and similar quantitiegnodel basically is a classical inertidly ferromagnet
areextensivdunctions of thentensiveexternal parameters (coupled rotators), and the limiting cases— - and
such as temperature, pressure, chemical potentials, agd= 0 correspond to the first-neighbor [1,16] and mean-
others). Itis along these lines that the beautiful formalisnfield-like models, respectively. The kinetic contribution
referred to as statistical mechanics has proved, for weffx contains N different terms; the potential oné&,
more than one century now, its power and usefulness inontainsN(N — 1)/2 different terms andﬁ,i is bounded
physics. However, more and more frequently nowadaysfom above by a value which, for the more general,
physical situations are identified and studied which badly/-dimensional, case is asymptotically proportional to
accommodate this viewpoint. Within a long list we y* = [N 4, pa-1me = NEEL gy the N o o
may mention Lévy anomalous diffusion (see [3,4] and . L e
references therein), stellar polytropes [5,6], anomalou§Mit, N* behaves, respectively, likei—=— (hence N
phonon-electron thermalization in ion-bombarded solidsor o = 0), InN, andﬁ%1 for0=a <d, a =d, and
[7], pure-electron plasma two-dimensional turbulence, - ;. ¢

[6,8], solar neutrinos [9], inverse bremsstrahlung in plasma |t js clear that the model is thermodynamicaditen-
[10], and cosmology [11]. The main purpose of the presentjve for o > 4 and nonextensiveotherwise. However,
effort is to illustrate one of the generic mechanisms thathis model can be written in an artificiallpseudoexten-
can consistently produce both dynamical and thermodysjye manner as follows:

namical anomalies; we refer to long-range interactions in 1 & 1 1 — cod6; — 6))

a conservative (Hamiltonian) system. As supplementary H' = > ZL,Z + N Z a

bonuses we shall (i) better understand the deep meaning =1 i#] ij

of the usual (artificially extensive) manner of presenting (a=0;r; =1,23,..). (2)
mean-field-like Hamiltonians; (ii) exhibit strong analogies This presentation should be considered as very artificial
with anomalous low-dimensional (edge of chaos) [12] asndeed, since it turns thmicroscopiccoupling constants
well as high-dimensional (self-organized criticality [13]) N dependent, i.e., modified throughacroscopicinfor-
[14] dissipative systems; (iii) discuss the connections withmation. At this (conceptually rather high) price, we ob-
the recently introduced nonextensive thermostatistics [15}ain a thermodynamically (pseudo) extensive quantity for
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all values ofa [17]. In particular, fora = 0, we ob- direction in the2N-dimensional phase space correspond-
tain the usual mean-field-like form, within which the cou- ing to the largest Lyapunov exponent and defifie=
pling constant is renormalized hy. This special case lim Az (0)—0 ﬁ;“_((f))), then we have¢ = expAN**r) for the
has been focused by several authors [18,19]. Recentlyamiltonian . It is, however, known that Lyapunov
Latora, Rapisarda, and Ruffo [19] obtained quite interestaynonents, due to the fact that they carry a physical
ing results which we shall connect to ours later on. dimension (inverse time), are not mathematically fully

Before going on let us exhibit a convenient connectiongefined in the sense that they are rditnensionless
between and . If we take into account that the quantities. Consequently, either we have to restrict

variables{L;} involve a first derivative with respectto time oyr considerations teatios of Lyapunov exponents, or
1, we immediately verify that we mustrefer them all to a unique conventional time
H =N"H (3)  unit. We shall adopt the latter. More precisely, we
where the time scales and ¢/ respectively, associated can rewritef as fo”ows:f = exq/\ﬁaxt) = exq[)tanaX/
with H and ' satisfy t/ = </N*¢. Consequently, if JN*][VN* 1)) = exp(AN"7). The practical use of this
we recall that by definition the Lyapunov exponents appeagransformation will become transparent on Fig. 1.
multiplied byz in all expressions concerning the sensitivity  The numerical simulation we have implemented in the
to the initial conditions, and note thafj™* and Ay are  present work is a standard molecular dynamics one within
the largest Lyapunov exponents, respectively, associatefimicrocanonical scenario (applied to Hamiltonizh as-

with HamiltoniansH andgi’, we have that sociated withN spins), this is to say at fixed total en-
Amax — AN /max ) ergy Ey. As initial conditions { = 0 values) we have
N JN* N used random values af; compatible with the expected

This relationship will prove generically helpful later on equilibrium distribution (which, for the relatively high en-
(and very particularly in order to compare our= 0  ergy region mainly focused in the present Letter, corre-
results with those presented in [19]). At the present stagsponds to a uniform distribution in the intervd, 27 1),

let us make clearer what we refer to. If we callthe and a “water-bag” distribution (i.e., a symmetric uniform
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FIG. 1. Evolution of,% as a function oft, for a ]fTN = 5 single realization for typical values dt, N) (the insets contain the
same examples as functions©®f We recall that, forw > 1, N* is asymptotically independent from, whereas, forx < 1, N*
strongly depends ol. It is remarkable that the dominating frequency, in theriable, of the fluctuations & independen¥ «,
whereas, in the variable, this occursnly for & > 1.
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distribution on a compact support, in such a way that thg* = Nl (through these transformations far = 0, we

total angular momentum equals zero) for §ig}. The precisely recover Fig. 1 of [19], for instance). These facts
time evolution has then followed Newton’s law (using are absolutely consistent with recent results presented in
a fourth-order symplectic algorithm [20] with a relative the literature for a variety of long-range interaction physi-
error in the total energy conservation less than*). A  cal situations [22] (Lennard-Jones-like fluids, magnets).
typical evolution ofE; is presented in Fig. 1. For each Let us summarize our main results. We have shown,
choice of (a, A’,S,G,.,N) we have typically run 100 realiza- for the particular classical magnetic model herein stud-
tions for small systems\ = 5, 10) down to a few for large ied, that the thermodynamics extensiveif and only if
systems § = 1000), and then averaged, over all the real- @ > 1 (short-range interactions); tm@nextensivityvhich
izations, the maximal Lyapunov exponents (calculated byppears fo0 = « = 1 (long-range interactions) is illus-
the method of Benettirt al. [21]). Typical results are trated, among others, by the fact that threcroscopic
presented in Figs. 2 and 3. The fact that, for fixedN),  energy quantity which remains well defined at the thermo-
the thermodynamic variable which generically emerges [aglynamic limit (V — =) is ,57” andnot the usual oneEjv”.
follows from our earlier considerations concerning Eq. (1)]The microscopicdynamical counterpart of this extensive-
is ,57” and not the usuﬂ}l one clearly reflects the possible nonextensive critical point is very enlightening, namely,
nonextensivity of the system: only far > 1 (short-range the fact that, above aafdependent) threshold o%
interactions) isfv—” the convenient variable. Also, since (approximately corresponding to the maximaXf** in
both 1= and £- remainfinite in the N — < limit, so does  the plots of Fig. 2), the largest properly scaled Lyapunov
,fT‘ which is« ’j{}—T hence, for = 1, the correct variable exponent (‘N. ) remains, at the' thermpdynamlc limit,
to describe, say, an equation of statesdthe usualnten- positive and finite for short-range interactions boilapses

sivevariableT but the present renormalized one [22], i.e.,to Zero (anq with It the entire Lyapunov spectrum) for
long-range interactiongsee Fig. 3). In other words, the

range of the interactions controls the type of sensitivity to
the initial conditions that &arge system will exhibit: strong

0.6 A chaos (exponential law) clearly is the case for short-range
xmax . (a) o o 188 interactions, and weak chaos (presumably power law) for
] XQ O 300 long-range interactions. The former will exhibit standard
0.4 2 ergodicity, whereas important anomalies are to be expected
. g O for the latter. It goes without saying that the present sce-
i G% KR ) nario is expected to hold for large classes of Hamiltonian
0.2 o & systems and not only for the system herein studied.
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FIG. 3. AN™ versusN (log-log plot) for typical values of
FIG. 2. The% dependence of the properly scaled Lyapunova and iTN = 5. The full lines are the best fittings with the

exponentAy™ for & = 1.5 (a) anda = 0.2 (b) and typical forms (a — »)/(N*)°. Consequently,Ai™ o N« where
values of N. As it is illustrated in Fig. 3, thaV — oo limit k() =01 —a)cfor0=a <1 and k(a) =0 for a > 1;
yields, for high enough energies (essentially above the pardor o = 1, A" is expected to vanish as a power bfIn N.

ferro phase transition critical value), a nonvanishing (vanishing)nset: k versusa (related random matrices arguments will be

AV for @ > 1(= 1). detailed elsewhere).
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