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Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions
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Within a microcanonical scenario we numerically study anN-sized linear chain classical inertial
XY model including ferromagnetic couplings which decrease with distance asr2a (a $ 0). We
show that forN ! ` (thermodynamic limit): (i) The energy per particleEN yN scales likeNp ;
sN12a 2 1dys1 2 ad; (ii) The properly scaled maximum Lyapunov exponentl̃

max
N tends, forENysNNpd

above a threshold, to zero for and only fora # 1. These results are analogous to those observed in low-
dimensional and in self-organized critical dissipative systems. This entire picture suggests a connection
with the nonextensive thermostatistics recently introduced by one of us. [S0031-9007(98)06314-5]

PACS numbers: 05.45.+b, 05.20.–y, 05.70.Ce, 64.60.Lx
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Ergodicity is the basis of standard statistical mechani
and thermodynamics. The typical situation is as follow
A large Hamiltonian system with nonlinear short-rang
interactions has its microscopic dynamics characterized
a Lyapunov spectrum [1,2], whose largest value gene
cally remains strictly positiveeven at the thermodynamic
limit (N ! `). In other words, its sensitivity to the
initial conditions is the standard one (exponential).
Consequently, the predominant microscopic dynamic
behavior is chaotic, which implies a quick occupation o
practically all the allowed phase space. It is within th
scenario that Boltzmann-Gibbs (BG) statistics is founde
thus yielding the usual,extensivethermodynamics (en-
tropy, internal energy, free energy, and similar quantiti
areextensivefunctions of theintensiveexternal parameters
such as temperature, pressure, chemical potentials,
others). It is along these lines that the beautiful formalis
referred to as statistical mechanics has proved, for w
more than one century now, its power and usefulness
physics. However, more and more frequently nowada
physical situations are identified and studied which bad
accommodate this viewpoint. Within a long list we
may mention Lévy anomalous diffusion (see [3,4] an
references therein), stellar polytropes [5,6], anomalo
phonon-electron thermalization in ion-bombarded soli
[7], pure-electron plasma two-dimensional turbulenc
[6,8], solar neutrinos [9], inverse bremsstrahlung in plasm
[10], and cosmology [11]. The main purpose of the prese
effort is to illustrate one of the generic mechanisms th
can consistently produce both dynamical and thermod
namical anomalies; we refer to long-range interactions
a conservative (Hamiltonian) system. As supplementa
bonuses we shall (i) better understand the deep mean
of the usual (artificially extensive) manner of presentin
mean-field-like Hamiltonians; (ii) exhibit strong analogie
with anomalous low-dimensional (edge of chaos) [12]
well as high-dimensional (self-organized criticality [13]
[14] dissipative systems; (iii) discuss the connections wi
the recently introduced nonextensive thermostatistics [1
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Let us consider the followingd  1 classical Hamil-
tonian (with periodic boundary conditions):

H 
1
2

NX
i1

L2
i 1

1
2

X
ifij

1 2 cossui 2 ujd
ra

ij

; Ek 1 Ep sa $ 0; rij  1, 2, 3, . . .d , (1)
where, without loss of generality, we have considere
unit momenta of inertia and unit first-neighbor coupling
constants, and wherehui , Lij are conjugate canonical
pairs. Since the model is essentially defined on a
N-sized ring, every pair of (classical) spins determine
along the ring, two “distances” and not one: therij which
we consider in the Hamiltonian is theminimal one. The
model basically is a classical inertialXY ferromagnet
(coupled rotators), and the limiting casesa ! ` and
a  0 correspond to the first-neighbor [1,16] and mean
field-like models, respectively. The kinetic contribution
Ek contains N different terms; the potential oneEp

containsNsN 2 1dy2 different terms and
Ep

N is bounded
from above by a value which, for the more genera
d-dimensional, case is asymptotically proportional t

Np ;
RN1yd

1 dr rd21r2a 
N12saydd21

12 a

d
. In the N ! `

limit, Np behaves, respectively, likeN
12saydd

12 a

d
(hence N

for a  0), ln N , and 1
a

d
21 for 0 # a , d, a  d, and

a . d.
It is clear that the model is thermodynamicallyexten-

sive for a . d and nonextensiveotherwise. However,
this model can be written in an artificiallypseudoexten-
sivemanner as follows:

H 0 
1
2

NX
i1

L2
i 1

1
2Np

X
ifij

1 2 cossui 2 ujd
ra

ij

sa $ 0; rij  1, 2, 3, . . .d . (2)
This presentation should be considered as very artific
indeed, since it turns themicroscopiccoupling constants
N dependent, i.e., modified throughmacroscopicinfor-
mation. At this (conceptually rather high) price, we ob
tain a thermodynamically (pseudo) extensive quantity fo
© 1998 The American Physical Society 5313
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all values ofa [17]. In particular, fora  0, we ob-
tain the usual mean-field-like form, within which the cou
pling constant is renormalized byN . This special case
has been focused by several authors [18,19]. Recen
Latora, Rapisarda, and Ruffo [19] obtained quite interes
ing results which we shall connect to ours later on.

Before going on let us exhibit a convenient connectio
betweenH and H 0. If we take into account that the
variableshLij involve a first derivative with respect to time
t, we immediately verify that

H  NpH 0, (3)
where the time scalest and t0 respectively, associated
with H and H 0 satisfy t0 

p
Np t. Consequently, if

we recall that by definition the Lyapunov exponents appe
multiplied byt in all expressions concerning the sensitivit
to the initial conditions, and note thatl

max
N andl

0max
N are

the largest Lyapunov exponents, respectively, associa
with HamiltoniansH andH 0, we have that

l̃max
N ;

l
max
Np
Np

 l0max
N . (4)

This relationship will prove generically helpful later on
(and very particularly in order to compare oura  0
results with those presented in [19]). At the present sta
let us make clearer what we refer to. If we callx the
FIG. 1. Evolution of Ek
EN

as a function oft, for a EN
NNp  5 single realization for typical values ofsa, Nd (the insets contain the

same examples as functions oft̃). We recall that, fora . 1, Np is asymptotically independent fromN , whereas, fora # 1, Np

strongly depends onN . It is remarkable that the dominating frequency, in thet̃ variable, of the fluctuations isN independent; a,
whereas, in thet variable, this occursonly for a . 1.
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direction in the2N-dimensional phase space correspon
ing to the largest Lyapunov exponent and definej ;
limDxs0d!0

Dxstd
Dxs0d , then we havej  expslmax

N td for the
HamiltonianH . It is, however, known that Lyapunov
exponents, due to the fact that they carry a physic
dimension (inverse time), are not mathematically ful
defined in the sense that they are notdimensionless
quantities. Consequently, either we have to restr
our considerations toratios of Lyapunov exponents, or
we must refer them all to a unique conventional tim
unit. We shall adopt the latter. More precisely, w
can rewritej as follows:j  expslmax

N td  expsflmax
N yp

Np g f
p

Np tgd ; expsl̃max
N t̃d. The practical use of this

transformation will become transparent on Fig. 1.
The numerical simulation we have implemented in th

present work is a standard molecular dynamics one wit
a microcanonical scenario (applied to HamiltonianH as-
sociated withN spins), this is to say at fixed total en
ergy EN . As initial conditions (t  0 values) we have
used random values ofui compatible with the expected
equilibrium distribution (which, for the relatively high en
ergy region mainly focused in the present Letter, corr
sponds to a uniform distribution in the intervalf0, 2pg),
and a “water-bag” distribution (i.e., a symmetric uniform
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distribution on a compact support, in such a way that th
total angular momentum equals zero) for thehLij. The
time evolution has then followed Newton’s law (using
a fourth-order symplectic algorithm [20] with a relative
error in the total energy conservation less than1024). A
typical evolution ofEk is presented in Fig. 1. For each
choice ofsa, EN

NNp , Nd we have typically run 100 realiza-
tions for small systems (N  5, 10) down to a few for large
systems (N  1000), and then averaged, over all the rea
izations, the maximal Lyapunov exponents (calculated
the method of Benettinet al. [21]). Typical results are
presented in Figs. 2 and 3. The fact that, for fixedsa, Nd,
the thermodynamic variable which generically emerges [
follows from our earlier considerations concerning Eq. (1
is EN

NNp and not the usualEN

N one clearly reflects the possible
nonextensivity of the system: only fora . 1 (short-range
interactions) isEN

N the convenient variable. Also, since
both

EN

NNp and Ek

EN
remainfinite in theN ! ` limit, so does

Ek

NNp which is~
kBT
Np ; hence, fora # 1, the correct variable

to describe, say, an equation of states isnot the usualinten-
sivevariableT but the present renormalized one [22], i.e

EN/NN*
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FIG. 2. The EN
NNp dependence of the properly scaled Lyapuno

exponentl̃max
N for a  1.5 (a) and a  0.2 (b) and typical

values ofN . As it is illustrated in Fig. 3, theN ! ` limit
yields, for high enough energies (essentially above the pa
ferro phase transition critical value), a nonvanishing (vanishin
l̃

max
N for a . 1s# 1d.
e

l-
by

as
)]

.,

v

ra-
g)

T p ; T
Np (through these transformations fora  0, we

precisely recover Fig. 1 of [19], for instance). These fact
are absolutely consistent with recent results presented
the literature for a variety of long-range interaction physi
cal situations [22] (Lennard-Jones-like fluids, magnets).

Let us summarize our main results. We have show
for the particular classical magnetic model herein stud
ied, that the thermodynamics isextensiveif and only if
a . 1 (short-range interactions); thenonextensivitywhich
appears for0 # a # 1 (long-range interactions) is illus-
trated, among others, by the fact that themacroscopic
energy quantity which remains well defined at the thermo
dynamic limit (N ! `) is EN

NNp andnot the usual oneEN

N .
The microscopicdynamical counterpart of this extensive-
nonextensive critical point is very enlightening, namely
the fact that, above a (a-dependent) threshold ofEN

NNp

(approximately corresponding to the maxima ofl̃
max
N in

the plots of Fig. 2), the largest properly scaled Lyapuno
exponent (̃lmax

N ) remains, at the thermodynamic limit,
positive and finite for short-range interactions butcollapses
to zero (and with it the entire Lyapunov spectrum) fo
long-range interactions(see Fig. 3). In other words, the
range of the interactions controls the type of sensitivity t
the initial conditions that alargesystem will exhibit: strong
chaos (exponential law) clearly is the case for short-rang
interactions, and weak chaos (presumably power law) f
long-range interactions. The former will exhibit standard
ergodicity, whereas important anomalies are to be expect
for the latter. It goes without saying that the present sc
nario is expected to hold for large classes of Hamiltonia
systems and not only for the system herein studied.

~
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FIG. 3. l̃
max
N versus N (log-log plot) for typical values of

a and EN
NNp  5. The full lines are the best fittings with the

forms sa 2
b
N dysNpdc. Consequently,l̃max

N ~ N2ksad where
ksad  s1 2 ad c for 0 # a , 1 and ksad  0 for a . 1;
for a  1, l̃

max
N is expected to vanish as a power of1y ln N.

Inset: k versusa (related random matrices arguments will be
detailed elsewhere).
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To discuss the present (as well as other) anomalies
generalized statistical formalism has been advanced a
developed during the last few years [15]. The genera
ization essentially consists in considering the followin

entropic form: Sq 
12

P
i
p

q
i

q21 s
P

i pi  1; q [ R char-
acterizes the degree of nonextensivity), which recove
the usual BG entropy (2

P
i pi ln pi) in the limit q ! 1;

SqsA 1 Bd  SqsAd 1 SqsBd 1 s1 2 qdSqsAdSqsBd, if
A and B are independentsystems in the sense that the
probabilities ofA 1 B factorize into those ofA and of
B. A wealth of works has shown that the above nonex
tensive thermostatistical prescription retains much of th
formal structure of the standard theory such as Legend
thermodynamic structure,H theorem, Onsager reciprocity
theorem, Kramers and Wannier relations, Bogolyubo
inequality, and thermodynamic stability, among other
[15,23]. This formalism has proved to correctly describ
a variety ofdissipativenonlinear systems (both low [12]
and high [14] dimensional cases, respectively, relate
to the edge of chaos and to self-organized criticality
Details can be seen in [12], but, in particular, it has bee
argued that the solution ofdjydt  lqjq is given by
jstd  f1 1 s1 2 qdlqtg1ys12qd. This solution recovers
the standard,exponentiallaw in the limit q ! 1 (exten-
sive case), but it implies apower-law sensitivity when
nonextensivity takes place (q fi 1). Several examples of
q fi 1 situations have been exhibited [12] (logisticlike
periodic, and circular maps as well as in the Bak-Snepp
model for biological evolution). The attractors toward
which the systems evolve are complex (multifracta
ones, a fact which implies anomalies in what concern
the validity of standard ergodicity. The present wor
provides evidence that Hamiltonian (i.e., conservative
long-range interaction systems might be further exampl
of nonextensivity along the above lines (q fi 1).
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