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Reabsorption of Light by Trapped Atoms
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We investigate the effect of reabsorption of photons in laser cooling of trapped atoms, in view of
a possible achievement of Bose-Einstein condensation by purely optical means. Reabsorption can be
strongly suppressed by using strongly deformed traps and by reducing the fluorescence rate to a value
smaller than the trap frequencies. [S0031-9007(98)06386-8]

PACS numbers: 32.80.Pj, 03.75.Fi, 32.70.Jz, 42.50.Fx

Light reabsorption is believed to be the major obstacle irrelative role of reabsorption is then significantly reduced.
the way of achieving low temperature, high density, laselt is, however, unclear how this result scales for a large
cooled, trapped atoms [1—4]. This is one of the main reanumber of atoms, as the atomic density becomes rapidly
sons why in order to obtain Bose-Einstein condensatiohigh in such a strongly confining trap. A third possibility is
(BEC) of dilute atomic gases [5] additional cooling meth-thefestina lentescenario, where the fluorescence rhtes
ods, such as evaporative and sympathetic cooling, hawvauch smaller tham [13]. The motion of the atom during
to be used [5,6]. Nevertheless, the achievement of Boséhe reabsorption process can then no longer be neglected.
Einstein condensation via all-optical means remains as on&s is shown in Ref. [13], the reabsorption processes in
of the challenges of atomic physics, and several experiwhich the atoms change energy are suppressed, which
mental groups are pursuing this goal [7-9]. diminishes the heating effects fdf < . In actual

There are several laser cooling schemes that allow us tBaman cooling experiment$; is the pumping rate and
reach low temperatures, even below the photon recoil limitan be adjusted at will. If, howevdr, becomes too small,
[10,11]. These schemes exploit single atom “dark statesthe cooling process becomes so slow that trap losses and
i.e., states which cannot be excited by the cooling laserground state collisions become problematic. Therefore, in
but can be populated via spontaneous emission. Howevesrder to evaluate to what extent thesstina lenteegime can
it is not clear whether these schemes operate at the higbad to high phase space densities, a quantitative analysis
densities required for BEC. The dark states are not darkf the heating effects as a function Bfis crucial.
with respect to the photons spontaneously emitted by other In this Letter we derive a formula for the energy:?®
atoms. Thus, at sufficiently high densities, dark stataeabsorbed by the trapped atoms which is valid for all
cooling may cease to work, since each reabsorption cavalues of I'/w and arbitrary trap geometries. As we
take one atom out of the dark state and can add, on averageill show, only whenT > w, AE factorizes into a
one recoil energy to the atoms. geometrical form factor and a cross section, and therefore

Usually, one estimates the probability of absorption ofthe geometrical and dynamical effects can be separately
a fluorescence photon in terms of the absorption crossnderstood. Our formula is correct in the temperature
sectiono. In free space and for an atom at rest (i.e.,regime where bosonic effects can be neglectedkgdd>
neglecting Doppler effecty is of the order ofl /k5, where  hw. Furthermore, the formula is derived in the low
ko is the optical wave vector. This result holds even ifdensity limit where the mean spacing between the atoms is
the fluorescence photon is far from resonance with thenuch larger thari/ky. These regimes correspond to the
bare atom [2]: The atoms are actually dressed by the lasaituation of all present experiments in laser cooling.
and their fluorescence frequency matches the dressedin the limit of optically thin samples, we can restrict
states’ energy difference. According to the simple modeburselves to a study of reabsorption between two atoms
of Ref. [2], such a high value af excludes the possibility only. We expect that the results can be directly extended
of reaching Bose-Einstein condensation with pure laseto the optically thick case by summing the scattering events
cooling in a trap of frequencw smaller than the recoil between pairs of atoms as in the derivation of Beer's law
frequency,wg = iki/m, wherem is the atomic mass. [14]. Therefore we consider two distinguishable atoms,

Several strategies have been proposed to circumvent thésd B, confined in a harmonic trap. In the simplest model
difficulty. One can use strongly anisotropic traps, eitherof Raman cooling each atom has two internal ground state
cigar or disk shaped, so that only the photons emitted alonigvels:|g) and|e) (Fig. 1). The atoms are transferred from
the axis of slow harmonic motion can be reabsorbed. Ndg) to |e) in a velocity selective nondissipative way, and
detailed quantitative analysis of this idea has been giverepumped fromle) to |g) through a spontaneous Raman
so far. One can also use a trap with a frequesaacy wg;  transition. We concentrate here on the latter process, and
a two atom calculation [12] has shown indeed that theconsider the situation in which initially the atomis in
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|g)a, the atomB is in |e)p, and their motional degrees of (a) (b)

freedom are described by a Boltzmann distribution with o

temperaturel’. As shown, for instance, in Ref. [15], the spontaneous
dynamics of the density operator is described by the master emission
equation .
reabsorption
p==Lop+ Lip=(Ly+ LS)p + (S + T)p. 9)
1) FIG. 1. Diagrammatic representation of the considered situa-
The single atom terms are given by £ A, B) tion: (a) Two atomsA and B in a harmonic trap; (b) atomic

internal structure.
N — 1 s
Lop ih [Hho, p] Our aim is to solve the master equation (1) far> 1,
T where both atoms are in the internal stateand then cal-
- 7(|e>x<e|p + ple)s(el) + Jyp. (2) culate the increase of motional enerdyE with respect
to the initial state. In the considered regime, the ther-
and the harmonic oscillator Hamiltonian is mal energykgT is of the order of the recoil energy and
- | is much larger than thé&w;'s; in this casekoAr > 1,
Hpyo = pr, Em(w)%XZ + w§y2 + wfzz), (3) whereAr is the typical distance between the atoms. As

2m the matrix elements off; for two atoms separated by
with 5 and? = (x, y, z) being the momentum and position 74z Scale asl/korsp [since i and J, are proportional
operators. The superoperator to G(rap) and G;(7ap), respectively], we treat this inter-

o action term perturbatively which amounts to expanding

dQ  _i i - () F i iesp(r) = pO@) + pPD(1) + p®(r) + We

s, =1 [ BE-ik(@)F, + ik (g maserles,o(t p o P .

Jor [ 47 ¢ Ts PIs € “) find p((r = +%) = 0 and a nonvanishing expression for
. o @(r = +). The energy increaskE = Tr{H[p(®) —

descrltles spontangous emission of a photon +of Wa\//%(o)]} is expanded aAE® + AE® + . We find

vector ko(Q)), with |ko(Q)| = ko = wo/c. Here,o] =

AEY = fiwg/2 = h2k§/(2m) = Eg, Where E is the
0 r -|- : ) . i . 0 . R.! R
le)s(gl = (o;)T. The interactions terms in Eq. (1) are o.qil energy. The first correction is

given by AT
r AE® = ——Im((Gr — Gr)G) + ExIm(G,G), (6)
Sip=—i TG(”AB) (005 + 0,08)p + Hec., 2
where the expectation valug..) is taken with respect
_ dQ Q) 1 ike(Q)F to the Boltzmann distributions for both atoms. We have
Jip =T ax ¢ TaPIpe +He, denotedG = G(r,p) and defined
where Fap = 74 — 7, and G(7) = — explikor)/kor = Cr, = Ffwd ~Trg. 7 7
Gr(7) + iG;(7¥) has the Fourier representation: R 0 e ril7as(7)], @
A 1 A dQ i andip(r) = el HwTH)TE, Lo ~ilHi +Hi)T - |n the consid-
Gr(F) = = — f dAP— | S~ "7, (88)  ered limit kyAr 3> 1, Eq. (6) can be further simplified
and we get
- O i)
G,(F) = —] Z—e k(@7 (5b) AE = Ex(1 +d + p), (8a)
v -
d = =(I'/wr) IN{GRGr), (8b)

Gy is the dipole-dipole interaction potential adg} is a _

modification to the fluorescence rate. We have used a p = Re&GIG)). (8c)
scalar model for the electromagnetic field, which gives theHered is the energy change due to the dipole-dipole inter-
correct far zone dipole-dipole interaction but fails at shortaction potentialGg and p is the probability of reabsorp-
range ¢ = 1/ky). We refer to [16] for a discussion of the tion of the fluorescence photon.

short range effects. | We perform the averages using Egs. (5a) and (5b):
* dQ dQ/ 1) 1
~-TIt R ! Qi 2A 21,2 ” /
= - E = n;n! ] X - E 2Mn? + n? — 2n;n! .
)4 Ffo dte f 49 d co 2w nin; smw,t) ex;{ > i=x,y,zk0Arl [nj + n;” — 2n;n; Cos(w,t)]j|,
)

and a similar expression holds fér We have introduced unit vectoiis= EO(Q)/kO, n = IQO(Q’)/kO. The quantities
Ar; = N/ZkBT/mwiz1 i = x,y,z are the rms coordinates for the relative motion between the two atoms. We now
discuss two different regimes depending on the ratid' ob the trap frequencies.
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(i) Free space limit—In the limitI" > w;,i = x,y,z,  Figure 3 shows that by deforming the trap the reabsorption
the atoms do not have time to oscillate in the trap. Theprobability decreases. Note, however, that deformations of
integral over solid angles and time in Eg. (9) can bethe orderw,/w, = 20 (disk shape) and,/w, = 1/30
performed using the Laplace method. Only the saddlécigar shape) are needed to obtain a modest 50% decrease.

points witht = 0 contribute, ad" is large, and we get (i) Festina lente—This limit is defined byl' = w;
| and is more difficult to analyze because atoms have time
AE®? = Ejg 9E <T> (10) to oscillate before undergoing spontaneous emission. In
T \Tap the case of apherically symmetric trapye include in the
whereo; is the cross section for energy reabsorption: ~ Laplace method the saddle points= 0,7 /w,...; they
are such that; = *n;, i = x,y,z, wheren can take any

op = 4_727 Re{@ exp(gz)erfc({)] (11) Vvalue on the sphere. We find that the form of Eq. (10) is
ko 20p preserved with a cross section now depending on the trap
frequencyw. As in Eq. (12), only the contribution gf

In this expression, erfe) denotes the complementary t0 AE® is relevant:

error function, and’ = (I' + in)/\/wa,wherewD =

kowjAr; = koAv is a j-independent Doppler width. In A7 Nz ) 5
Eqg. (10) the dynamical effects inherent 4g: are nicely O = 7% exp({”)
. . . k() 2\/5 wp
separated from the geometrical effects contained in the )
(1/rp) factor. X [erfc(g) + F/—” (13)
Let us discuss the dynamical part first. In the limit em /e —1

I'> wp, the atomic mot_lon IS negllg|blg amzlg reduces A similar formula applies to the case of tlasymmetric

LO the resonar;]t absc|>|rpt|ohn crohss [s)ecmlm/ko_.mAs hr trap with “commensurable” frequenciesith w; = @gq;,
eqomdes hmuc sma;) er t Sn tbed Oplp erhW| ? taf where the integers; = koAr; have no (trivial) common

emitted photon can be reabsorbed only when the &lom 5.6y The reabsorption probability is then dominated

is in a narrow velocity class of width /ky. In effect, the by contributions of saddle points with= 0, /@

cross section decreases linearly with andn, = *+n;, n taking any value on the sphere. The
4w J7T w20 12 porresponding formula is obt'ained from (13) by replac-
OE K2 22 wp : (12) ing w by @ in the last term in the square brackets. In

the limit of a vanishingl’, o¢ tends to a finite value

In this limit we note thatAE(z) = Ejp is dominated (477-(;)/\/% ka%) exq—wlze/zwlz)). This is illustrated in

by the reabsorption process [i.e,= O(I'*)]. The full  Fig. 4, where the two upper curves represent the reabsorp-

dependence af with I is plotted in Fig. 2. tion probability calculated numerically from Eq. (9) (solid
We now turn to the influence of the trap geometry.jine) and using the saddle point method (diamonds) for

Restricting to cylindrically symmetric traps around the , = 0.06wg, w, = 0.08wg, andw, = 0.1wg.

z axis, we deform the trap keeping its mean oscillation The lower curve in Fig. 4 corresponds to the case of

frequency(w,w,w.)"/* constant; the ratio oRE® for  “incommensurable” frequenciesyhich is the situation in

the deformed trap to thAE® for the isotropic trap is a real experiment. Here;2% random variations of the

a function of w,/w, that can be calculated analytically. frequencies have been done, so that= 0.061793wg,
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FIG. 2. Cross section; as a function off’ for wp = 10w3.  FIG. 3. Ratio of AE®? for a cylindrically symmetric trap to
Short-dashed (long-dashed) line represents the limiting caseSE® for an isotropic trap as a function @f,/w,, for a fixed
I' > wp (I' < wp) discussed in the text. mean oscillation frequenciw, o, w,)!/>.
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6x10™® and deforming the trap. In tHestina lentaegime the re-
absorption probability scales dg(koAr)? for traps with
commensurable frequencies. For incommensurable trap
frequencies one can reduce this probability even further.
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