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We investigate the effect of reabsorption of photons in laser cooling of trapped atoms, in view o
a possible achievement of Bose-Einstein condensation by purely optical means. Reabsorption can
strongly suppressed by using strongly deformed traps and by reducing the fluorescence rate to a va
smaller than the trap frequencies. [S0031-9007(98)06386-8]
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Light reabsorption is believed to be the major obstacle
the way of achieving low temperature, high density, las
cooled, trapped atoms [1–4]. This is one of the main re
sons why in order to obtain Bose-Einstein condensati
(BEC) of dilute atomic gases [5] additional cooling meth
ods, such as evaporative and sympathetic cooling, ha
to be used [5,6]. Nevertheless, the achievement of Bo
Einstein condensation via all-optical means remains as o
of the challenges of atomic physics, and several expe
mental groups are pursuing this goal [7–9].

There are several laser cooling schemes that allow us
reach low temperatures, even below the photon recoil lim
[10,11]. These schemes exploit single atom “dark state
i.e., states which cannot be excited by the cooling las
but can be populated via spontaneous emission. Howev
it is not clear whether these schemes operate at the h
densities required for BEC. The dark states are not da
with respect to the photons spontaneously emitted by ot
atoms. Thus, at sufficiently high densities, dark sta
cooling may cease to work, since each reabsorption c
take one atom out of the dark state and can add, on avera
one recoil energy to the atoms.

Usually, one estimates the probability of absorption
a fluorescence photon in terms of the absorption cro
sections. In free space and for an atom at rest (i.e
neglecting Doppler effect)s is of the order of1yk2

0 , where
k0 is the optical wave vector. This result holds even
the fluorescence photon is far from resonance with t
bare atom [2]: The atoms are actually dressed by the la
and their fluorescence frequency matches the dres
states’ energy difference. According to the simple mod
of Ref. [2], such a high value ofs excludes the possibility
of reaching Bose-Einstein condensation with pure las
cooling in a trap of frequencyv smaller than the recoil
frequency,vR ­ h̄k2

0ym, wherem is the atomic mass.
Several strategies have been proposed to circumvent

difficulty. One can use strongly anisotropic traps, eith
cigar or disk shaped, so that only the photons emitted alo
the axis of slow harmonic motion can be reabsorbed. N
detailed quantitative analysis of this idea has been giv
so far. One can also use a trap with a frequencyv . vR ;
a two atom calculation [12] has shown indeed that th
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relative role of reabsorption is then significantly reduced
It is, however, unclear how this result scales for a large
number of atoms, as the atomic density becomes rapid
high in such a strongly confining trap. A third possibility is
the festina lentescenario, where the fluorescence rateG is
much smaller thanv [13]. The motion of the atom during
the reabsorption process can then no longer be neglecte
As is shown in Ref. [13], the reabsorption processes i
which the atoms change energy are suppressed, whi
diminishes the heating effects forG ø v. In actual
Raman cooling experiments,G is the pumping rate and
can be adjusted at will. If, however,G becomes too small,
the cooling process becomes so slow that trap losses a
ground state collisions become problematic. Therefore, i
order to evaluate to what extent thefestina lenteregime can
lead to high phase space densities, a quantitative analys
of the heating effects as a function ofG is crucial.

In this Letter we derive a formula for the energyDEs2d

reabsorbed by the trapped atoms which is valid for al
values of Gyv and arbitrary trap geometries. As we
will show, only when G ¿ v, DE factorizes into a
geometrical form factor and a cross section, and therefor
the geometrical and dynamical effects can be separate
understood. Our formula is correct in the temperature
regime where bosonic effects can be neglected andkBT ¿
h̄v. Furthermore, the formula is derived in the low
density limit where the mean spacing between the atoms
much larger than1yk0. These regimes correspond to the
situation of all present experiments in laser cooling.

In the limit of optically thin samples, we can restrict
ourselves to a study of reabsorption between two atom
only. We expect that the results can be directly extende
to the optically thick case by summing the scattering event
between pairs of atoms as in the derivation of Beer’s law
[14]. Therefore we consider two distinguishable atoms,A
andB, confined in a harmonic trap. In the simplest mode
of Raman cooling each atom has two internal ground sta
levels:jgl andjel (Fig. 1). The atoms are transferred from
jgl to jel in a velocity selective nondissipative way, and
repumped fromjel to jgl through a spontaneous Raman
transition. We concentrate here on the latter process, an
consider the situation in which initially the atomA is in
© 1998 The American Physical Society 5305
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jglA, the atomB is in jelB, and their motional degrees o
freedom are described by a Boltzmann distribution wi
temperatureT . As shown, for instance, in Ref. [15], the
dynamics of the density operator is described by the mas
equation

Ùr ­ L0r 1 L1r ­ sL A
0 1 L B

0 dr 1 sS1 1 J1dr .
(1)

The single atom terms are given by (s ­ A, B)

L s
0 r ­

1
ih̄

fHs
ho, rg

2
G

2
sjelskejr 1 rjelskejd 1 J s

0 r , (2)

and the harmonic oscillator Hamiltonian is

Hho ­
$p2

2m
1

1
2

msv2
xx2 1 v2

yy2 1 v2
z z2d , (3)

with $p and$r ­ sx, y, zd being the momentum and position
operators. The superoperator

J s
0 r ­ G

Z dV

4p
e2i $k0sVd?$rs s2

s rs1
s ei $k0sVd?$rs (4)

describes spontaneous emission of a photon of wa
vector $k0sVd, with j $k0sVdj ­ k0 ; v0yc. Here,s1

s ­
jelskgj ­ ss2

s dy. The interactions terms in Eq. (1) ar
given by

S1r ­ 2i
G

2
Gs$rABd ss1

A s2
B 1 s2

A s1
B dr 1 H.c.,

J1r ­ G
Z dV

4p
e2i $k0sVd?$rAs2

A rs1
B ei $k0sVd?$rB 1 H.c.,

where $rAB ­ $rA 2 $rB, and Gs $rd ­ 2 expsik0rdyk0r ­
GRs$rd 1 iGIs$rd has the Fourier representation:

GRs$rd ­ 2
1
p

Z
dl P

l

l 2 1

Z dV

4p
e2il$k0sVd?$r , (5a)

GI s$rd ­ 2
Z dV

4p
e2i $k0sVd?$r . (5b)

GR is the dipole-dipole interaction potential andGI is a
modification to the fluorescence rate. We have used
scalar model for the electromagnetic field, which gives t
correct far zone dipole-dipole interaction but fails at sho
range (r # 1yk0). We refer to [16] for a discussion of the
short range effects.
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FIG. 1. Diagrammatic representation of the considered situ
tion: (a) Two atomsA and B in a harmonic trap; (b) atomic
internal structure.

Our aim is to solve the master equation (1) forGt ¿ 1,
where both atoms are in the internal stateg, and then cal-
culate the increase of motional energyDE with respect
to the initial state. In the considered regime, the the
mal energykBT is of the order of the recoil energy and
is much larger than thēhvi ’s; in this casek0Dr ¿ 1,
whereDr is the typical distance between the atoms. A
the matrix elements ofL1 for two atoms separated by
$rAB scale as1yk0rAB [since S1 and J1 are proportional
to Gs$rABd and GI s$rABd, respectively], we treat this inter-
action term perturbatively which amounts to expandingr

in a series:rstd ­ rs0dstd 1 rs1dstd 1 rs2dstd 1 . . . . We
find rs1dst ­ 1`d ­ 0 and a nonvanishing expression fo
rs2dst ­ 1`d. The energy increaseDE ­ TrhHfrs`d 2

rs0dgj is expanded asDEs0d 1 DEs2d 1 . . . . We find
DEs0d ­ h̄vRy2 ­ h̄2k2

0ys2md ­ ER, where ER is the
recoil energy. The first correction is

DEs2d ­ 2
h̄G

2
ImksḠR 2 GRdGl 1 ER ImkḠIGl , (6)

where the expectation valuek. . .l is taken with respect
to the Boltzmann distributions for both atoms. We hav
denotedG ­ Gs$rABd and defined

ḠR,I ; G
Z `

0
dt e2GtGR,If$rABstdg , (7)

and $rABstd ­ eisHA
ho1HB

hodt $rABe2isHA
ho1HB

hodt . In the consid-
ered limit k0Dr ¿ 1, Eq. (6) can be further simplified
and we get

DE . ERs1 1 d 1 pd , (8a)

d ­ 2sGyvRd ImkḠRGRl , (8b)

p ­ RekḠIGIl . (8c)

Hered is the energy change due to the dipole-dipole inte
action potentialGR and p is the probability of reabsorp-
tion of the fluorescence photon.

We perform the averages using Eqs. (5a) and (5b):
now
p ­ G
Z `

0
dt e2Gt

Z dV

4p

dV0

4p
cos

√ X
i­x,y,z

vR

vi
nin

0
i sinvit

!
3 exp

"
2

1
2

X
i­x,y,z

k2
0Dr2

i fn2
i 1 n02

i 2 2nin
0
i cossvi tdg

#
,

(9)

and a similar expression holds ford. We have introduced unit vectors$n ­ $k0sVdyk0, $n0 ­ $k0sV0dyk0. The quantities
Dri ­

p
2kBTymv

2
i , i ­ x, y, z are the rms coordinates for the relative motion between the two atoms. We

discuss two different regimes depending on the ratio ofG to the trap frequencies.
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(i) Free space limit.—In the limit G ¿ vi , i ­ x, y, z,
the atoms do not have time to oscillate in the trap. T
integral over solid angles and time in Eq. (9) can b
performed using the Laplace method. Only the sadd
points witht ­ 0 contribute, asG is large, and we get

DEs2d ­ ER
sE

4p

ø
1

r2
AB

¿
, (10)

wheresE is the cross section for energy reabsorption:

sE ­
4p

k2
0

Re

∑
i
p

p Gz p

2vR
expsz 2derfcsz d

∏
. (11)

In this expression, erfcs?d denotes the complementar
error function, andz ­ sG 1 ivRdy

p
2 vD, wherevD ;

k0vjDrj ­ k0Dy is a j-independent Doppler width. In
Eq. (10) the dynamical effects inherent tosE are nicely
separated from the geometrical effects contained in
k1yr2

ABl factor.
Let us discuss the dynamical part first. In the lim

G ¿ vD, the atomic motion is negligible andsE reduces
to the resonant absorption cross section4pyk2

0. As G

becomes much smaller than the Doppler widthvD the
emitted photon can be reabsorbed only when the atomA
is in a narrow velocity class of widthGyk0. In effect, the
cross section decreases linearly withG:

sE ,
4p

k2
0

p
p G

2
p

2 vD
e2v

2
Ry2v

2
D . (12)

In this limit we note thatDEs2d ­ ERp is dominated
by the reabsorption process [i.e.,d ­ OsG2d]. The full
dependence ofsE with G is plotted in Fig. 2.

We now turn to the influence of the trap geometr
Restricting to cylindrically symmetric traps around th
z axis, we deform the trap keeping its mean oscillatio
frequencysvxvyvzd1y3 constant; the ratio ofDEs2d for
the deformed trap to theDEs2d for the isotropic trap is
a function ofvzyvx that can be calculated analytically

FIG. 2. Cross sectionsE as a function ofG for v
2
D ­ 10v

2
R.

Short-dashed (long-dashed) line represents the limiting ca
G ¿ vD (G ø vD) discussed in the text.
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Figure 3 shows that by deforming the trap the reabsorptio
probability decreases. Note, however, that deformations
the ordervzyvx ­ 20 (disk shape) andvzyvx ­ 1y30
(cigar shape) are needed to obtain a modest 50% decrea

(ii ) Festina lente.—This limit is defined byG # vi

and is more difficult to analyze because atoms have tim
to oscillate before undergoing spontaneous emission.
the case of aspherically symmetric trap,we include in the
Laplace method the saddle pointst ­ 0, pyv, . . .; they
are such thatn0

i ­ 6ni , i ­ x, y, z, where$n can take any
value on the sphere. We find that the form of Eq. (10) i
preserved with a cross section now depending on the tr
frequencyv. As in Eq. (12), only the contribution ofp
to DEs2d is relevant:

sE ­
4p

k2
0

Re

Ω p
p G

2
p

2 vD
expsz 2d

3

∑
erfcsz d 1

2
epGyv 2 1

∏æ
. (13)

A similar formula applies to the case of theasymmetric
trap with “commensurable” frequencies,with vi ­ ṽqi ,
where the integersqi # k0Dri have no (trivial) common
factors. The reabsorption probability is then dominate
by contributions of saddle points witht ­ 0, pyṽ, . . .,
and n0

i ­ 6ni, $n taking any value on the sphere. The
corresponding formula is obtained from (13) by replac
ing v by ṽ in the last term in the square brackets. In
the limit of a vanishingG, sE tends to a finite value
s4pṽy

p
2p vDk2

0d exps2v
2
Ry2v

2
Dd. This is illustrated in

Fig. 4, where the two upper curves represent the reabso
tion probability calculated numerically from Eq. (9) (solid
line) and using the saddle point method (diamonds) fo
vx ­ 0.06vR , vy ­ 0.08vR , andvz ­ 0.1vR .

The lower curve in Fig. 4 corresponds to the case o
“incommensurable” frequencies,which is the situation in
a real experiment. Here,,2% random variations of the
frequencies have been done, so thatvx ­ 0.061793vR,

FIG. 3. Ratio ofDEs2d for a cylindrically symmetric trap to
DEs2d for an isotropic trap as a function ofvzyvx , for a fixed
mean oscillation frequencysvxvyvzd1y3.
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FIG. 4. Reabsorption probability as a function ofG for v
2
D ­

10v
2
R in an asymmetric trap with commensurable (upper sol

line) and incommensurable (lower solid line) frequencies (s
text). Diamonds represent the result of the analytic formul
Eq. (13).

vy ­ 0.079272vR, and vz ­ 0.097989vR . Even such
a small frequency variation changes the results apprec
bly and in a favorable way for smallG. For the incom-
mensurable case we have obtained an analytical resul
the limit G ø vi . The dominant contribution then comes
from $n . $n0 close to an eigenaxis of the trap:

p ,

s
8

p5

s
P

i Drid
k5

0s
Q

i Drid2
ln2

"
k0

√Y
i

Dri

!1y3#
e2v

2
Ry2v

2
D .

(14)

As k0Dri ¿ 1 this expression is much smaller than th
limit of p for G ! 0 in the commensurable case. This ca
be understood from Eq. (9): Expanding the time depe
dent integrand in a Fourier series with frequencies

P
i sivi ,

wheresi are integers, only the components with a vanis
ing frequency have a nonzero contribution whenG ! 0.
When the trap frequencies are incommensurable, only
term withsx ­ sy ­ sz ­ 0 survives and Eq. (14) is ob-
tained. For commensurable frequencies an infinite numb
of terms, all positive, survive.

Let us finally show the implications of our results fo
the achievement of BEC with all-optical means. In
harmonic trap, the number of atomsN required to reach
BEC isN $ Nc . 1.2skBT d3yh̄3vxvyvz. To satisfy this
condition with a small probability of reabsorption, we
should requireNcp # 1. For the experimentally relevant
parameters of Fig. 4 we find, in the limitG ! 0, Ncp .
0.5 andNcp . 0.04 for the cases of “commensurable” and
“incommensurable” frequencies, respectively.

In summary, we have derived a formula describing th
energy reabsorbed and the reabsorption probability f
trapped atoms at sufficiently high temperatures, whe
quantum statistical effects are negligible, and in the op
cally dilute regime. The formula reflects the effects of th
trap geometry as well as of the atom motion. In the fre
space limit (G ¿ v) the reabsorption probability scales a
1ysk0Drd2. It can be strongly reduced by decreasingGyv,
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and deforming the trap. In thefestina lenteregime the re-
absorption probability scales as1ysk0Drd3 for traps with
commensurable frequencies. For incommensurable tr
frequencies one can reduce this probability even further
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