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Power-lawsensitivity to the initial conditions at the edge of chaos provides a natural relation betwe
the scaling properties of the dynamics attractor and its degree of nonextensivity within the general
statistics recently introduced by one of the authors (C.T.) and characterized by the entropic indeq.
We show that general scaling arguments imply that1ys1 2 qd ­ 1yamin 2 1yamax, whereamin and
amax are the extremes of the multifractal singularity spectrumfsad of the attractor. This relation is
numerically verified in standardD ­ 1 dissipative maps. [S0031-9007(97)04926-0]
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Nonextensivity is inherent in systems where long-ran
interactions or spatiotemporal complexity are prese
Long-range forces are found at astrophysical as well
nanometric scales. Spatiotemporal complexity, a te
introduced to describe the presence of long-range spa
and temporal correlations, is found in equilibrium statist
cal mechanics to emerge at critical points for second ord
phase transitions. Further, the concept of self-organiz
criticality has been recently introduced to describe drive
systems which naturally evolve to a dynamical attract
poised at criticality [1]. Self-organized criticality is
conjectured to be in the origin of fractal structures, noi
with a 1yf power spectrum, anomalous diffusion, Lév
flights, and punctuated equilibrium behavior [2], which ar
signatures of the nonextensive character of the dynam
attractor.

The proper statistical treatment of nonextensive syste
seems to require a generalization of the Boltzmann-Gibb
Shannon prescription based in the standard, extensive
tropy S ­ 2

P
i pi ln pi (in units of Boltzmann constant).

Inspired by the scaling properties of multifractals, one
us [3] has proposed a generalized nonextensive form
entropy,

Sq ­
1 2

P
i p

q
i

q 2 1
,

√X
i

pi ­ 1; q [ R

!
, (1)

which recovers the usual entropy form in the limit ofq !

1. The entropic indexq controls the degree of nonex-
tensivity reflected in the pseudoadditivity entropy rul
SqsA 1 Bd ­ SqsAd 1 SqsBd 1 s1 2 qdSqsAdSqsBd,
whereA andB are twoindependentsystems in the sense
that the probabilities ofA 1 B factorize into those ofA
and of B. Let us also mention that this generalized en
tropy is related to the well-known Renyi entropy (which
in contrast with the present one, is generically extensi
and has no definite concavity). A wealth of studies h
been developed in the past few years showing that
above nonextensive thermostatistical prescription reta
much of the formal structure of the standard theory su
as the Legendre thermodynamic structure,H theorem,
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Onsager reciprocity theorem, Kramers and Wann
relations, and thermodynamic stability, among others [
Further, it has been applied to a series of nonextens
systems such as stellar polytropes [5], ferrofluids [6], tw
dimensional plasma turbulence [7], anomalous diffusi
and Lévy flights [8], cosmology [9], peculiar velocities o
galaxies [10], and inverse bremsstrahlung in plasma [1
among others [12].

In spite of these variety of applications of nonextensi
thermostatistics, a full and general understanding of t
precise relation between the entropic indexq and the
underlying microscopic dynamics was still lacking. It ha
been conjectured that the generalized thermostatistic
a natural frame for studying fractally structured system
[12], and simple relations were found betweenq and
the characteristic exponents of anomalous diffusion a
Lévy flights distributions [8]. Furthermore, recent work
have shown that the entropic indexq has a monotonic
dependence on the fractal dimensiondf of the dynamical
chaotic attractor of dissipative nonlinear systems [13].

The purpose of this paper is to develop the prec
connection between the nonextensivity parameterq and
the scaling properties of the critical attractor of nonline
dynamical systems. Particularly, a prototype compl
dynamical state will be taken to be the onset of chaos
nonlinear low-dimensional maps. We will show that th
power-lawsensitivity to initial conditions at the edge o
chaos provides a natural link between the entropic indeq
and the attractor’s multifractal singularity spectrum. F
the sake of simplicity, we will concentrate our attention
the simple case of one-dimensional nonlinear dynami
systems. One of their most prominent features is rela
to their sensitivity to initial conditions. In order to
quantify this aspect, Kolmogorov and Sinai’s definitio
of the rate at which the amount of information about th
initial conditions varies can be seen as

K1 ; lim
t!0

lim
l!0

lim
N!`

1
Nt

fS1sNd 2 S1s0dg , (2)

where t is a characteristic time step (in fact,t ! 0
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for differential equations;t ­ 1 for discrete maps) and
S1s0d and S1sNd stand, respectively, for the entropie
evaluated at the timest ­ 0 and t ­ Nt. The entropy
can be evaluated by considering an ensemble of ident
copies of the system and definingpi as the fractional
number of copies that are in theith cell (of size l) of
the phase space. If one uses the extensive Boltzma
Gibbs-Shannon entropy formS ­ S1 ­ 2

PW
i­1 pi ln pi,

where W is the number of configurations at timet, the
Kolmogorov-Sinai entropy results in

K1 ­ lim
t!0

lim
l!0

lim
N!`

1
Nt

ln W sNdyWs0d , (3)

where equiprobabilityspi ­ 1yW d was assumed. No-
tice that the above expression implies in an expone
tial sensitivity to initial conditionsWsNd ­ Ws0deK1Nt .
K1 plays (consistently with Pesin’s equality) the role o
the Liapunov exponentl1 which characterizes the ex
ponential deviation of two initially nearby pathsjstd ;
limDxs0d!0 DxstdyDxs0d ­ el1t [jstd is the solution of
djydt ­ l1j]. When l1 , 0 sl1 . 0d the system is
said to bestrongly insensitive(strongly sensitive) to the
initial conditions. The marginal case ofl1 ­ 0 occurs
at the period-doubling and tangent bifurcation points,
well as at the threshold to chaos. The failure of the abo
scheme in distinguishing the sensitivity to initial cond
tions at these special points is related to the nonextens
(fractal-like) structure of their dynamical attractors.

Recently it was argued that, within the generalize
nonextensive entropy of Eq. (1), the sensitivity to initia
conditions of one-dimensional nonlinear maps becom
expressed as [13]

jstd ­ f1 1 s1 2 qdlqtg1ys12qd, (4)

which is the solution ofdjydt ­ lqjq. The above
expression recovers the usual exponential sensitivity
the limit of q ! 1 (extensive statistics). Further, i
implies a power-law sensitivity when nonextensivity take
place sq fi 1d. Previous numerical calculations hav
shown that the period-doubling and tangent bifurcatio
exhibit weak insensitivitysq . 1d to initial conditions
[13]. At the onset of chaos,weak sensitivitysq , 1d
shows up and the value ofq was numerically verified
to be closely related to the fractal dimensiondf of the
dynamical attractor [13]. In what follows, we will use
scaling arguments to analytically express the entro
index q as a function of the fractal scaling properties o
the attractor.

Actually, the scaling behavior of the critical attractor i
richer and more complex than is the case in usual cr
cal phenomena. It is necessary to introduce a multifrac
formalism in order to reveal its complete scaling behavi
[14]. A central quantity in this formalism is the parti
tion functionxq̄sNd ­

PN
i­1 p

q̄
i , wherepi represents the

probability (integrated measure) on theith box among the
N boxes of the measure (we useq̄ instead of the stan-
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dard notationq in order to avoid confusion with the en-
tropic indexq). In the N ! ` limit, the contribution to
xq̄sNd ~ N2tsq̄d, with a givenq̄, comes from a subset of
all possible boxes whose number scales asNq̄ ~ Nfsq̄d,
where fsq̄d is the fractal dimension of the subset. The
content on each contributing box is roughly constant an
scales asPq̄ ~ N2asq̄d. These exponents are all related
by a Legendre transformationtsq̄d ­ q̄asq̄d 2 fsq̄d, and
the multifractal object is characterized by the continu
ous functionfsad. This formalism has been widely used
to characterize some important objects arising in nonli
ear dynamical systems [14,15]. Thea values at the end
points of thefsad curve are the singularity strength as
sociated with the regions in the set where the measu
is most concentratedfamin ­ asq̄ ­ 1`dg and most rar-
efiedfamax ­ asq̄ ­ 2`dg.

The scaling properties of the most rarefied and mo
concentrated regions of multifractal dynamical attracto
can be used to estimate the power-law divergence
nearby orbits. Consider the set of points in the attract
generated after a large numberB of time steps (pi ­ 1yB
is therefore the measure contained in each box). The m
concentrated and most rarefied regions in the attrac
are partitioned, respectively, in boxes of typical size
l1` and l2`. From these, one may determine the en
points of the singularity spectrum asamin ­ ln piy ln l1`

(hencel1` ~ B21yamin) and amax ­ ln piy ln l2` (hence
l2` ~ B21yamax). Further, the smallest splitting between
two nearby orbits, which is of the order ofl1`, becomes,
at most, a splitting of the order ofl2`. With these
scaling relations, Eq. (4) readsl2`yl1` ~ B1ys12qd, which
implies a precise relation between the entropic indexq
and the extremes offsad:

1
1 2 q

­
1

amin
2

1
amax

. (5)

The above expression is the main result of the prese
work. It asserts that, once the scaling properties of th
dynamical attractor are known, one can precisely infer th
proper nonextensive statistics that must be used. Let
illustrate the above result using as prototype multifract
objects the critical attractor of one-dimensional dissipativ
maps. As has been shown by Feigenbaum, withB ­ bn

cycle elements on the attractor (b stands for a natural
scale for the partitions), the most rarefied and mo
concentrated elements scale, respectively, asl2` , a

2n
F

and l1` , a
2zn
F , whereaF is the Feigenbaum universal

scaling factor andz represents the nonlinearity (inflexion)
of the map at the vicinity of its extremal point [16]. Since
the measures there are simplyp2` ­ p1` ­ pi ­ b2n,
these end points are, respectively,

amax ­
ln b

ln aF
, amin ­

ln b
z ln aF

. (6)

Therefore, the entropic indexq can be put forth as a
function of the Feigenbaum scaling factor as
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FIG. 1. Multifractal singularity spectra of the critical attractor
of generalized logistic maps withz ­ 1.5, 2.0, and 3.0 as
numerically obtained following the prescription in Ref. [14].

1
1 2 q

­ sz 2 1d
ln aF

ln b
. (7)

In order to determine the singularity spectrum of th
critical attractor, we implemented the algorithm pro
posed by Halseyet al. [14]. We consider a family of
generalized logistic mapsxt11 ­ 1 2 ajxtj

z s1 , z ,

`; 0 , a # 2; 21 # xt # 1d, which exhibits a period-
doubling cascade accumulating atacszd (b ­ 2 is there-
fore the natural scale for the partitions). Herez is pre-
cisely the inflexion of the map at the vicinity of its ex-
tremalx̄ ­ 0. Typical multifractal singularity spectra are
shown in Fig. 1. From their end points we can estima
the z dependence of the universal scaling factoraFszd.
The values obtained are shown in Fig. 2, together wi
known asymptotics [17] and the parametric dependen
of amin andamax on the fractal dimensiondf (see inset).
The entropic indexq was independentlyobtained (nu-
merically) from the plots of lnjstd ­

PN
t­1 lnfazjxtj

z21g
versus lnN, whereN is the number of iterations. The
upper bound of these plots has slopes equal to1ys1 2 qd
[see Fig. 3(a)]. Its fractal-like structure reflects the pre
ence of long-range temporal correlations at the critic
point. The values ofq so obtained are plotted in Fig. 4
against the numerical values1yamin 2 1yamax and cor-
roborate the relation predicted from scaling arguments.

We also computed the multifractal spectrumfsad
and the sensitivity functionjstd for the following two-
parameter mapxt11 ­ d cosspjxt 2 1y2jzy2d s1 , z ,

`; 0 , d , `; 2d # xt # dd. This map also display a
period-doubling route to chaos (z is the inflexion of the
map at the vicinity of the extremal point̄x ­ 1y2). A
typical onset to chaos is found to be atdcsz ­ 2d ­
0.865579 . . .. Our numerical results confirm, as expected
that this map has, for fixedz, the samefsad and q of
the logisticlike map, i.e., both maps belong to the sam
universality class.

As a final illustration, we computedjstd for the circle
map which is an iterative mapping of one point on a cir
cle to another. This map also exhibits a transition t
chaos via quasiperiodic trajectories but with a topolog
e
-
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FIG. 2. The logisticlike map values ofaFszd (numerically
obtained from bothamin and amax). The solid lines rep-
resent known analytical expressions for the asymptotic b
haviors {faFszdgz ! 1y0.033381 . . . as z ! `; and aFszd ,
21yfsz 2 1d lnsz 2 1dg asz ! 1 [17]}. Inset: amin andamax
versusdf . Dashed lines are guides to the eyes.

distinct from the one of logistic maps. It describes dynam
ical systems possessing a natural frequencyv1 and driven
by an external frequencyv2 (V ­ v1yv2 is called the
barewinding number) and belongs to the same univers
ity class of the forced Rayleigh-Bénard convection [18
These systems tend to mode lock at a frequencyv

p
1 (the

ratio between the response frequency and the driving f
quencyvp ­ v

p
1yv2 is usually called thedressedwind-

ing number). The standard one-dimensional version of
circle map readsut11 ­ ut 1 V 2

K
2p sins2putd s0 ,

V , 1; 0 , K , `; 0 , ut , 1d. K ­ 1 is the onset

FIG. 3. lnjsNd versus lnN . (a) standard logistic mapsz ­
2d. The solid line represents the theoretically predicted slo
for the upper bounds1ys1 2 qd ­ ln aFs2dy ln 2 ­ 1.3236 . . .
{ aFs2d ­ 2.5029 . . . [16]}, hence q ­ 0.2445 . . .. (b) circle
map at K ­ 1 and vp ­ s

p
5 2 1dy2 sV ­ 0.606661 . . .d.

The solid line represents the theoretically predicted slope for
upper bounds1ys1 2 qd ­ 2 ln aFy ln vp ­ 1.0534 . . . (aF ­
1.2885 . . . [19]), henceq ­ 0.0507 . . . .
55
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.

FIG. 4. 1yamin 2 1yamax versus1ys1 2 qd for the general-
ized logistic map (circles) and for the circle map (square). T
straight line represents the scaling prediction.

value above which chaotic orbits exist (forK , 1 the or-
bits are always periodic). A well-studied transition take
place atK ­ 1 and the dressed winding number equal
the golden meanvp ­ s

p
5 2 1dy2 ­ 0.61803 . . ., which

corresponds toV ­ 0.606661 . . .. With these parameters,
the map has a cubic inflexionsz ­ 3d near its extremal
point ū ­ 0, and its universal scaling factor is found to b
aF ­ 1.2885 . . . [19] (b ­ 1yvp is the natural scale for
the partitions). From Eq. (7), the predicted value for th
entropic index isq ­ 0.0507 . . . . This value also agrees
with the numerical estimation based on the sensitivity
initial conditions [see Fig. 3(b)].

In conclusion, we have shown how the proper none
tensive statistics can be inferred from the scaling pro
erties of the dynamical attractor at the onset of chaos
one-dimensional dissipative maps. The relation betwe
the entropic indexq of generalized statistics and the multi
fractal singularity spectrum of the dynamical attractor wa
derived using quite general scaling arguments applied
the most concentrated and rarefied regions of the attr
tor. The proposed relation is therefore expected to ho
for higher-dimensional dissipative systems and to provi
a close relationship between the nonextensive statistics
malism and the self-organized critical states of large driv
dynamical systems. Analogous connections might ex
for Hamiltonian systems with long-range interactions.

One of us (C. T.) acknowledges fruitful discussion
with J.-P. Eckmann, I. Procaccia, E. M. F. Curado, and
Anteneodo. This work was partially supported by CNP
FINEP, and CAPES (Brazilian agencies).
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