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Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems
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Power-lawsensitivity to the initial conditions at the edge of chaos provides a natural relation between
the scaling properties of the dynamics attractor and its degree of nonextensivity within the generalized
statistics recently introduced by one of the authors (C.T.) and characterized by the entropig.index
We show that general scaling arguments imply thatl — ¢) = 1/a@min — 1/@max, Where ay,;, and
amax are the extremes of the multifractal singularity spectrfite) of the attractor. This relation is
numerically verified in standar® = 1 dissipative maps. [S0031-9007(97)04926-0]

PACS numbers: 05.45.+b, 05.20.-y, 05.70.Ce

Nonextensivity is inherent in systems where long-range€Onsager reciprocity theorem, Kramers and Wannier
interactions or spatiotemporal complexity are presentrelations, and thermodynamic stability, among others [4].
Long-range forces are found at astrophysical as well aburther, it has been applied to a series of nonextensive
nanometric scales. Spatiotemporal complexity, a ternsystems such as stellar polytropes [5], ferrofluids [6], two-
introduced to describe the presence of long-range spatidimensional plasma turbulence [7], anomalous diffusion
and temporal correlations, is found in equilibrium statisti-and Lévy flights [8], cosmology [9], peculiar velocities of
cal mechanics to emerge at critical points for second ordegalaxies [10], and inverse bremsstrahlung in plasma [11],
phase transitions. Further, the concept of self-organizedmong others [12].
criticality has been recently introduced to describe driven In spite of these variety of applications of nonextensive
systems which naturally evolve to a dynamical attractothermostatistics, a full and general understanding of the
poised at criticality [1]. Self-organized criticality is precise relation between the entropic index and the
conjectured to be in the origin of fractal structures, noiseunderlying microscopic dynamics was still lacking. It has
with a 1/f power spectrum, anomalous diffusion, Lévy been conjectured that the generalized thermostatistics is
flights, and punctuated equilibrium behavior [2], which area natural frame for studying fractally structured systems
signatures of the nonextensive character of the dynamid42], and simple relations were found betwegnand
attractor. the characteristic exponents of anomalous diffusion and

The proper statistical treatment of nonextensive systemisévy flights distributions [8]. Furthermore, recent works
seems to require a generalization of the Boltzmann-Gibbshave shown that the entropic indexhas a monotonic
Shannon prescription based in the standard, extensive edependence on the fractal dimensinof the dynamical
tropy S = — > ; p;Inp; (in units of Boltzmann constant). chaotic attractor of dissipative nonlinear systems [13].
Inspired by the scaling properties of multifractals, one of The purpose of this paper is to develop the precise
us [3] has proposed a generalized nonextensive form afonnection between the nonextensivity parametend
entropy, the scaling properties of the critical attractor of nonlinear

1=, p! dynamical systems. Particularly, a prototype complex
=1 Z pi=lqg€RJ. (1) dynamical state will be taken to be the onset of chaos of

which recovers the usual entropy form in the limitgpf nonlinear '°W'd.im‘?”5i°”.a! maps. We will show that the
1. The entropic index; controls the degree of nonex- power-law sensitivity to initial conditions at the edge of

tensivity reflected in the pseudoadditivity entropy ruIeChaOS provides a,natura}l link bet_vveen the entropic inglex
S,(A + B) = S,(A) + S.(B) + (I — q)S.(A)S.(B) and the attractor’s multifractal singularity spectrum. For
wqhereA and B g\re twoir;[dependensyc']s,te?ns inqthe’ sense the sake of simplicity, we will concentrate our attention to
that the probabilities oA + B factorizeinto those ofA the simple case of one-d|menS|onaI nonlinear d_ynam|cal
and of B. Let us also mention that this generalized en-Systems. One of their most prominent features is related

tropy is related to the well-known Renyi entropy (which, to th?" sgnsitivity to initial conditions._ ".1, orde_r_ to
in contrast with the present one, is generically extensivguant'fy this aspect, Kolmogorov and Sme}' s definition
and has no definite concavity). A wealth of studies haéjf. t_he rate at Wh'Ch.the amount of information about the
been developed in the past few years showing that th@Itlal conditions varies can be seen as

above nonextensive thermostatistical prescription retains K; = lim lim lim L[SI(N) — 5,001, )
much of the formal structure of the standard theory such 70 [=0 N—= N7

as the Legendre thermodynamic structufe,theorem, where 7 is a characteristic time step (in fact,— 0
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for differential equationsr = 1 for discrete maps) and dard notationg in order to avoid confusion with the en-
S1(0) and S;(N) stand, respectively, for the entropies tropic indexg). In the N — o limit, the contribution to
evaluated at the times= 0 and¢t = N7. The entropy x5(N) = N~7@ with a giveng, comes from a subset of
can be evaluated by considering an ensemble of identicalll possible boxes whose number scalesNgsx N/(@),
copies of the system and defining as the fractional where f(g) is the fractal dimension of the subset. The
number of copies that are in thi¢gh cell (of sizel/) of  content on each contributing box is roughly constant and
the phase space. If one uses the extensive Boltzmanseales asP; N~*@_ These exponents are all related
Gibbs-Shannon entropy fori=$, = — >, p;Inp;, by a Legendre transformatiar(g) = ga(3) — f(3), and
where W is the number of configurations at timethe the multifractal object is characterized by the continu-

Kolmogorov-Sinai entropy results in ous functionf(a). This formalism has been widely used
o 1 to characterize some important objects arising in nonlin-
Ky = lim 'ﬂ(‘) Jlim, Nt InW(N)/W(0), (3)  ear dynamical systems [14,15]. Thevalues at the end

o- points of thef(«) curve are the singularity strength as-

where equiprobability(p; = 1/W) was assumed. N . ) ! ;
tice thatqthg above yéié)ressi/on)implies in an exponen§oc'ated with the regions in the set where the measure

tial sensitivity to initial conditionsW (N) = W(0)ef V7. 'Sf.meSt conEentrf;\tE[d:z_mg = a(g = +e)] and most rar-

K, plays (consistently with Pesin’s equality) the role of €€ [amax = (g = —=)] .

the Liapunov exponeni; which characterizes the ex- The scaling properties of t_he most rareﬂed and most
ponential deviation of two initially nearby path(r) = concentrated regions of multifractal dynamical attractors
liM a0 Ax(1)/Ax(0) = M [£(1) is the solution of can be used to estimate the powerTIaW_dlvergence of
df/cxlt — 0], When A, < 0 (A, > 0) the system is nearby orbits. Consider the set of points in the attractor

said to bestrongly insensitivgstrongly sensitiveto the generated after a large numb‘bpf time steps ¢; = 1/B
initial conditions. The marginal case af = 0 occurs is therefore the measure contqlned |n.each.box). The most
at the period-doubling and tangent bifurcation points, asconcentr.a_ted and most_rareﬂgd regions in th_e attractor
well as at the threshold to chaos. The failure of the abov&™® partitioned, respectively, in boxes of typlcal SIZ€s
scheme in distinguishing the sensitivity to initial condi- *** and /. .From t_hese, one may determine the end
tions at these special points is related to the nonextensi ints of the S|r191]/LJJar|ty SPECtrum @&y = N p;/ Il
(fractal-like) structure of their dynamical attractors. encelif/;c B="/%m) and amax = Inp;/In 1. (hence
Recently it was argued that, within the generalized'—= ® B~ /“). Further, the smallest splitting between

nonextensive entropy of Eq. (1), the sensitivity to initial two nearby orbl_ts_, which is of the order of.., pecomes,
conditions of one-dimensional nonlinear maps become@! MOSt 2 splitting of the order OLW']/(Y\_/'t)h these
expressed as [13] ;call_ng relatlon_s, Eq. (4) reads../l 1. < B a ,_wr_uch

implies a precise relation between the entropic ingex
En =0+ - q))tqt]l/(lfq), (4) and the extremes of(«):

which is the solution ofdé/dt = A,¢9. The above ! 1 ) (5)

expression recovers the usual exponential sensitivity in I —q  amn ®max

the limit of ¢ — 1 (extensive statistics). Further, it  The above expression is the main result of the present
implies a power-law sensitivity when nonextensivity takeswork. It asserts that, once the scaling properties of the
place (¢ # 1). Previous numerical calculations have dynamical attractor are known, one can precisely infer the
shown that the period-doubling and tangent bifurcationgroper nonextensive statistics that must be used. Let us
exhibit weak insensitivity(g > 1) to initial conditions illustrate the above result using as prototype multifractal
[13]. At the onset of chaosweak sensitivity(q < 1)  objects the critical attractor of one-dimensional dissipative
shows up and the value af was numerically verified maps. As has been shown by Feigenbaum, Witk 5"

to be closely related to the fractal dimensidp of the  cycle elements on the attractob Gtands for a natural
dynamical attractor [13]. In what follows, we will use scale for the partitions), the most rarefied and most
scaling arguments to analytically express the entropigoncentrated elements scale, respectively, as~ ay"
index g as a function of the fractal scaling properties ofand/,.. ~ az", wherea is the Feigenbaum universal
the attractor. scaling factor and represents the nonlinearity (inflexion)

Actually, the scaling behavior of the critical attractor is of the map at the vicinity of its extremal point [16]. Since
richer and more complex than is the case in usual critithe measures there are simply.. = pi = p; = b~ ",

cal phenomena. It is necessary to introduce a multifractahese end points are, respectively,

formalism in order to reveal its complete scaling behavior nb nb

[14]. A central quantity in this formalism is the parti- = , Amin = . (6)
tion function y;(N) = >, p{, wherep; represents the Inar zlnar

probability (integrated measure) on tith box among the Therefore, the entropic indey can be put forth as a
N boxes of the measure (we ugeinstead of the stan- function of the Feigenbaum scaling factor as

Amax
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FIG. 1. Multifractal singularity spectra of the critical attractor FIG. 2. The logisticlike map values okr(z) (numerically
of generalized logistic maps with = 1.5, 2.0, and 3.0 as  obtained from botha,;, and am.). The solid lines rep-
numerically obtained following the prescription in Ref. [14].  resent known analytical expressions for the asymptotic be-
haviors {ar(z)JF — 1/0.033381... as z — «; and ar(z) ~
—1/[(z = DIn(z — D] asz — 1 [17]}. Inset: amin and amax
1 =(z—1) Inap @) versusdy. Dashed lines are guides to the eyes.
1—¢q Inp

In order to determine the singularity spectrum of the
critical attractor, we implemented the algorithm pro-
posed by Halset al.[14]. We consider a family of
generalized logistic maps;+; = 1 — alx|* 1 <z <
0,0 <a=2;—1=x, =1), which exhibits a period-
doubling cascade accumulatingat(z) (b = 2 is there-
fore the natural scale for the partitions). Herés pre- by , ; .
cisely the inflexion of the mar? at the v)icinity of igs ex- Quencyw” = w;/w; is usually called thelressedwind-
tremalx = 0. Typical multifractal singularity spectra are "9 number). The standard one-d|mlegn3|-onal version of the
shown in Fig. 1. From their end points we can estimatefircle map reads,.; = 6, + Q — 5 sin276,) (0 <
the z dependence of the universal scaling factgr(z). € <10 <K <0<, <1). K =1 is the onset
The values obtained are shown in Fig. 2, together with
known asymptotics [17] and the parametric dependence 10.0
of amin andamax on the fractal dimensiod, (see inset).

distinct from the one of logistic maps. It describes dynam-
ical systems possessing a natural frequencyand driven

by an external frequency, ({0 = w;/w; is called the
barewinding number) and belongs to the same universal-
ity class of the forced Rayleigh-Bénard convection [18].
These systems tend to mode lock at a frequengy(the
ratio between the response frequency and the driving fre-

The entropic indexg was independentlyobtained (nu- - 801
merically) from the plots of I (1) = >, In[az|x,[*'] < 60
versus IV, where N is the number of iterations. The e

upper bound of these plots has slopes equdl/td — ¢q) £ 40T

[see Fig. 3(a)]. Its fractal-like structure reflects the pres- 20t
ence of long-range temporal correlations at the critical

point. The values of; so obtained are plotted in Fig. 4 0.0
against the numerical valudy amin — 1/amax and cor- 8.0
roborate the relation predicted from scaling arguments. [ )

We also computed the multifractal spectrufifa) 080"
and the sensitivity functiorf(z) for the following two- é 40 |
parameter map,+; = d cogw|x; — 121 1<z < i L
0,0 < d <o, —d = x, =d). This map also display a £ 20| e i
period-doubling route to chaos s the inflexion of the / : D
map at the vicinity of the extremal poimt = 1/2). A 0.0 ! ) .
typical onset to chaos is found to be dt(z = 2) = 0.0 2.0 4.0 6.0 8.0
0.865579.... Our numerical results confirm, as expected, In N

that this map has, for fixed, the samef(a) andg of  FIG. 3. In&(N) versus InV. (a) standard logistic mafy =
the logisticlike map, i.e., both maps belong to the same). The solid line represents the theoretically predicted slope

universality class. EOF t(h()9 upper bound[s/g}l R q) = Inap(2)/In2 = 253)236-1-

. . . . ap(2) = 2.5029... [16]}, hence g = 0.2445.. .. circle

As ahf_lnr?l_ |IIustrfltlo?, we com_pute?(t) for t.het circle map atk — 1 and w® = (5 — 1)/2 (Q — 0.606661...)
map which IS an iterative mapping of one point on a Cif-the ggjiq |ine represents the theoretically predicted slope for the

cle to another. This map also exhibits a transition toypper boundd /(1 — ¢) = 2Inar/INw* = 1.0534... (af =

chaos via quasiperiodic trajectories but with a topology1.2885... [19]), henceg = 0.0507....
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