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Perturbed Orbital Contribution to the Two-Loop Lamb Shift in Hydrogen
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A part of the two-loop Lamb shift called the perturbed orbital term is evaluated with exact Dirac-
Coulomb propagators. It is shown to be the most nonperturbative functidfiwofet encountered
in QED, so much so that even @ = 1 the leading term in itZa expansion is of the opposite
sign from the complete answer. The higher order contributions—étg(1) kHz to the ground state
Lamb shift in hydrogen and-8.9(1) and —346(1) kHz to ther = 2 Lamb shift in hydrogen and He
respectively. [S0031-9007(98)06394-7]

PACS numbers: 31.30.Jv, 12.20.Ds

In the evaluation of radiative corrections in bound stateA first indication that this is not, in fact, the case is the
QED in the nonrecoil limit, two types of expansion can becalculation of a contribution of ordefZa)? In’(Za) 2
carried out. The first expansion, in the number of loopsby Karshenboim [6] associated with the perturbed orbital
present, is governed by powers af/7. In the bound term, which is part of Fig. 1a. The leading order of the
state problem each order of/7 multiplies a function perturbed orbital (PO) term i8«, being part of the coef-
of Za, whereZ is the nuclear charge. For example, theficient —24.266 in Eq. (2).

Lamb shift through two loops of a stateof a hydrogenic Including Karshenboim’s logarithmic term, its series
ion can be written as expansion is

a (Za)* a\(Za)*
AE, = m— —3—Fy(Za) + m(;) 5 On(Za), GP(Za) = Za[2.29953 — %(Za)|n3(2a)—2]. 3)

) ) ] () . The origin of the high power of IZ« is the presence of
where F, is associated with the one-loop Lamb shift 5 tactor of InZa in each one-loop self-energy subdiagram
and G, with the two-loop Lamb shift. For lowZ itis 5 Fig. 1a along with an additional factor arising from the
standard to take advantage of the smallnesZ@f and  integration over the central propagator. The large size of
to further expandr, and G, in powers ofZa. [The  thjs correction leads to the remarkable result forthe 2
expansion is actually a double expansion, as each ordgmp shift that, even & = 1, the first term is essentially
of Za can be accompanied by various powers ¢Zim)].  canceled by the second term, even though that term is of
However, at higher values df, the expansion itfa N0 he next order ina: specifically, a 4 kHz contribution is
longer converges, and in that casg and G, must be  yequced to 0.4 kHz. We will show in this paper that the
evaluated exactly, which can be done by using numerica{;|| answer changes even further, 3.0 kHz. However,
representations of the exact Dirac-Coulomb propagatorgs will be explained in more detail below, the bulk of
in terms of which they are expressed. The most accuraigyis additional change will not be attributed to higher
calculations have been carried out for the one-loop Lamly qer terms, but rather a coefficient of the logarithmic
shift by Mohr and collaborators [1]. Similar calculations tgrm larger than, and in significant disagreement with,
for the.two—loop Lamb are incomplete:. the purpose of thispe —8/27 found in Ref. [6]. While it is important to
Letter is to present an exact calculation for a parGaf  yesolve this discrepancy, in either case the large size of the
called the perturbed orbital term. , logarithmic term clearly makes it desirable to carry out an

Recently three calculations have been carried out thatyact calculation that avoids expansiorzia altogether.
raise the question of whether the perturbative approach is \y/e now describe such a calculation for the ground state

valid for the self-energy part of the two-loop Lamb shift o |ow-7 hydrogenlike ions. As discussed in Ref. [7],
even at lowZ. The leading term in the series expansion

of G3E(Za) has been known for some time [2]. More

recently two independent calculations [3,4] determined M M ;N‘W

an unusually large coefficient for the second term in the

expansion: (@) (b)
GE(Za) = 1.409251 — 24266(3) (Za).  (2)

Because the second term contributeg1.8 kHz to the W

n = 2 Lamb shift in hydrogen, which is known with an Sl

accuracy of 9 kHz [5], in the absence of a complete cal- ©
culation of the(Za)? corrections it is not clear whether
a perturbative expansion is adequate even for hydrogen. FIG. 1.  Fourth-order self-energy diagrams.
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part of Fig. 1a leads to a derivative term, and part tocoordinate and momentum space parts of the calculation.
the PO term. If a spectral representation of the centraHence, working with basis sets created in coordinate space,
propagator is used, the derivative term is associated wittve simply use extremely fine grids in both coordinate

n = v, wherev represents the ground state, and the PGind momentum space to carry out a sufficiently accurate

term is given by Fourier transform.
S (€)S 0 (€,) The gecond numferical iss_ue involyes the partial wave
Spo = Z e (4) expansion, which is associated with the part of the
n#v € = €n calculation carried out in coordinate space. As was also

Here we have introduced a generalization of the selffound in recent work on radiative corrections in the

energy, with the self-mass counterterm understood to bRresence of external potentials [12], at the lowest values
added in, of Z keeping only the first 12 or so partial waves leads

to misleading answers. While at high, the series has
Son(E) = — iezf d3xd3yf L become asymptotic by = 12, at low Z the series usually
Qm)n k2 +ié changes sign at a somewhat higher valud,dhcreases
X gm(%)y Sr(%.5:E — ko)y"¢.(3). () 1N magnitude for the next few values, and only then
becomes asymptotic. To control this behavior requires

The usual self-energy is, of cours®,, (e,). Ultraviolet  going to very high values, typicalli,., = 40.

A"k ei;?-(;—;)

divergences have been regulated by working nir= Finally, when the intermediate states correspond to
4 — e dimensions, where the is taken to zero after positive energies, the use of the Feynman gauge leads to
renormalization. terms of spurious order il from different parts o, ,,.

We choose to use two methods to represent the electrdfor example, in the calculation of the one-loop self-energy,
propagator without expansion . The first method is %, these spurious terms enter at ordea.u. and cancel
applied to the reduced Green’s function associated with thdown to Z*«> a.u. This cancellation is severe at |G
central propagator in Fig. 1a. While various representaand leads to a loss of several significant digits. While
tions of the reduced Dirac-Coulomb propagator are knownhe parts evaluated in coordinate space could be obtained
[8,9] they involve an infinite sum over analytic functions. with sufficient numerical precision, the momentum space
We instead choose to use finite basis set techniques [1@hrt, which is a four dimensional integral and is evaluated
to replace the infinite summation in the spectral represenwith the adaptive Monte Carlo integration progragcas
tation with a finite sum over basis set functions. This[14], is more difficult to determine precisely. To treat it,
eliminates the need for methods to deal with an infinitewe devised a subtraction term that contains the leading
summation, and allows the trivial implementation of thespurious order, but which could be recast into a one
restrictionn # v. A basis set with 50 positive energy and dimensional integral and then obtained with negligible
50 negative energy states leads to sufficient accuracy farror. Nevertheless, the remaining statistical error from
our purposes. A different method is used for the evaluathe subtracted term forms the largest part of the quoted
tion of 2,,. Inthis case we use differential equation tech-numerical uncertainty in the calculation.
niques, the use of which in closely related calculations is Several checks were made of the calculation. In one,
described in Refs. [11] and [12]. The evaluationXyf,  the accuracy of the Fourier transforms was tested by
involves a partial wave summation that must be extendedeplacing the operato® with the simpler objectl/r,
to high values of, which is much easier in the differential and checking that the same result was found in both
equation approach than with basis sets. coordinate and momentum space. The assumption that

At this point, the calculation is straightforward but the partial wave expansion was asymptotic was checked
computationally intensive. Three numerical issues havéy fitting it to a formula for a given range of high and
to be treated with particular care. The first involvesthen comparing the predicted values at even higheith
taking the Fourier transform of the basis set states actual runs. We also checked that the one-loop Lamb shift
which is required because part of the calculation®@f,  calculated forn = v agreed with Mohr’s results [1] to
is carried out in momentum space. The techniques thawvithin numerical error. Dependencies on basis sets were
work for %, which involves bound state wave functions tested atZ = 1 by employing a basis set consisting of
with, at most, a few oscillations in momentum space,60 positive and 60 negative energy states and checking
are of insufficient accuracy when extended to continuunthat the results were in agreement within the quoted
states. While it is possible to create basis sets entirelpumerical error. Finally, the PO term at high values of
in momentum space [13], except for a few low lying Z, specificallyZ = 70, 80,90, and92, was evaluated with
states, the basis functions are not Fourier transforms dhe same methods applied to the I@ncase, and found to
corresponding functions in the coordinate space basis setgree with an independent calculation [15].

This precludes the use of momentum space basis sets as weNhile our interest is primarily in the cas&= 1 and
require the intermediate stateto be the same in both the Z = 2, we also calculated the PO term for a rangeZof
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TABLE I. Perturbed orbital contributions to the ground state Lamb shift. All energies are in
a.u. [—x] denotes a multiplicative factor di0—.

z AER Giy z AERY Giy
050 —9.9(5) 4] —1.5(1) 7 —1767(1) 07]  —5.016(3)
075 —L11(2) 12]  -2234) 10 —1.02773) 06]  —4.9016(14)
1 ~6.0(1) 12]  -287(5) 15 —7.199(1) 06]  —4.5218(6)

[— [—
- -
150 —5533) [-11] —3.47(2) 20 —27653(2) [-05] —4.1217(3)
2 —266(1) [-10] —3.965(15) 70 —8388(1) [—03] —2.3804(3)
3 —2292(5) [-09] —4.50(1) 80 —1.6436(1) [—02] —2.3923(2)
4 —-1.0242) [-08] —4.77(1) 90 —3.1357(3) [-02] —2.5328(3)
5

—3231(3) [-08] —4931(5) 92 —3567(1) [-02] —2.581(1)

values for fitting purposes. Our results are tabulated iproton radius [17] for the determination of the finite nu-
Table |, and plotted in Fig. 2, where they are comparedlear size effect, in Table Il with the new corrections cal-
with the first term in the series expansion. culated in this paper added in, which we stress are not the
The most remarkable feature of our results is the faconly corrections starting in ordena?(Za)® present. In
that while atZ = 0 the PO term is 2.3, aZ = 1 it  both cases, the extra part of the PO term acts to make ex-
has become-2.87(5). This is the most nonperturbative periment and theory more discrepant. The discrepancy is
behavior exhibited by any of the functions @« yet increased if a newer analysis of the Mainz proton size is
encountered in bound state QED, and indicates the neagsed [18], and increased even further if the Stanford pro-
for exact methods when dealing with the two-loop Lambton radius [19] is used. The new contributions calculated
shift. While a clear trend towards a positive result canin this paper, that is, the exact PO term with the contri-
be seen at lowzZ, numerical difficulties described earlier butions from the leading coefficient in tix expansion
prevented a direct calculation at valuesZoémaller than  subtracted out, are shown in the last row of Table II.
0.5, where the function is still negative. However, we While experiment and theory now disagree for both
were able to find the following fit to the data, assuminghydrogen and Hg, this simply indicates the need for an

the correctness of the first term: exact calculation of all parts of the two-loop Lamb shift:
PO _ 3 -2 the new results that lead to the discrepancy come only
Za) = Za[23 — 09(Za)In’(Z . .
Gis (Za) a[23 = 09(Za)In"(Za) from the PO term. It is useful to note that this term forms
+ 1.9Za) In*(Za) 2 only about 10% of thena(Za)’ self-energy correction,

with the remainder coming from the graphs of Figs. 1b
(6) . > <

and 1c. (There is also a set of vacuum-polarization graphs
If we instead also fit the first term, we find the result 2.3(2)that contribute to the two-loop Lamb shift, but an exact
when the data point af = 0.5 is excluded, an®.8(2) treatment of one of them at lo¥ [22] suggests that
when it is included. We interpret the slight discrepancy
in the latter case as an indication that systematic errors
are beginning to affect our numerical methods. A more
precise determination of the constant will require the 6.0
development of techniques that work at valuesZoless — ---  Leading Coefficient
than 0.5; however, satisfactory control of the calculation 40 | —  ExactCalculation
at physical values af has been obtained, so we have not
pursued this issue further. 20 [7TTTTTTTTTTIT I b

While we confirm the conclusion of Ref. [6] of the
presence of a cubed logarithm, the coefficient we obtain
is significantly larger. The reason for this is not known at
present.

We now turn to the experimental consequences of our
results. The present calculation is for the ground state,
so to obtain predictions for the = 2 Lamb shift we as-
sumel/n? scaling. The status of the Lamb shift in hy- ‘ ‘ ‘
drogen and Hé has recently been reviewed by Pachucki % 5 10 15 20
[16], keeping terms up to ordena’(Za)’ in the two- z
loop Lamb shift, but not including the Karshenboim cor- FiG. 2. Plot ofGIY(Za) and the leading coefficient in iBa
rection. We reproduce these results, which use the Mainexpansion at lowZ.

- 29(Za)In(Za)™].

(Za)l(Za)

PO,
1s

G
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TABLE Il. Comparison of experiment with theory of the Lamb shift including the results of
this calculation.

L(1S) inH L(25-2P) in H L(2S-2P) in He*
Experiment 8172.876(29) MHz [20] 1057.845(9) MHz [5] 14042.52(16) MHz [21]
Theory? 8172.731(40) MHz 1057.830(6) MHz
Theory’ 8172.691(40) MHz 1057.825(6) MHz
Theory 8172.582(40) MHz 1057.812(6) MHz
Theory 14040.98(18) MHz
New contributions —0.071(1) MHz —0.0089(1) MHz —0.346(1) MHz

@Uses the Mainz proton radius [17].
bUses the new Mainz proton radius [18].
‘Uses the Stanford proton radius [19].
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