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Perturbed Orbital Contribution to the Two-Loop Lamb Shift in Hydrogen
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A part of the two-loop Lamb shift called the perturbed orbital term is evaluated with exact Dira
Coulomb propagators. It is shown to be the most nonperturbative function ofZa yet encountered
in QED, so much so that even atZ ­ 1 the leading term in itsZa expansion is of the opposite
sign from the complete answer. The higher order contributions are271s1d kHz to the ground state
Lamb shift in hydrogen and28.9s1d and2346s1d kHz to then ­ 2 Lamb shift in hydrogen and He1,
respectively. [S0031-9007(98)06394-7]

PACS numbers: 31.30.Jv, 12.20.Ds
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In the evaluation of radiative corrections in bound sta
QED in the nonrecoil limit, two types of expansion can b
carried out. The first expansion, in the number of loop
present, is governed by powers ofayp. In the bound
state problem each order ofayp multiplies a function
of Za, whereZ is the nuclear charge. For example, th
Lamb shift through two loops of a staten of a hydrogenic
ion can be written as

DEn ­ m
a

p

sZad4

n3
FnsZad 1 m

µ
a

p

∂2 sZad4

n3
GnsZad ,

(1)
where Fn is associated with the one-loop Lamb shi
and Gn with the two-loop Lamb shift. For lowZ it is
standard to take advantage of the smallness ofZa, and
to further expandFn and Gn in powers of Za. [The
expansion is actually a double expansion, as each or
of Za can be accompanied by various powers of lnsZad].
However, at higher values ofZ, the expansion inZa no
longer converges, and in that caseFn and Gn must be
evaluated exactly, which can be done by using numeri
representations of the exact Dirac-Coulomb propagat
in terms of which they are expressed. The most accur
calculations have been carried out for the one-loop Lam
shift by Mohr and collaborators [1]. Similar calculation
for the two-loop Lamb are incomplete: the purpose of th
Letter is to present an exact calculation for a part ofGn

called the perturbed orbital term.
Recently three calculations have been carried out th

raise the question of whether the perturbative approach
valid for the self-energy part of the two-loop Lamb shif
even at lowZ. The leading term in the series expansio
of GSE

n sZad has been known for some time [2]. More
recently two independent calculations [3,4] determine
an unusually large coefficient for the second term in th
expansion:

GSE
n sZad ­ 1.409 251 2 24.266s3d sZad . (2)

Because the second term contributes241.8 kHz to the
n ­ 2 Lamb shift in hydrogen, which is known with an
accuracy of 9 kHz [5], in the absence of a complete ca
culation of thesZad2 corrections it is not clear whether
a perturbative expansion is adequate even for hydrog
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A first indication that this is not, in fact, the case is th
calculation of a contribution of ordersZad2 ln3sZad22

by Karshenboim [6] associated with the perturbed orbi
term, which is part of Fig. 1a. The leading order of th
perturbed orbital (PO) term isZa, being part of the coef-
ficient 224.266 in Eq. (2).

Including Karshenboim’s logarithmic term, its serie
expansion is

GPO
n sZad ­ Za f 2.299 53 2

8
27

sZad ln3sZad22 g . (3)

The origin of the high power of lnZa is the presence of
a factor of lnZa in each one-loop self-energy subdiagra
in Fig. 1a along with an additional factor arising from th
integration over the central propagator. The large size
this correction leads to the remarkable result for then ­ 2
Lamb shift that, even atZ ­ 1, the first term is essentially
canceled by the second term, even though that term is
the next order ina: specifically, a 4 kHz contribution is
reduced to 0.4 kHz. We will show in this paper that th
full answer changes even further, to25.0 kHz. However,
as will be explained in more detail below, the bulk o
this additional change will not be attributed to highe
order terms, but rather a coefficient of the logarithm
term larger than, and in significant disagreement wi
the 28y27 found in Ref. [6]. While it is important to
resolve this discrepancy, in either case the large size of
logarithmic term clearly makes it desirable to carry out a
exact calculation that avoids expansion inZa altogether.

We now describe such a calculation for the ground st
of low-Z hydrogenlike ions. As discussed in Ref. [7

(c)

(b)(a)

FIG. 1. Fourth-order self-energy diagrams.
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part of Fig. 1a leads to a derivative term, and part
the PO term. If a spectral representation of the cent
propagator is used, the derivative term is associated w
n ­ y, wherey represents the ground state, and the P
term is given by

SPO ­
X
nfiy

SynseydSnyseyd
ey 2 en

. (4)

Here we have introduced a generalization of the se
energy, with the self-mass counterterm understood to
added in,

SmnsEd ; 2 ie2
Z

d3xd3y
Z dnk

s2pdn

ei $k?s$x2$yd

k2 1 id

3 c̄ms $xdgmSFs $x, $y; E 2 k0dgmcns $yd . (5)

The usual self-energy is, of course,Syyseyd. Ultraviolet
divergences have been regulated by working inn ­
4 2 e dimensions, where thee is taken to zero after
renormalization.

We choose to use two methods to represent the elect
propagator without expansion inZa. The first method is
applied to the reduced Green’s function associated with
central propagator in Fig. 1a. While various represen
tions of the reduced Dirac-Coulomb propagator are know
[8,9] they involve an infinite sum over analytic functions
We instead choose to use finite basis set techniques [
to replace the infinite summation in the spectral represe
tation with a finite sum over basis set functions. Th
eliminates the need for methods to deal with an infini
summation, and allows the trivial implementation of th
restrictionn fi y. A basis set with 50 positive energy an
50 negative energy states leads to sufficient accuracy
our purposes. A different method is used for the evalu
tion of Syn. In this case we use differential equation tech
niques, the use of which in closely related calculations
described in Refs. [11] and [12]. The evaluation ofSyn

involves a partial wave summation that must be extend
to high values ofl, which is much easier in the differentia
equation approach than with basis sets.

At this point, the calculation is straightforward bu
computationally intensive. Three numerical issues ha
to be treated with particular care. The first involve
taking the Fourier transform of the basis set statesn,
which is required because part of the calculation ofSyn

is carried out in momentum space. The techniques t
work for Syy , which involves bound state wave function
with, at most, a few oscillations in momentum spac
are of insufficient accuracy when extended to continuu
states. While it is possible to create basis sets entir
in momentum space [13], except for a few low lyin
states, the basis functions are not Fourier transforms
corresponding functions in the coordinate space basis
This precludes the use of momentum space basis sets a
require the intermediate staten to be the same in both the
5298
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coordinate and momentum space parts of the calculatio
Hence, working with basis sets created in coordinate spac
we simply use extremely fine grids in both coordinate
and momentum space to carry out a sufficiently accura
Fourier transform.

The second numerical issue involves the partial wav
expansion, which is associated with the part of th
calculation carried out in coordinate space. As was als
found in recent work on radiative corrections in the
presence of external potentials [12], at the lowest value
of Z keeping only the first 12 or so partial waves lead
to misleading answers. While at highZ, the series has
become asymptotic byl ­ 12, at low Z the series usually
changes sign at a somewhat higher value ofl, increases
in magnitude for the next fewl values, and only then
becomes asymptotic. To control this behavior require
going to very high values, typicallylmax ­ 40.

Finally, when the intermediate states correspond t
positive energies, the use of the Feynman gauge leads
terms of spurious order inZa from different parts ofSyn.
For example, in the calculation of the one-loop self-energy
Syy , these spurious terms enter at orderZ a.u. and cancel
down to Z4a3 a.u. This cancellation is severe at lowZ
and leads to a loss of several significant digits. Whil
the parts evaluated in coordinate space could be obtain
with sufficient numerical precision, the momentum spac
part, which is a four dimensional integral and is evaluate
with the adaptive Monte Carlo integration programVEGAS

[14], is more difficult to determine precisely. To treat it,
we devised a subtraction term that contains the leadin
spurious order, but which could be recast into a on
dimensional integral and then obtained with negligible
error. Nevertheless, the remaining statistical error from
the subtracted term forms the largest part of the quote
numerical uncertainty in the calculation.

Several checks were made of the calculation. In on
the accuracy of the Fourier transforms was tested b
replacing the operatorS with the simpler object1yr,
and checking that the same result was found in bot
coordinate and momentum space. The assumption th
the partial wave expansion was asymptotic was checke
by fitting it to a formula for a given range of highl, and
then comparing the predicted values at even higherl with
actual runs. We also checked that the one-loop Lamb sh
calculated forn ­ y agreed with Mohr’s results [1] to
within numerical error. Dependencies on basis sets we
tested atZ ­ 1 by employing a basis set consisting of
60 positive and 60 negative energy states and checki
that the results were in agreement within the quote
numerical error. Finally, the PO term at high values o
Z, specificallyZ ­ 70, 80, 90, and92, was evaluated with
the same methods applied to the lowZ case, and found to
agree with an independent calculation [15].

While our interest is primarily in the casesZ ­ 1 and
Z ­ 2, we also calculated the PO term for a range ofZ
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TABLE I. Perturbed orbital contributions to the ground state Lamb shift. All energies are in
a.u. f2xg denotes a multiplicative factor of102x .

Z DEPO
1s GPO

1s Z DEPO
1s GPO

1s

0.50 29.9s5d f214g 21.5s1d 7 21.767s1d f207g 25.016s3d
0.75 21.11s2d f212g 22.23s4d 10 21.0277s3d f206g 24.9016s14d
1 26.0s1d f212g 22.87s5d 15 27.199s1d f206g 24.5218s6d
1.50 25.53s3d f211g 23.47s2d 20 22.7653s2d f205g 24.1217s3d
2 22.66s1d f210g 23.965s15d 70 28.388s1d f203g 22.3804s3d
3 22.292s5d f209g 24.50s1d 80 21.6436s1d f202g 22.3923s2d
4 21.024s2d f208g 24.77s1d 90 23.1357s3d f202g 22.5328s3d
5 23.231s3d f208g 24.931s5d 92 23.567s1d f202g 22.581s1d
-
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values for fitting purposes. Our results are tabulated
Table I, and plotted in Fig. 2, where they are compare
with the first term in the series expansion.

The most remarkable feature of our results is the fa
that while at Z ­ 0 the PO term is 2.3, atZ ­ 1 it
has become22.87s5d. This is the most nonperturbative
behavior exhibited by any of the functions ofZa yet
encountered in bound state QED, and indicates the ne
for exact methods when dealing with the two-loop Lam
shift. While a clear trend towards a positive result ca
be seen at lowZ, numerical difficulties described earlier
prevented a direct calculation at values ofZ smaller than
0.5, where the function is still negative. However, w
were able to find the following fit to the data, assumin
the correctness of the first term:

GPO
1S sZad ­ Zaf2.3 2 0.9sZad ln3sZad22

1 1.9sZad ln2sZad22

2 2.9sZad lnsZad22g . (6)

If we instead also fit the first term, we find the result 2.3(2
when the data point atZ ­ 0.5 is excluded, and2.8s2d
when it is included. We interpret the slight discrepanc
in the latter case as an indication that systematic erro
are beginning to affect our numerical methods. A mo
precise determination of the constant will require th
development of techniques that work at values ofZ less
than 0.5; however, satisfactory control of the calculatio
at physical values ofZ has been obtained, so we have no
pursued this issue further.

While we confirm the conclusion of Ref. [6] of the
presence of a cubed logarithm, the coefficient we obta
is significantly larger. The reason for this is not known a
present.

We now turn to the experimental consequences of o
results. The present calculation is for the ground sta
so to obtain predictions for then ­ 2 Lamb shift we as-
sume1yn3 scaling. The status of the Lamb shift in hy
drogen and He1 has recently been reviewed by Pachuck
[16], keeping terms up to orderma2sZad5 in the two-
loop Lamb shift, but not including the Karshenboim cor
rection. We reproduce these results, which use the Ma
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proton radius [17] for the determination of the finite nu
clear size effect, in Table II with the new corrections ca
culated in this paper added in, which we stress are not t
only corrections starting in orderma2sZad6 present. In
both cases, the extra part of the PO term acts to make
periment and theory more discrepant. The discrepancy
increased if a newer analysis of the Mainz proton size
used [18], and increased even further if the Stanford pr
ton radius [19] is used. The new contributions calculate
in this paper, that is, the exact PO term with the contr
butions from the leading coefficient in theZa expansion
subtracted out, are shown in the last row of Table II.

While experiment and theory now disagree for bot
hydrogen and He1, this simply indicates the need for an
exact calculation of all parts of the two-loop Lamb shift
the new results that lead to the discrepancy come on
from the PO term. It is useful to note that this term form
only about 10% of themasZad5 self-energy correction,
with the remainder coming from the graphs of Figs. 1
and 1c. (There is also a set of vacuum-polarization grap
that contribute to the two-loop Lamb shift, but an exac
treatment of one of them at lowZ [22] suggests that
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FIG. 2. Plot ofGPO
1S sZad and the leading coefficient in itsZa

expansion at lowZ.
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TABLE II. Comparison of experiment with theory of the Lamb shift including the results o
this calculation.

Ls1Sd in H Ls2S-2Pd in H Ls2S-2Pd in He1

Experiment 8172.876s29d MHz [20] 1057.845s9d MHz [5] 14 042.52s16d MHz [21]
Theorya 8172.731s40d MHz 1057.830s6d MHz
Theoryb 8172.691s40d MHz 1057.825s6d MHz
Theoryc 8172.582s40d MHz 1057.812s6d MHz
Theory 14 040.98s18d MHz
New contributions 20.071s1d MHz 20.0089s1d MHz 20.346s1d MHz

aUses the Mainz proton radius [17].
bUses the new Mainz proton radius [18].
cUses the Stanford proton radius [19].
,

v.

v.

on

.

.

the higher order terms are very small when a vacuu
polarization loop is present.)

In summary, the main point of this Letter is that unex
pectedly large contributions starting in orderma2sZad6

have been shown to arise from one part of the two-loo
Lamb shift. Because of this, it is clearly necessary t
at least calculate all terms of that order, and preferab
to carry out exact calculations of the remaining parts o
the two-loop Lamb shift, which must also have strikingly
nonperturbative behavior if the present discrepancy b
tween theory and experiment is to be removed. On
when this is done can one begin to draw conclusions abo
the size of the proton from the Lamb shift in hydrogen, o
reliably use He1 as a test of QED.
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