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We have searched inp p collisions at
p

s  1.8 TeV for events with three charged leptons and
missing transverse energy. In the minimal supersymmetric standard model, we expect trilepton events
from chargino-neutralinosx̃6

1 x̃
0
2 d pair production, with subsequent decay into leptons. We observe

no candidatee1e2e6, e1e2m6, e6m1m2, or m1m2m6 events in106 pb21 integrated luminosity.
We present limits on the sum of the branching ratios times cross section for the four channels:
sx̃

6
1 x̃

0
2
Bsx̃6

1 x̃
0
2 ! 3, 1 Xd , 0.34 pb, Mx̃

6
1

. 81.5 GeVyc2, andMx̃
0
2

. 82.2 GeVyc2 for tanb  2,
m  2600 GeVyc2, andMq̃  Mg̃. [S0031-9007(98)06316-9]

PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm
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The minimal supersymmetric standard model (MSSM
[1] contains two Higgs doublets and supersymmetric pa
ners to all the standard model (SM) particles. The s
perpartners of the electroweak gauge bosons and Hi
bosons are two charged and four neutral fermions (x̃ ’s).
Further assumptions, namely the grand unified theo
hypothesis provided by supergravity [2], supergravit
inspired sleptonysneutrino mass constraints [3], degen
eracy of five of the squarks, andR-parity conservation,
lead to models with only six parameters.R-parity conser-
vation implies the creation of superpartners in pairs a
the stability of the lightest supersymmetric partner (LSP
Within this framework we expect, for certain region
of parameter space, a measurable rate for the reac
q q0 ! x̃

6
1 x̃

0
2 , wherex̃

6
1 ! x̃

0
1 ,6n and x̃

0
2 ! x̃

0
1 ,1,2,

and x̃
0
1 is the LSP. Then and two LSPs do not inter-

act with the detector and manifest themselves as miss
energy. The resulting final state is three isolated charg
leptons plus missing energy [4]. In this Letter, we re
port on a search for direct production ofx̃

6
1 x̃

0
2 , via vir-

tual W6 s-channel and virtual squarkt-channel diagrams,
in the trilepton channelse1e2e, e1e2m, em1m2, and
m1m2m. Additional trilepton production arising from
squark and gluino cascade decays was not included.
add 87 pb21 of data recorded in 1994–1995 to a pre
viously analyzed sample of19 pb21 collected in 1992–
1993 [5].

The Collider Detector at Fermilab (CDF) is describe
in detail elsewhere [6]. The components of the detec
relevant to this analysis are the vertex chamber, wh
provides r-z tracking information; the central tracking
chamber, which is situated inside a 1.4 T solenoidal ma
netic field and provides a combination ofr-f, z and trans-
verse momentums pT d information for charged particles;
the centralsjhj , 1.1d and endplugs1.1 , jhj , 2.4d
electromagnetic calorimeters, which are located outs
the solenoid and are segmented in a projective tower
ometry; and the central muon chambers. We define ps
dorapidityh ; 2 ln tansuy2d andu andf to be the polar
and azimuthal angles with respect to the beam axis.

We begin with a sample of87 pb21 recorded in 1994–
1995. It contains3.3 3 106 events that have an electro
or muon withpT . 8 GeVyc and jhej , 1.1 or jhmj ,

0.6 and a second electron or muon withpT . 3 GeVyc
and jhej , 2.4 or jhmj , 1.0. We select events from
this sample by requiring an electron withEe

T . 11 GeV
and jhej , 1.1 or a muon with p

m
T . 11 GeVyc and

jhmj , 0.6. We require two additional charged lepton
(excluding taus) withEe

T . 5 GeV and jhej , 2.4, or
p

m
T . 4 GeVyc and jhmj , 1.0. At least one lepton

passing the high threshold cut must pass stringent lep
identification cuts [5–9]. We require electron candidat
to have lateral and longitudinal shower profiles consiste
with an electron and be well matched to a charg
track. Muon candidates must be identified in the mu
chambers, be well matched to a charged track, and dep
energy in the calorimeter consistent with a minimu
)
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ionizing particle. To improve the integrity of these events
we require that all three leptons originate from a commo
vertex within 60 cm of the center of the detector. The
60 cm requirement is to preserve the projective towe
geometry of the calorimetry. We find 59 events meetin
these requirements.

The principal backgrounds to thẽx6
1 x̃

0
2 signature are

real trilepton events fromW6Z0, Z0Z0, t t and b b and
dilepton plus fake lepton [10] events fromW1W2, Z0

and the Drell-Yan process. To remove background from
b b, cc, and t t production and fake leptons, each lepton
must be isolated, where isolation is defined by requirin
less than 2 GeVET in the calorimeter inside anh-f cone
of radiusDR ;

p
sDfd2 1 sDhd2  0.4 around the lep-

ton, excluding the energy deposited by the lepton. The
must be at least onee1e2 or m1m2 pair, theh-f dis-
tance between any two leptonssDR,,d must be greater
than 0.4 (to remove background fromb b production,
as well as some anomalously reconstructed cosmic r
events) and the difference in azimuthal angle between th
two highestpT leptons sDf,1,2 d in the event must be
less than170± (to remove background from the Drell-Yan
process and cosmic rays) [9]. Events containing a sam
flavor ,1,2 pair with invariant mass in the regions of the
resonancesJyc (2.9–3.3 GeVyc2), Y (9–11 GeVyc2),
and Z0 (75–105 GeVyc2) are removed. These require-
ments select six events (see Table I). In the previous da
sample [5] these criteria selected zero events.

The presence of two LSPs and a neutrino in the fina
state of the signal can lead to substantial missing tran
verse energysEyT d. The dominant remaining backgrounds,
b b production and the Drell-Yan process, do not have sig
nificant EyT . As seen in Table I, requiringEyT . 15 GeV
reduces the background by 85% while retaining 82% o
the expected signal forMx̃

6
1

ø 70 GeVyc2. No events
pass theEyT cut.

TABLE I. Events remaining after each cut in the 1994–
1995 datas87 pb21d. One Z0 event and oneJyc event are
removed with the resonance cuts. For comparison we indica
the expected background (BG) and an expected signal from
representative MSSM Monte Carlo (MC) sample (Mq̃  Mg̃ 
200 GeVyc2, tanb  2, m  2400 GeVyc2, Mx̃

6
1

. Mx̃
0
2

.
70 GeVyc2, sx̃

6
1 x̃

0
2

 4.8 pb, andetot  6.7%).

Expected MSSM
Cut Events BG MC

Dilepton data set 3 270 488
Trilepton data set 59
Isolation, 2 GeV 23
Requiree1e2

or m1m2 23
DR,, . 0.4 9
Df,1,2 , 170± 8 9.6 6 1.5 6.2 6 0.6
Jyc , Y, Z0 removal 6 6.6 6 1.1 5.5 6 0.5
EyT . 15 GeV 0 1.0 6 0.2 4.5 6 0.4

Total Run I data
s106 pb21d 0 1.2 6 0.2 5.5 6 0.4
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For the remainder of the analysis we combine this da
with the previous19 6 1 pb21 sample [5] for a total
Run I integrated luminositys

R
L dtd of 106 6 7 pb21

and zero candidate trilepton events.
To determine the SM background and the sign

acceptance, we use theISAJET Monte Carlo program
[11] with a CDF detector simulation. For backgroun
due to vector boson pair production we use theoreti
calculations of cross sections and branching ratios [1
For background due tot t production and the Drell-Yan
process we use cross sections measured by CDF [7].
rate of lepton misidentification was determined from
W6 ! ,n data sample to bes0.29 6 0.04d% per event.
After all cuts are applied the total expected background
1.2 6 0.2 events in106 pb21.

The total detection efficiencysetotd is a product of the
trigger efficiency, the isolation efficiency, the lepton iden
tification efficiency and a geometric and kinematic acce
tance factor. The triggers used were single lepton a
dilepton triggers, with single lepton trigger efficiencies o
e

trig
e  s8714

25d% above 11 GeV ande
trig
m  s87 6 3d%

above11 GeVyc. We determine the lepton isolation an
identification efficiencies by studying the second le
ton in Z0 ! ,1,2 events. The isolation efficiency is
s90 6 4d% per lepton. The per-event trilepton identifi
cation efficiency ranges froms59 6 1d% to s82 6 1d%,
depending on the combination of leptons in the eve
The geometric and kinematic acceptance is determin
using ISAJET and the CDF detector simulation. The to
tal efficiency setotd is mainly a function of thex̃6

1 and
x̃

0
2 masses, which are nearly equal for the region

the search. The efficiency increases linearly from 3%
50 GeVyc2 to 12% at100 GeVyc2, because massivẽx6

1
and x̃

0
2 lead to more central and more energetic lepto

which are detected with higher efficiency.
We see no signal candidates and thus set limits

the available parameter space. A particular point in p
rameter space is excluded if the predicted number
events exceeds the number of eventsssd expected at the
95% confidence level limit given that zero events we
observed. The predicted number of events is a fun
tion of the cross section times branching ratiofss p p !

x̃
6
1 x̃

0
2 1 XdBsx̃6

1 x̃
0
2 ! 3, 1 Xdg andetot ?

R
L dt. We

calculate cross section times branching ratioss ? BRd
using ISAJET 7.20 with CTEQ-3L [13] parton distribu-
tion functions and calculates by convolving the to-
tal systematic uncertainty as a Gaussian smearing w
a Poisson distribution. The total systematic uncertain
is 15%, which includes uncertainty in the total inte
grated luminositys67%d, the parton distributions67%d,
the trigger efficiencys66%d, and the trilepton-finding
efficiency s62%d, leading to s  3.1. To calculate
the uncertainty due to the parton distribution functio
we compareCTEQ-3L with a variety of other parton
distribution functions. We use the largest uncertain
in the efficiency of any single lepton trigger for al
events.
5278
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Using the model assumptions listed in the first para
graph, four parameters determine thex̃

6
1 and x̃

0
2 masses,

production cross sections, and decay branching ratios: t
ratio of the Higgs vacuum expectation valuesstanbd, the
Higgsino mass parametersmd, the gluino masssMg̃d, and
the squark-to-gluino mass ratiosMq̃yMg̃d. To make the
analysis more independent of details of the Higgs sec
tor, we consider a region in the MSSM where there is
no significant chargino or neutralino branching fraction
into Higgs particles. Technically, we do this by choosing
the mass of the pseudoscalar HiggssMAd to be above the
charginoyneutralino mass and useMA  500 GeVyc2.
The production and decay ofx̃

6
1 x̃

0
2 are independent of the

remaining MSSM parameter, the trilinear top squark cou
pling sAtd. We fix At  my tanb for consistency with
other CDF analyses [14]. The search is more sensitive
low values of tanb; tanb * 10 leads to higher branch-
ing ratios to taus, for which we do not search. We con
sider1.1 # tanb # 8. We use21000 GeVyc2 , m ,

2200 GeVyc2, because the search is more sensitive t
negative values ofm, andjmj is expected to be on the or-
der of the energy scale at which supersymmetric phenom
ena should be observable. Also, smalljmj increases the
Higgsino content of thẽx6

1 and x̃
0
2 , which decreases the

branching ratio to leptons.ISAJET requiresMg̃ andMq̃ as
input parameters to calculateMx̃6

1
. The sleptonysneutrino

mass constraints [3] useMg̃ and Mq̃ to determineM,̃

FIG. 1. sBRsx̃6
1 x̃

0
2 ! 3, 1 Xd versus x̃

6
1 mass for rep-

resentative points in the MSSM parameter space, name
m  2400 GeVyc2, tanb  2, and (a) Mq̃yMg̃  2.0;
(b) Mq̃yMg̃  1.5, (c) Mq̃yMg̃  1.2, and (d) Mq̃yMg̃  1.0.
BR is the summed branching ratio into the four trilepton mode
(e1e2e, e1e2m, em1m2, and m1m2m). The solid line is
the 95% confidence level upper limit based on an observatio
of zero events. We set a mass limit of77.0 GeVyc2 when
Mq̃  Mg̃. All MSSM points in this plot yield three body
decays of thex̃6

1 and x̃
0
2 . The D0 limit [15] is for a single

trilepton mode which we scale up by 4 to match our notation.
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FIG. 2. The experimental limit onMx̃
6
1

as a function ofm
for tanb  2 andMq̃  Mg̃ (upper) and as a function of tanb
for m  2400 GeVyc2 and Mq̃  Mg̃ (lower). The ALEPH
limits shown [17] are from a search for all possible final state
In this analysisMñ ø 100 GeVyc2. Minimal SUGRA models
favor the region of smalljmj values.

and Mñ ; large differences inMg̃ and Mq̃ lead to heavy
sleptons and sneutrinos and decrease the branching
tio to leptons. Thus, this analysis considersMq̃yMg̃ . 1
to avoid invisible decays through light sneutrinos an
Mq̃yMg̃ , 2 to enhance leptonic final states. For the r
gions of parameters space we examineMg̃ ø 3Mx̃

6
1

, so
we use150 GeVyc2 # Mg̃ # 340 GeVyc2.

Figure 1 shows the limit for a few representative poin
in the Mx̃

6
1

2 ss ? BRd plane. All points above the
solid line are excluded. For comparison, we includ
the result of the D0 Collaboration [15]. D0 reports th
averages ? BR over the four trilepton modes; we use
the sum. Figure 2 shows the limit onMx̃

6
1

as a function
of m and tanb [16]. These limits are compared to
the limits from ALEPH [17] in Fig. 2. The ALEPH
result is from a search for all possible final states. T
OPAL, L3, and DELPHI Collaborations report simila
limits [18].

We also examined a string-inspired SUs5d 3 Us1d one-
parameter supergravity model [19]. This model requir
Mx̃

6
1

& 87 GeVyc2 and Mx̃
0
2

& 91 GeVyc2 and has a
nearly maximized trilepton branching ratio viãx0

2 !

,̃R, and ,̃R ! ,x̃
0
1 . As shown in Fig. 3, we exclude

most of this model and setMx̃
6
1

. 80.5 GeVyc2, Mx̃
0
2

.

86.7 GeVyc2, ands ? Bsx̃6
1 x̃

0
2 ! 3, 1 Xd , 0.48 pb.

In conclusion, we find no evidence for̃x6
1 x̃

0
2 pro-

duction in 1.8 TeV p p collisions and set limits on
x̃

6
1 and x̃

0
2 masses ands ? BR within the framework

of MSSM models which haveMx̃
6
1

ø Mx̃
0
2

ø 2Mx̃
0
1

and three-body decays of̃x6
1 and x̃

0
2 . The strongest

limit is sx̃
6
1 x̃

0
2
Bsx̃6

1 x̃
0
2 ! 3, 1 Xd , 0.34 pb, Mx̃

6
1
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FIG. 3. sBRsx̃6
1 x̃

0
2 ! 3, 1 Xd versus x̃

6
1 mass for the

SUs5d 3 Us1d model [19]. This sets a mass limit o
80.5 GeVyc2. In this model, the ,̃R is lighter than the
x̃

0
2 , resulting in two body decays of thẽx0

2 . Note that the
acceptance for events from this model decreases at largex̃

6
1

mass. In this region, the LSP mass approaches that of th,̃,
resulting in soft final state leptons which are difficult to detec

81.5 GeVyc2, and Mx̃
0
2

. 82.2 GeVyc2 for tanb  2,
m  2600 GeVyc2, andMq̃  Mg̃.
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