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Perturbative calculations suggest that the electroweak phase transition in the minimal supersym
standard model (MSSM) can be strong enough for baryogenesis for Higgs masses up tomH ,
105 GeV, provided that the lightest stop mass is in the range 100–160 GeV. We have performed
scale lattice Monte Carlo simulations of the MSSM electroweak phase transition. We find that the
sition is in factstrongerthan in perturbation theory. This guarantees that the perturbative mass bo
are conservative ones, and provides a strong motivation for further studies of MSSM baryoge
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It is known from studies of primordial nucleosynthes
that there is a nonvanishing baryon to photon dens
ratio in the Universe,h ø 10210 (for recent reviews, see
[1]). It is one of the main challenges of cosmology
understand how such an asymmetry could come ab
Indeed, different scenarios for producingh . 0 abound.

Among all the scenarios for baryogenesis, one
unique: Thelast instancein the history of the Universe
that a baryon asymmetry could have been generate
the electroweak phase transition [2]. As such, this is a
the scenario requiring theleast assumptionsbeyond es-
tablished physics. In principle, even the standard mo
contains the necessary ingredients for baryon number g
eration: anomalous baryon number violation,CP viola-
tion, and an electroweak phase transition providing fo
nonequilibrium environment (for a review, see [3]). On
an asymmetry has been generated, it must also be
served, and this gives a strict constraint on how stron
of the first order the transition must be [2]. In fact, th
constraint on the strength of the phase transition is
most rigorous of the constraints mentioned, since it c
cerns a thermodynamicalequilibrium situation after the
transition, and equilibrium physics is much better und
stood than nonequilibrium physics.

However, it turns out that on a more quantitative lev
the standard model is too restricted for baryogene
The main reason is that the strength of the electrow
phase transition depends on the Higgs mass, and
mH * 75 GeV, there is no electroweak phase transiti
at all [4,5]. Since the experimental lower bound in th
standard model ismH , 88 GeV [6], the existence of the
baryon asymmetry alone requires physics beyond wha
currently known.

The simplest extended scenarios that allow for bary
asymmetry generation at the electroweak phase tra
tion have a Higgs sector which differs from that in th
standard model. A particularly appealing scenario is
electroweak phase transition in the minimal supersymm
0031-9007y98y80(24)y5259(4)$15.00
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ric standard model (MSSM) [7–9]. Indeed, it has r
cently become clear that the electroweak phase transi
can then be much stronger than in the standard mo
and strong enough for baryogenesis at least for Hig
masses up to 80 GeV [10–17]. For the lightest stop m
mt̃R lighter than the top mass, one can go even up
,100 GeV [18]: In the most recent analysis [19], th
allowed window was estimated atmH , 75 105 GeV,
mt̃R , 100 160 GeV. In this regime, the transition could
even proceed in two stages [18] via an exotic intermedi
color breaking minimum. This Higgs and stop mass wi
dow is interesting from an experimental point of view, a
well, as the whole range will be covered at LEP and t
Tevatron [19].

Unfortunately, the statement concerning the stren
of the electroweak phase transition in this regime
subject to large uncertainties. The first indication
this direction is that the 2-loop corrections to the Higg
field effective potential are large and strengthen t
transition considerably [11]. A further sign is that th
gauge parameter and, in particular, the renormalizat
scale dependence of the physical results derived fr
the 2-loop potential, which are formally of the 3-loo
order, are numerically quite significant [18]. Hence
nonperturbative analysis is needed.

The purpose of this paper is to study the MSS
electroweak phase transition with lattice Monte Car
simulations, and to extrapolate the results to the infin
volume and continuum limits. Since the MSSM at fini
temperature is a multiscale system with widely differe
scales from,pT to ,g2

W T , and since there are chira
fermions, the only way to do the simulations in practice
to use an effective 3D theory [20]. This approach consi
of a perturbative dimensional reduction into a 3D theo
with considerably fewer degrees of freedom than in t
original theory [22–24], and of lattice simulations in th
effective theory. The analytical dimensional reductio
step has been performed for the MSSM in [13–15,1
© 1998 The American Physical Society 5259
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Lattice simulations in dimensionally reduced 3D theorie
have been previously used to determine the properties
the electroweak phase transition in the standard mode
great detail [25–31].

In the regime considered, the right-handed stop fieldU
plays an important role in addition to the Higgs field. Th
effective 3D Lagrangian describing the electroweak pha
transition in the MSSM is therefore an SUs3d 3 SUs2d
gauge theory with two scalar fields [13,18]:

L 3D
cont ­

1
4

Fa
ijFa

ij 1
1
4

GA
ijGA

ij 1 gHyHUyU

1 sDw
i HdysDw

i Hd 1 sDs
i UdysDs

i Ud 1 m2
H3HyH

1 m2
U3UyU 1 lH sHyHd2 1 lUsUyUd2. (1)

Here Dw
i and Ds

i are the SU(2) and SU(3) covarian
derivatives, andH is the combination of the Higgs dou-
blets which is “light” at the phase transition point. Th
U(1) subgroup of the standard model induces only sm
perturbative contributions [31], and can be neglected.

The complexity of the original 4D Lagrangian is hidde
in Eq. (1) in the expressions of the parameters of the 3
theory. A dimensional reduction computation leading
actual expressions for these parameters has been mad
[18] for a particularly simple case. Let us stress here th
the reduction is a purely perturbative computation and
free of infrared problems. The relative error has be
estimated in [13,18], and should be&10%.

It is prohibitively time consuming to study the full
parameter space of Eq. (1) with Monte Carlo simulation
Thus, we only consider a special parameter choice: W
take a large left-handed squark mass parametermQ ,
1 TeV, vanishing squark mixing parameters, and a hea
CP-odd Higgs particle (mA * 300 GeV). We fix tanb ­
3, corresponding tomH , 95 GeV. We then study the
3D theory in Eq. (1), parametrized by the temperatu
T and the right-handed stop mass parameterm̃U (m̃U

determines the zero temperature right-handed stop m
throughmt̃R ø sm2

top 2 m̃2
Ud1y2). The actual expressions

used for the dimensional reduction are given in [32].
The philosophy is now that we determine the nonpertu

bative results for the continuum theory in Eq. (1) throug
lattice simulations, and compare them with 3D perturb
tion theory, employing the same 3D parameters. To
more precise, we compare with 2-loop 3D perturbatio
theory in the Landau gaugej ­ 0 and for theMS scale
parameterm ­ T the values which have been used i
[19], as well. This allows one to find out whether ther
are any nonperturbative effects in the system. Once t
has been done, one can go back to a more complica
situation and study it perturbatively, adding to the pertu
bative results the nonperturbative effects found here.
the reduction step is purely perturbative, the nonperturb
tive effects found with the 3D approach apply also to th
effective potential computed in 4D [11,17,19].
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To perform lattice simulations, we discretize the theo
in Eq. (1) with standard methods (see [32]). The latti
parameters are expressed in terms of the lattice spa
a and the continuum parameters through 2-loop relatio
[33] which become exact in the continuum limit.

Well-controlled infinite volumeand continuum limits
are essential in order to obtain reliable results. Th
for each point in the parameter space, we always perfo
simulations with several lattice volumes and extrapolate
the infinite volume. We use the lattice spacings obtain
through

bS ;
6

g2
S3a

­ 12, 20 , (2)

whereg2
S3 ­ g2

ST , T is the 3D SU(3) gauge coupling
and a is the lattice spacing. The fact that we use ju
two values ofbS allows only a linear extrapolation to
the continuum limitbS ­ `. However, it is understood
analytically that the dominant corrections are linear [34
and, moreover, linear extrapolations work extremely w
for the case of the standard model [26,31].

All in all, we have performed 42 different Monte Carl
runs: combinations of lattice sizes and parameters. T
total CPU time was,7.5 node years on a Cray T3E.

The physical quantities we discuss here are the cr
cal temperatureTc, the scalar field expectation values, an
the latent heat. Quantities such as the latent heat en
for instance, the estimates for the nucleation and rehea
temperatures (see, e.g., [35]), which are needed to de
whether the scalar field expectation values relevant for c
mology should be taken atTc or some lower temperature

The phase diagram and the critical temperatures.—
The general phase structure of the theory is expected to
the following [18]. The system has a first order transitio
at Tc , 100 GeV for m̃U & 65 GeV. This transition is
strong even thoughmH is large, due to the stop loops
As m̃U becomes larger (mt̃R smaller), the transition gets
even stronger, and then at some point one may get a t
stage transition. The existence of a two-stage transit
depends on the parameters of the theory, and for la
squark mixing parameters the two-stage region is n
reached [19].

Our numerical results are shown in Fig. 1. It is se
that the phase diagram is qualitatively the same as in p
turbation theory, although the critical temperatures a
the triple point have been displaced by a few GeV. W
have data atbS ­ 20 only at m̃U ­ 50, 65 GeV, and the
continuum extrapolation is possible only at these poin
Nevertheless, we expect similar (small) effects at the ot
points. As of now, we have no clear theoretical e
planation for the discrepancy between the lattice resu
and perturbation theory: The reason might be, e.g.
3-loop perturbative effect, or a genuine nonperturbat
contribution.

Latent heat.—The main result of this paper is show
in Fig. 2, which shows the latent heat. It is the mo
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FIG. 1. The phase diagram and the critical temperatures. T
continuous lines are from the 2-loop perturbative effectiv
potential in the Landau gauge. Open symbols correspond
infinite volume extrapolations and filled symbols correspond
continuum extrapolations.

important gauge-invariant physical characterization of t
strength of a first order transition. We observe th
the nonperturbative transition to the standard electrowe
minimum at m̃U & 67 GeV is significantly (up to 45%)
stronger than the perturbative transition. In the regim
m̃U * 67 GeV, where there is a two-stage transition,
comparison with perturbation theory is more difficult a
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FIG. 2. The latent heat.
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the whole pattern is shifted to the right, but the qualitativ
behavior is the same.

Scalar field expectation values.—The Higgs field vac-
uum expectation valueyH is the object by which one usu-
ally characterizes whether the phase transition is stron
enough for baryogenesis [2,3], the requirement bein
yHyT * 1. As such,yH is, however, a gauge dependen
quantity. If one computes it in the Landau gauge (y

L
H ),

as is usual, then in terms of gauge-invariant operators t
same expression would be nonlocal. On the other han
there is a simple local gauge-invariant quantity closely re
lated toyH , namely,HyH , y

2
Hy2. The problem with

HyH is that, being a composite operator, it is a scale de
pendent quantity in, say, the modified minimal subtractio
(MS) scheme. We hence define on the lattice

yH

T
;

√
2

*
HyHMSs g2

S3d
T

+!1y2

, (3)

which is a natural gauge-invariant generalization o
y

L
HyT , and can be measured in simulations. Note tha

with respect to 4D units, there is a trivial rescaling byT
in theHyH appearing in Eq. (3).

The numerical results foryHyT , yUyT are shown in
Fig. 3. Again, we observe a value larger than in pertur
bation theory in the regimẽmU & 67 GeV. Moreover, in
qualitative accordance with perturbation theory, there is
rapid increase inyHyTc in the regime of the two-stage
transition, m̃U * 67 GeV. The relative nonperturbative
strengthening effect is smaller than for the latent hea
which is easy to understand sinceL ~ DsHyHd , Dy

2
H

[26], implying dLyL , 2dyHyyH .
In conclusion, at least for the parameter values studie

(mH , 95 GeV, mt̃R
, 150 160 GeV), the electroweak
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FIG. 3. The scalar field expectation values in the broke
phases atTc.
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phase transition is significantly stronger than indicated b
2-loop perturbation theory. This implies that the previou
perturbative Higgs and stop mass bounds for electrowe
baryogenesis are conservative estimates. In particular,
electroweak phase transition could be strong enough
baryogenesis forall allowed Higgs massesin this regime
(mH & 105 GeV) [19]. Because of the nonperturbative
strengthening effect seen, the stop mass could be sligh
larger than the perturbative value, up to, say,mt̃R ,
165 GeV. For the smallest stop masses, on the oth
hand, there is the possibility of a two-stage transitio
in which the Higgs field gets an extremely large vacuu
expectation value.

These results provide a strong motivation for precis
studies of the nonequilibriumCP-violating real time
dynamics and baryon number generation at the MSS
electroweak phase transition.
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