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Exponential Localization of Photons
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It is shown that photons can be localized in space with an exponential falloff of the energy dens
and photodetection rates. The limits of localization are determined by the fundamental Paley-Wie
theorem. A direct mathematical connection between the spatial localization of photons and the de
in time of quantum mechanical systems is established. [S0031-9007(98)06370-4]
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The purpose of this Letter is to prove that, contrary to
widespread belief, photons can be localized in space w
an exponential falloff of the photon energy density an
of the photodetection rates. In that respect, photons a
not much different from massive particles. The only con
straint on the photon localizability comes from the fun
damental Paley-Wiener theorem [1]. The mathematic
mechanism that limits the decrease of the photon ener
density is the same as in the case of the decay of quant
systems with time. The exponential falloff of the photon
wave function can be of the order expf2fsrdg, wherefsrd
increases withr slower than linearly. I shall show that
this exponential localization holds not only for the energ
density and for the photodetection rates but also for th
modulus of the Landau-Peierls function [2] that is viewe
by some as the proper position wave function of the ph
ton. I shall present simple analytic expressions for th
photon wave functions that exhibit such an exponential
small tail. I shall also contrast the localization propertie
of one-photon states with those containing many photon

Adlard, Pike, and Sarkar [3] have recently constructe
single photon states that exhibit arbitrarily high power
law falloff of the energy density and of the photodetectio
rates. These states were derived from the solutio
of Maxwell equations that have the form of complex
rational functions of coordinates. Such solutions wer
envisaged a long time ago by Gårding [4], Synge [5], an
Trautman [6] and were used more recently by Ziolkowsk
[7] and Hellwarth and Nouchi [8] to describe focused
electromagnetic pulses. Incidentally, the arbitrarily hig
power-law falloff, found in Ref. [3], could have been
obtained by simply differentiating the old solutions with
respect to space coordinates and by observing that
derivative of a solution of Maxwell equations is also a
solution. In the present Letter I go beyond all thes
algebraic solutions by providing examples of much mor
tightly localized wave functions and by establishing th
absolute limit of the photon localization.

The most general one-photon (1ph) state can be d
scribed by two complex functions of the wave vector

j1phl ­
Z

d3k f1skdayskd j0l 1
Z

d3k f2skdbyskd j0l ,

(1)
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whereayskd andbyskd are the creation operators of pho-
tons with the left-handed and the right-handed polariza
tions, respectively, normalized to a delta function,

faskd, aysk0dg ­ dsk 2 k0d ­ fbskd, bysk0dg . (2)

In order to allow for the probabilistic interpretation, the
two componentsf6skd of the photon wave function in
momentum representation must be normalized to one,Z

d3k jf1skdj2 1
Z

d3k jf2skdj2 ­ 1 . (3)

The photon states are conveniently described in term
of the Riemann-Silberstein [9] complex vectorF (RS
vector) built from the electric displacement and the
magnetic induction vectors,

Fsr, td ­
Dsr, td
p

2e0
1 i

Bsr, td
p

2m0
. (4)

The Maxwell equations in free space lead to the following
evolution equation for the RS vector:

≠tFsr, td ­ 2ic= 3 Fsr, td . (5)

The complex RS vector carries the same amount o
information as two real vectorsD and B. One of the
advantages of using the RS vector is that the energ
density of the classical electromagnetic fieldHclsr, td is
equal to the square of the norm of this vector

Hclsr, td ­
D2sr, td

2e0
1

B2sr, td
2m0

­ Fysr, td ? Fsr, td .

(6)

Upon quantization of the electromagnetic field, the RS
vector becomes the field operatorF̂sr, td. It can be de-
composed into annihilation and creation operators [13,14

F̂sr, td ­
Z

d3k dskd eskd

3 faskde2ivt1ik?r 1 byskdeivt2ik?rg , (7)

wheredskd is a normalization factordskd ­
p

h̄ckys2pd3

and eskd is a unit polarization vector satisfying the
equations

k 3 eskd ­ 2ikeskd , (8)
© 1998 The American Physical Society 5247
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jeskdj2 ­ 1 . (9)

The polarization vectorse6skd for left-handed and right-
handed photons are related toeskd through the formulas

e1skd ­ eskd, e2skd ­ ssseskddddp. (10)

The energy density of a one-photon state is determined
the expectation value of the energy density operator

Hqsr, td ­ k1phj : F̂ysr, td ? F̂sr, td : j1phl , (11)

where the normal ordering of the creation and annihilatio
operators arises from the subtraction of the (infinite
energy density in the vacuum state. The right-hand si
of (11) can be evaluated with the help of Eqs. (1), (2), an
(7) and written as a sum ofincoherentcontributions from
two photon polarization states

Hqsr, td ­ jF1sr, tdj2 1 jF2sr, tdj2, (12)

where

F6sr, td ­
Z

d3k dskd e6skdf6skde2ivt1ik?r . (13)

Since both polarization states in Eq. (12) contribute ind
pendently to the total energy density, one may consid
only one polarization at a time. Thus, the problem o
the best localization of a photon reduces to the questio
What is the fastest possible falloff with the distancer of
the modulus of vector functionsF6sr, td? In order to an-
swer this question, it is convenient to represent the R
vector in terms of a “superpotential”Zsr, td,

Fsr, td ­ = 3 fsiycd≠tZsr, td 1 = 3 Zsr, tdg . (14)

The complex vector fieldZsr, td is a complexified version
of the Hertz potential [15]. Every functionFsr, td repre-
sented in the form (14) satisfies Eq. (5) provided only th
the Hertz vectorZsr, td satisfies the wave equationµ

1
c2

≠2
t 2 D

∂
Zsr, td ­ 0 . (15)

Therefore, the complex Hertz vectorZsr, td has the
following decomposition into plane waves:

Zsr, td ­
Z

d3k
£
h1skd e2ivt1ik?r 1 hp

2skd eivt2ik?r
§

,

(16)

whereh6skd are arbitrary vector functions ofk. Hence,
the positive frequency part ofFsr, td can be written in the
form

F1sr, td ­
Z

d3k k 3 fikhskd 2 k 3 hskdge2ivt1ik?r .

(17)

A simple example of an exponentially localized photo
state is obtained by choosinghskd in the form

hskd ­ m
p

l k25y2 e2kl21ykl , (18)

wherem is a constant vector that includes the normaliza
tion factor andl is a parameter that controls the localiza
5248
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tion length. For this choice ofh, one may easily express
Z in terms of elementary functions [16]

Zsr, td ­ m
2p3y2l

ir

∑
g1

µ
ct 2 r

l

∂
2 g1

µ
ct 1 r

l

∂∏
,

(19)

g1std ­ exps22
p

1 1 it d . (20)

The positive frequency solution of the Maxwell equation
built according to Eq. (14) from the Hertz vector (19
describes a single photon state having the form of
spherical shell converging for negative and diverging f
positive values oft, attaining the maximal localization at
t ­ 0. The functionZ and its time derivative att ­ 0
have the form

Zsr, t ­ 0d ­ m
4p3y2l

r
e2

p
2
pp

11sryld211

3 sins
p

2

rq
1 1 sryld2 2 1 d , (21)

i
c

≠tZsr, t ­ 0d ­ m
4p3y2l

r
e2

p
2
pp

11sryld211

4
p

1 1 sryld2

3 sins
p

2

rq
1 1 sryld2 2 1 1 fd ,

(22)

tanf ­ ryls
q

1 1 sryld2 1 1d . (23)

Both these functions falloff exponentially at larger as
exps2

p
2ryld (multiplied by some negative power ofr),

and this property will be shared by their space derivative
Hence, the photon energy density as defined by Eq. (1
will also exhibit an exponential falloff.

Having shown that an exponential localization is po
sible, I shall now address the question of the limi
of localizability. Since I am interested in a uniform
localization in all directions, I will assume that the Fourie
transformhskd of the Hertz potential is a scalar function
l3hssdys of the dimensionless lengths ­ lk of the
wave vectork, multiplied by a constant vector. The
scale parameterl refers to some characteristic dimensio
of the wave, and the factorl3ys has been pulled out
for convenience. In this case, as in my simple examp
the photon wave function can be written in terms o
a single scalar functiong of the argumentssct 2 rdyl
and sct 1 rdyl. After the integration over the angula
variables, one obtains the following representation for t
positive frequency part of the complex Hertz vector

Zsr, td ­ m 4pl2
Z `

0
dk hslkd

sinskrd
r

e2ivt , (24)

­ m
2pl
ir

∑
g

µ
ct 2 r

l

∂
2 g

µ
ct 1 r

l

∂∏
, (25)
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gstd ­
Z `

0
ds hssd e2ist . (26)

The asymptotic behavior of this function for large value
of its argument is restricted by the Paley-Wiener theore
[1]. According to this theorem, the Fourier transformgstd
of a square-integrable functionhssd that vanishes for all
negative values ofs must obey the following integrability
condition: Z `

2`
dt

jjj log jgstdjjjj
1 1 t2 , ` . (27)

This condition does not allow for the exponential fallof
of the form gstd , exps2Atd but anything arbitrarily
weaker than that is allowed. For example, we may hav

gstd , exps2Atgd, g , 1 . (28)

My simple analytic example falls into this category with
g ­ 1y2. Since the asymptotic behavior ofgstd for large
t is determined by the behavior ofhssd near s ­ 0
(as given by the stationary phase method), one m
make g to falloff faster than exps2A

p
rd by forcing h

to approach zero faster than in (18). For example, takin
hssd ­ s21 exps21ysnd exps2sd, one obtainsgstd ,
exps2Atnysn11dd. In order to obtain only a logarithmic
departure from the linear exponential falloff,

gstd , exps2Aty logtd , (29)

one has to chooseh which decreases even faster at zer
with the use of an iterated exponential functionhssd ,
expf2 exps1ysdg. By iterating exponential functions sev-
eral times, one may get arbitrarily close to the linear ex
ponential function obtaining

gstd , exph2Aty logflogs. . . logtdg . . .j . (30)

As I have stated in the introduction, the same expone
tial localization holds for the Landau-Peierls (LP) pho
ton wave function. The LP wave function (often called
the position wave function [17]) differs from the positive
frequency part of the RS vector (called the energy wav
function) by the presence of an additional factor1y

p
h̄ck

in the Fourier representation [17]. Therefore, in m
simple example the position wave function can be ob
tained from the following complex Hertz vector:

ZLP sr, td ­ m

s
l

h̄c

Z
d3k k23 e2kl21ykl e2ivt1ik?r .

(31)

This integral can again be explicitly evaluated and ex
pressed in terms of the Macdonald functionK1 [16],

ZLPsr, td ­ m
4pl
ir

s
l

h̄c

∑
g2

µ
ct 2 r

l

∂
2 g2

µ
ct 1 r

l

∂∏
,

(32)

g2std ­
p

1 1 it K1s
p

1 1 it d . (33)
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The asymptotic behavior of this function for large value
of t is given by the same exponential function as in (20

g2std ,
q

p
p

1 1 it exps22
p

1 1 it d . (34)

The only difference is the appearance of a prefact
involving the square root of the argument. This wa
to be expected since atk ­ 0 both functions (20) and
(33) differ only by a square root ofk. This comparison
of the position wave function with the energy wav
function shows that the statement “even when the positi
wave function is strongly concentrated near the origi
the energy wave function is spread out over spa
asymptotically liker27y2” (Ref. [17], p. 638) is incorrect.
Both wave functions may be “strongly concentrated ne
the origin.”

The limitation on the localization of the energy densit
imposed by the Paley-Wiener theorem is a purely qua
tum phenomenon. It does not arise in the classical theo
and also it does not apply to those quantum states of
electromagnetic field that have classical counterparts.
order to prove this point, let me consider a general coh
ent (coh) state of the electromagnetic field

jcohl ­ N exp

" Z
d3k f1skdayskd

1
Z

d3k f2skdbyskd

#
j0l . (35)

The energy density of the electromagnetic field calculat
in this state coincides with the classical expression (6),

Hcohsr, td ­ kcohj : F̂ysr, td ? F̂sr, td : jcohl

­ Fy
cohsr, td ? Fcohsr, td

­ jF1sr, td 1 Fp
2sr, tdj2. (36)

The difference between the energy density (36) in
coherent state and the energy density (12) in a one-pho
state lies in the presence of an interference term betwe
the contributions from positive and negative frequenc
parts. Owing to the presence of this interference term o
can escape the constraints imposed by the Paley-Wie
theorem and one can obtain an arbitrary localization
the energy density (36). Of course, the localization w
not persist at all times because the electromagnetic fi
moves with the speed of light. However, att ­ 0 one
may chooseFcohsr, t ­ 0d at will, provided only that it
is divergenceless. For example, one may takeFcoh in the
form

Fcohsr, t ­ 0d ­ = 3 Vsrd , (37)

whereVsrd is a vector field with finite support restricted
to an arbitrarily small region in space.

I have discussed so far only the localization of the e
ergy density, but the photodetection rates are governed
the same rules. Since such rates are given as the ex
tation values of the product of the positive frequency pa
5249
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of the electric field operator by its Hermitian conjugat
[17,18],

kcjÊ
s1dy
i sr, tdÊs1d

i sr, td jcl , (38)

they can never contain interference terms between t
positive and negative frequency. Therefore, even thou
they may falloff exponentially, the decrease rate is aga
limited by the Paley-Wiener theorem.

Localization restrictions that apply to one-photon state
are of universal character. They hold for all particles
massive and massless, and they arise from the mathem
cal properties of the positive frequency solutions. Th
lack of a reasonable position operator for the photon is n
a source of limitations on the photon localization. Suc
an operator exists for the electron, but the rate of decrea
of the probability densitycysr, tdcsr, td for large values
of r evaluated for any positive frequency solution of th
Dirac equation is still subjected to the same limitations,
in the case of a photon.

Exponential localization of photons may seem to be
contradiction with the results obtained by Jauch and Pir
[19] and Amrein [20]. In particular, it seems to be in dis
agreement with the statement [20] “The electric field o
a localized photon decreases asr27y2 at large distances
from the volume of localization.” This statement, how
ever, is based on a concept of strict mathematical loc
izability which requires that the probability (based on th
LP wave function) to find the photon outside the localiza
tion region isexactlyzero. In my opinion, this concept of
strict localizability is untenable for three reasons. Firs
strict localizability can never be tested because no me
surement can give an exact result. Second, all realis
measurements are based on the Glauber-Mandel theor
photodetection involving the counting rates (38) and n
the abstract LP wave function. Third, Hegerfeldt [21] ha
shown that strictly localized states are inconsistent wi
causality. Exponentially localized photon states describ
in this Letter do not satisfy the criterion of strict localiz-
ability but from the physical point of view they are much
better localized. These states exhibit the exponential
calization not only of the photon energy and of the pho
todetection rates but also of all other spatial distribution
including the modulus squared of the LP wave function.

There is a close formal analogy between the spatial l
calization of photons and the time decay law. The Pale
Wiener theorem imposes exactly the same mathemati
restrictions on the asymptotic behavior of the decay la
of quantum systems, as has been pointed out a long ti
ago by Khalfin [22]. For every quantum system governe
by a Hamiltonian bounded from below, the probabilit
amplitudeAstd to remain in the initial state may be writ-
5250
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ten as the following Fourier integral:

Astd ­
Z `

E0

dE jkEjclj2 e2iEt . (39)

The Paley-Wiener theorem again forbids a linear exp
nential decay ofAstd but the asymptotic behavior that is
only logarithmically slower, as in (30), is allowed.

I thank Z. Bialynicka-Birula, M. Lewenstein, and
A. Trautman for fruitful discussions.
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