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Exponential Localization of Photons
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It is shown that photons can be localized in space with an exponential falloff of the energy density
and photodetection rates. The limits of localization are determined by the fundamental Paley-Wiener
theorem. A direct mathematical connection between the spatial localization of photons and the decay
in time of quantum mechanical systems is established. [S0031-9007(98)06370-4]

PACS numbers: 03.70.+k, 03.50.De, 03.65.Pm

The purpose of this Letter is to prove that, contrary to avhereat (k) andb* (k) are the creation operators of pho-
widespread belief, photons can be localized in space wittons with the left-handed and the right-handed polariza-
an exponential falloff of the photon energy density andtions, respectively, normalized to a delta function,
of the photodetection rates. In that respect, photons are A N /
not much different from massive particles. The only con- [a(k), a® (k] = 6(k — k') = [b(k),bTK)]. ()
straint on the photon localizability comes from the fun-In order to allow for the probabilistic interpretation, the
damental Paley-Wiener theorem [1]. The mathematicaiwo componentsf+ (k) of the photon wave function in
mechanism that limits the decrease of the photon energnomentum representation must be normalized to one,
density is the same as in the case of the decay of quantum
systems with time. The exponential falloff of the photon [ Ak|f+(K)) + [ Prlf-K)|*=1. (3)
wave function can be of the order ¢xpf(r)], wheref (r)
increases with- slower than linearly. | shall show that ~ The photon states are conveniently described in terms
this exponential localization holds not only for the energyof the Riemann-Silberstein [9] complex vectdr (RS
density and for the photodetection rates but also for theector) built from the electric displacement and the
modulus of the Landau-Peierls function [2] that is viewedmagnetic induction vectors,

by some as the proper position wave function of the pho- D(r,1) B(r, 1)
ton. | shall present simple analytic expressions for the F(r,1) = N i Nl (4)

photon wave functions that exhibit such an exponentially ) i )
small tail. | shall also contrast the localization propertiesThe Maxwell equations in free space lead to the following
of one-photon states with those containing many photonsgvolution equation for the RS vector:

.Adlard, Pike, and Sarkar [3]. have r_ece_ntly g:onstructed 9,F(r,1) = —icV X F(r,1). (5)
single photon states that exhibit arbitrarily high power- ]

law falloff of the energy density and of the photodetectionThe complex RS vector carries the same amount of
rates. These states were derived from the solutioniformation as two real vectorB and B. One of the

of Maxwell equations that have the form of complexadvantages of using the RS vector is that the energy
rational functions of coordinates. Such solutions werelensity of the classical electromagnetic figtd, (r, 1) is
envisaged a long time ago by Garding [4], Synge [5], anqual to the square of the norm of this vector

Trautman [6] and were used more recently by Ziolkowski D%(r,7)  B2(r,?) ;
[7] and Hellwarth and Nouchi [8] to describe focused Hal(r,7) = e T Y Fi(r,7) - F(r,1).
electromagnetic pulses. Incidentally, the arbitrarily high 0 0 (6)

power-law falloff, found in Ref. [3], could have been o o

obtained by simply differentiating the old solutions with Upon quantization of the electromagnetic field, the RS
respect to space coordinates and by observing that \¢gctor becomes the field operatbfr,z). It can be de-
derivative of a solution of Maxwell equations is also acomposed into annihilation and creation operators [13,14]
solution. In the present Letter | go beyond all these .

algebraic solutions by providing examples of much more ~ F(r.,?) Zf &’k d(k) e(k)

tightly localized wave functions and by establishing the S o

absolute limit of the photon localization. X [a(k)e @R 4 pl(k)e! "R T] (7)

The most general one-photon (1ph) state can be de- . o
scribed by two complex functions of the wave vector Whered (k) is a normalization factodl (k) = y/hick/(2m)?
and e(k) is a unit polarization vector satisfying the

|1ph>=fd3kf+(k)a*(k) |o>+]d3kf_(k)bT(k) |0y, equations
@ k X e(k) = —ike(k), (8)
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le(k)|*> = 1. (9) tion length. For this choice di, one may easily express
The polarization vectors- (k) for left-handed and right- Z in terms of elementary functions [16]
handed photons are relatedeitk) through the formulas 27321 ct — r ct +r
T e () o (222)],
er(k) =ek), e_(k)=(e(k)" (10) i ! ¢

The energy density of a one-photon state is determined by (19)
the expectation value of the energy density operator

P 9y yop g1(7) = exp(—2v1 + iT). (20)

Hy(r, 1) = (phl : ¥¥(r,0) - F(r,0) : [1phy,  (11)
- The positive frequency solution of the Maxwell equations
where the normal ordering of the creation and annlhllatlorbu”t according to Eq. (14) from the Hertz vector (19)

operators arises from the subtraction of the ('nf'n'te)descnbes a single photon state having the form of a
energy density in the vacuum state. The right-hand sid pherical shell converging for negative and diverging for

O; (ll)dcan_ be evaluated ‘g;'ﬁth t}?e help of Ek;qs (1)’f(2)’ aNthositive values of, attaining the maximal localization at
(7) and written as a sum aficoherentcontributions from " 0. The functionZ and its time derivative at = 0

two photon polarization states have the form

Hy(r,t) = [Fo(r,0)* + [F_(r, 0%, (12)
! Z(r,t =0) = 4773/21 o V21

where

Falrn) = [ dkd(ex(0r=000 @ w7, (13) x sinwzwl FOR -1, @Y
Since both polarization states in Eq. (12) contribute inde-
pendently to the total energy density, one may consider; Z( 0 A473/2] o V2NN 1F (/1P 1
only one polarization at a time. Thus, the problem of "~ 9,Z(r,t = 0) = m T+ (/12
the best localization of a photon reduces to the questlon " L+ /D
What is the fastest possible falloff with the distancef . \/
the modulus of vector functiorE- (r, #)? In order to an- X SiINV21 + (/1P = 1 + ¢),
swer this question, it is convenient to represent the RS (22)
vector in terms of a “superpotentiali(r, t),

F(r,t) =V X [(i/c)a,Z(r,t) + V X Z(r,1)]. (14) tang = r/I/1 + (r/D?* + 1). (23)

The complex vector field(r, ) is a complexified version Both these functions falloff exponentially at largeas
of the Hertz potential [15]. Every functioi(r, ) repre-  exp(—./2r/I) (multiplied by some negative power o},
sented in the form (14) satisfies Eq. (5) provided only thatind this property will be shared by their space derivatives.

the Hertz vectof(r, 1) satisfies the wave equation Hence, the photon energy density as defined by Eq. (12)
1, will also exhibit an exponential falloff.
<; 9 — A>Z(l‘, 1) =0. (15) Having shown that an exponential localization is pos-

sible, | shall now address the question of the limits
of localizability. Since | am interested in a uniform
localization in all directions, | will assume that the Fourier
_ 3 —iwt+ikr « iwi—iker transformh(k) of the Hertz potential is a scalar function
L(r.1) = j d’k[h(k)e +ho(k)e I Ph(o)/o of the dimensionless lengtlr = Ik of the
(16) wave vectork, multiplied by a constant vector. The
scale parameter refers to some characteristic dimension
of the wave, and the facto® /o has been pulled out
for convenience. In this case, as in my simple example,
the photon wave function can be written in terms of
_ 3 . _ —iwt+ikr a single scalar functiory of the argumentgct — r)/I
Fo(r,1) = j Kk X [ikh(k) = k > h(k)le " and (gt + r)/l. After t%e integrati?)n over the angular
(17)  variables, one obtains the following representation for the

A simple example of an exponentially localized photonPOSitive frequency part of the complex Hertz vector

Therefore, the complex Hertz vectd(r,7) has the
following decomposition into plane waves:

whereh- (k) are arbitrary vector functions &. Hence,
the positive frequency part &(r, r) can be written in the
form

state is obtained by choosiidk) in the form sin(k
st - 20,0 = mant® [ aeno 2 e (g
h(k) =m+ik e : (18) 0
wherem is a constant vector that includes the normaliza- —m @[ <ct — r> B <ct + r>i| (25)
tion factor and/ is a parameter that controls the localiza- ir ) l ’
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where The asymptotic behavior of this function for large values
o ' of 7 is given by the same exponential function as in (20)
glr) = f doh(og)e 7. (26)
0

g(7) ~ V7Vl + itexp(—2v1 + iT). (34)
The asymptotic behavior of this function for large values

of its argument is restricted by the Paley-Wiener theoren] '€ Only difference is the appearance of a_prefactor
[1]. According to this theorem, the Fourier transfogr) ~ INvolving the square root of the argument. This was
of a square-integrable functioi(o) that vanishes for all 10 be expected since at = 0 both functions (20) and
negative values of- must obey the following integrability (33) differ only by a square root of. This comparison

condition: of th_e position wave function with the energy wave
Y function shows that the statement “even when the position

f dr loglg (Il < . (27) wave function is strongly concentrated near the origin,

—o 1+ 72 the energy wave function is spread out over space

This condition does not allow for the exponential falloff asymptotically liker ~7/2” (Ref. [17], p. 638) is incorrect.
of the form g(7) ~ exp(—A7) but anything arbitrarily ~Both wave functions may be “strongly concentrated near
weaker than that is allowed. For example, we may havethe origin.”
The limitation on the localization of the energy density

g(7) ~ exp(=A77), v=1. (28) imposed by the Paley-Wiener theorem is a purely quan-
My simple analytic example falls into this category with tum phenomenon. It does not arise in the classical theory,
v = 1/2. Since the asymptotic behavior gfr) for large  and also it does not apply to those quantum states of the
7 is determined by the behavior df(o) near o = 0 electromagnetic field that have classical counterparts. In
(as given by the stationary phase method), one magrder to prove this point, let me consider a general coher-
make g to falloff faster than exp-A./r) by forcing 2 ent (coh) state of the electromagnetic field
to approach zero faster than in (18). For example, taking
h(o) = o 'exp(—1/0") exp(—o), one obtainsg(r) ~ |cohy = Nexp|: f &k f1(k)a' (k)
exp(—A7r"/*1). In order to obtain only a logarithmic
departure from the linear exponential falloff,

+ [d3kf(k)bT(k):||0>. (35)

g(r) ~ exp(—A7/log7), (29)
one has to choosk which decreases even faster at zero] N€ €nergy density of the electromagnetic field calculated
with the use of an iterated exponential functibfr) ~ I this state coincides with the classical expression (6),
exf — exp(1/0)]. By iterating exponential functions sev- Heoon(r, 1) = (coh : Ft(x, 1) - B(r,1) : |coh
eral times, one may get arbitrarily close to the linear ex- t
ponential function obtaining = Feon(r, 1) - Feon(r, 1)
g(7) ~ exp{—Ar/log[log(...log7)].. }. (30) = |Fi(r, 1) + F(r, ). (36)

As | have stated in the introduction, the same exponenThe difference between the energy density (36) in a
tial localization holds for the Landau-Peierls (LP) pho-coherent state and the energy density (12) in a one-photon
ton wave function. The LP wave function (often called state lies in the presence of an interference term between
the position wave function [17]) differs from the positive the contributions from positive and negative frequency
frequency part of the RS vector (called the energy wavdarts. Owing to the presence of this interference term one
function) by the presence of an additional factgk/fick ~ can escape the constraints imposed by the Paley-Wiener
in the Fourier representation [17]. Therefore, in mytheorem and one can obtain an arbitrary localization of
simple example the position wave function can be obthe energy density (36). Of course, the localization will

tained from the following complex Hertz vector: not persist at all times because the electromagnetic field
; moves with the speed of light. However, at= 0 one
Zip(r,t) = my — f Bk k3 e MUK miottikr may chooseF.,,(r,t = 0) at will, provided only that it
hic is divergenceless. For example, one may tBkg in the
G form

This integral can again be explicitly evaluated and ex- o
pressed in terms of the Macdonald functikin [16], Feon(r,r = 0) = V X V(r), (37)
aml [ ot — 7 ot +r WhereV(.r) is_ a vector fie_Id vyith finite support restricted
Zip(r,t) =m—— 4/ — [g2< ) — g2< )} ,  toan arbitrarily small region in space.
ir \he ! ! | have discussed so far only the localization of the en-
(32) ergy density, but the photodetection rates are governed by
the same rules. Since such rates are given as the expec-

a(r) =1 +irKi(V1 +it). (33) tation values of the product of the positive frequency part
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of the electric field operator by its Hermitian conjugateten as the following Fourier integral:
[17,18], o
R R Az=[ dE [(E|)|* e E. 39
WIES 0B 0 ), (39 0= ], ENEWTe 9

they can never contain interference terms between th&n€ Paley-Wiener theorem again forbids a linear expo-

positive and negative frequency. Therefore, even thougRential decay ofA(#) but the asymptotic behavior that is

they may falloff exponentially, the decrease rate is agaiﬁ)”'y logarithmically slower, as in (30), is allowed.

limited by the Paley-Wiener theorem. | thank Z. Blalynlckg—Blrulg, M. Lewenstein, and
Localization restrictions that apply to one-photon stated®: Trautman for fruitful discussions.

are of universal character. They hold for all particles,

massive and massless, and they arise from the mathemati-

cal properties of the positive frequency solutions. The [1] R.E.A.C. Paley and N. Wienefourier Transforms in

lack of a reas_on_ab!e position operator for th'e photon Is not the Complex Domair(American Mathematical Society,
a source of limitations on the photon localization. Such New York, 1934).
an operator exists for the electron, but the rate of decreasey; | p. Landau and R. Peierls, Z. Phys2, 188 (1930).
of the probability densityy T (r, 1)y (r, ) for large values See Ref. [12] for a detailed review of the concept of the
of r evaluated for any positive frequency solution of the photon wave function.
Dirac equation is still subjected to the same limitations, as[3] C. Adlard, E.R. Pike, and S. Sarkar, Phys. Rev. L.
in the case of a photon. 1583 (1997).

Exponential localization of photons may seem to be in [4] L. Garding, Acta Mathematic85, 1 (1951).
contradiction with the results obtained by Jauch and Piron[3] J.L. Synge, Relativity: Special TheoryNorth-Holland,
[19] and Amrein [20]. In particular, it seems to be in dis- Amsterdam, 1958), p. 360.
agreement with the statement [20] “The electric field of [6] A. Trautman, Proc. R. Soc. London 2vQ, 326 (1962).
a localized photon decreases /as'/? at large distances g} Ew ﬂzllll(v?/;\ﬁﬁ" aigy% Rﬁguﬁ?’ IZD%O‘Z (}ngvg)g 889
from the volume of localization.” This statement, how- (1'996)_ ' P TS, T
ever, is based on a concept of strict mathematical local-g] | Silberstein, Ann. Phys. (Leipzigp2, 579 (1907);24,
izability which requires that the probability (based on the * ~ 783 (1907). For a detailed discussion of the Riemann-
LP wave function) to find the photon outside the localiza-  Silberstein vector in the quantum mechanical context, see
tion region isexactlyzero. In my opinion, this concept of Refs. [10-12].
strict localizability is untenable for three reasons. First,[10] I. Bialynicki-Birula, Acta Phys. Pol. 286, 97 (1994).
strict localizability can never be tested because no medl1] I. Bialynicki-Birula, in Coherence and Quantum Optics
surement can give an exact result. Second, all realistic ~ VII. edited by J.H. Eberly, L. Mandel, and E. Wolf
measurements are based on the Glauber-Mandel theory{of (Plenum Press, New York, 1996). , ,
photodetection involving the counting rates (38) and no 12] :E S\Lall)f/n:ézlkrB!rulaA n tP::IOgreSngglg ?/pt;c;,)e(c;l&/eld by
the abstract LP wave function. Third, Hegerfeldt [21] ha! - Wolf (Elsevier, Amsterdam, ), Vol. '

. . . - -.113] H.A. Kramers, Quantum Mechanics(North-Holland,
shown that strictly localized states are inconsistent wit ] Amsterdam 195% p. 421. (

causality. Exponentially localized photon states describeg 4] |, Bialynicki-Birula and Z. Bialynicka-Birula,Quantum
in this Letter do not satisfy the criterion of strict localiz- Electrodynamic{Pergamon, Oxford, 1975), p. 163.
ability but from the physical point of view they are much [15] W.K.H. Panofsky and M. PhillipsClassical Electricity
better localized. These states exhibit the exponential lo-  and Magnetisn{Addison-Wesley, Reading, 1962).
calization not only of the photon energy and of the pho-[16] S. Wolfram, The Mathematica BookCambridge Univer-
todetection rates but also of all other spatial distributions, _ sity Press, Cambridge, 1996).
including the modulus squared of the LP wave function. [17] L. Mandel and E. WolfOptical Coherence and Quantum
There is a close formal analogy between the spatial lo- _ OPtics(Cambridge University Press, Cambridge, 1995).
calization of photons and the time decay law. The Paley[18] R. Glauber, inQuantum Optics and Electronicedited by

Wiener theorem imposes exactly the same mathematical €. Dewitt, A. Blandin, and C. Cohen-Tannoudji (Gordon
P y and Breach, New York, 1964).

restrictions on the asymptotic behavior of the decay la 19] J.M. Jauch and C. Piron, Helv. Phys. Ad 559 (1967).
of quantum systems, as has been pointed out a long timeg] w. 0. Amrein, Helv. Phys. Acta2, 149 (1969).

ago by Khalfin [22]. For every quantum system governeq21] G.C. Hegerfeldt, Phys. Rev. [0, 3320 (1974).

by a Hamiltonian bounded from below, the probability [22] L.A. Khalfin, J. Exp. Theor. Phys. (U.S.S.R3p, 1371
amplitudeA(r) to remain in the initial state may be writ- (1957) [Sov. Phys. JETB, 1053 (1958)].

5250



