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Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature?
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It is shown that if a mixed state can be distilled to the singlet form it must violate partial transposition
criterion [A. Peres, Phys. Rev. Lett.76, 1413 (1996)]. It implies that there are twoqualitatively
different types of entanglement: “free” entanglement which is distillable, and “bound” entanglement
which cannot be brought to the singlet form useful for quantum communication purposes. A possible
physical meaning of the result is discussed. [S0031-9007(98)06051-7]
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Since the famous Einstein, Podolsky, and Rosen
and Schrödinger [2] papers, quantum entanglement still
mains one of the most striking implications of quantum
formalism. In recent years, great effort has been ma
to understand the role of entanglement in nature and fu
damental applications were found in the field of quantu
information theory [3–7]. The most familiar example o
pure entangled state is the singlet state [8] of two spin1

2
particles,

C2 
1

p
2

sj"#l 2 j#"ld , (1)

which cannot be reduced to a direct product by an
transformation of the bases pertaining to each of t
particles.

In practice, due to decoherence effects, we usually d
with mixed states [9]. A mixed state of a quantum syste
consisting of two subsystems is supposed to repres
entanglement if it is inseparable [10], i.e., cannot b
written in the form

% 
X

i

pi%
A
i ≠ %B

i , pi $ 0,
X

i

pi  1 , (2)

where%A
i and%B

i are states for the two subsystems. How
ever, to use the entanglement for quantum informati
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processing, we must have it in pure singlet form. Th
procedure of converting mixed state entanglement to t
singlet form is called distillation [11]. It amounts to
the extraction of pairs [12] of particles in singlet stat
from an ensemble described by some mixed state
means of local quantum operations and classical comm
nication [11].

The process can be described as follows: The tw
observers, Alice and Bob, each haveN quantum systems
coming from entangled pairs prepared in a given sta
r. Each one can perform local operations with her/h
N particles, and exchange classical information with th
other. The question is whether they can in this way obta
a pair of entangled qubits in nearly singlet state (the re
of the quantum systems being discarded). They need
succeed every time, but at least they know when they ha
been successful. If they managed to do this, one says
they havedistilledsome amount of pure entanglement from
the state% . Subsequently, the distilled singlet pairs can b
used, e.g., for reliable transmission of quantum informati
via teleportation [5] (experimental realizations of quantu
teleportation have been recently reported, see Ref. [6])

Recently, it has been shown [13] thatany inseparable
two-qubit state [14] represents the entanglement whic
© 1998 The American Physical Society 5239
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however small, can be distilled to a singlet form. Th
result was obtained by use of the necessary [15] a
sufficient [16] condition of separability for two-qubit
states, local filtering [17,18], and Bennettet al. distillation
protocol [11].

In this context it seems very natural to make th
following conjecture.

Conjecture.—Any inseparable state can be distilled t
the singlet form.

Surprisingly enough, this conjecture is wrong. In th
present Letter we will show that there are inseparab
states thatcannot be distilled. More specifically, we
first show that any state which can be distilled mu
violate Peres separability criterion [15]. Then, the resu
follows from the fact [19] that there are inseparable stat
that satisfy the criterion. It shows that there are tw
qualitatively different types of entanglement. The firs
“free” entanglement, can be distilled to the singlet form
The second type of entanglement is not distillable a
is considered here in analogy with thermodynamics as
“bound” entanglement which cannot be used to perform
useful “informational work” such as reliable transmissio
of quantum data via teleportation.

Now, let us first briefly describe the Peres criterion
A state% satisfies the criterion, if all eigenvalues of its
partial transposition%TB are non-negative (i.e., if%TB is
a positive operator). Here, the partial transposition%TB

associated with an arbitrary product orthonormalei ≠ fj

basis is defined by the matrix elements in this basis:

%TB
mm,nn ; kem ≠ fmj%TB jen ≠ fnl  %mn,nm . (3)

Clearly, the matrix%TB depends on the basis, but its
eigenvalues do not. Thus, given a state, one can ch
whether it violates the criterion performing the partia
transposition in an arbitrary product basis. In particula
it implies that% violates the criterion if and only if any
N-fold tensor product%≠N  % ≠ . . . ≠ %| {z }

N

does [15].

Peres showed that the criterion must be satisfied by a
separable state [15]. It has also been shown [16] th
for two-qubit (and qubit-trit) states the criterion is als
sufficientcondition for separability. This doesnothold for
higher dimensions. The explicit examples of inseparab
mixtures satisfying criterion were constructed [19].

Now, we are in a position to present the main result
this Letter. Suppose Alice and Bob have a large numb
N of pairs each in a state% acting on the Hilbert space
H  HA ≠ HB. Then, the joint state ofN pairs is given
by %≠N . Suppose now that the state% is distillable. This
means that Alice and Bob are able to obtain pure sing
two-qubit pairs forN tending to infinity. This, however,
implies that, for some finiteN , they are able to obtain
an inseparable two-qubit statẽ%2q. The most general
operation producing a two-qubit pair that can perform ov
the initial amount ofN pairs can be written in the following
5240
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form [20]:

%̃2q 
1
M

X
i

Ai ≠ Bi%
≠NA

y
i ≠ B

y
i , (4)

where M  Tr
P

i Ai ≠ Bi%
≠N A

y
i ≠ B

y
i is the normal-

ization factor, andAi andBi map the large Hilbert spaces
H

≠N
A,B into C2. For convenience, we will use unnorma

ized states, as the property of separability as well as s
isfying the Peres criterion do not depend on the positi
factor. Then, for unnormalized states, we omit the con
tion

P
i pi  1 in the definition of separability (2). Con-

sequently, let

%2q 
X

i

Ai ≠ Bi%
≠NA

y
i ≠ B

y
i (5)

and

%i  Ai ≠ Bi%
≠NA

y
i ≠ B

y
i . (6)

Since %2q is inseparable then at least for somei  i0

the state%i0 must be inseparable. Indeed, by summin
separable states we cannot get an inseparable one.

Note that the operatorsAi0 and Bi0 act in two-
dimensional spaceC2, hence they can be written in
the form

Ai0  j0l kcAj 1 j1l kfAj ,

Bi0  j0l kcBj 1 j1l kfBj ,
(7)

where j1l and j0l constitute the orthonormal basis in
C2 and cA, fA [ H

≠N
A , cB, fB [ H

≠N
B are arbitrary

(possibly unnormalized) vectors. Let us now consider tw
dimensional projectorsPA andPB which project onto the
spaces spanned bycA, fA andcB, fB, respectively. Then,
we have

%i0  Ai0 ≠ Bi0 sPA ≠ PB%≠NPA ≠ PBdAy
i0

≠ B
y
i0

. (8)

Now, since a product action cannot convert a separa
state into an inseparable one, we obtain that also the s

% 0  PA ≠ PB%≠NPA ≠ PB (9)

is inseparable. Let us write this state in basisj fil ≠ j gkl,
i  1, 2, . . . , dimH

≠N
A , k  1, 2, . . . , dimH

≠N
B with

four vectorsj f1l, j f2l sj g1l, j g2ld spanning the subspace
defined by projectorsPA, PB. The only nonzero matrix
elements are due to products of those vectors and t
define a4 3 4 matrix M2q which can be thought of as
a two-qubit state. The operation of partial transpositio
on % 0 affects only those elements (as the remaining on
are equal to zero). IfM2q were positive after partial
transposition, then, due to the sufficiency of the part
transposition test for the two-qubit case [16],M2q would
represent a separable two-qubit state. Hence, if embed
into the whole spaceH ≠N , it would still remain separable.
Consequently, the state% 0 would be separable, which is
the contradiction. Thus, partial transposition ofM2q must
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be negative. Now, sinceM2q is formed by all nonzero
elements of% 0, we maintain that also the state% 0 must
violate the Peres criterion, i.e.,% 0TB must have a negative
eigenvalue. Now, letc be the eigenvector corresponding
to the eigenvalue. As the vector belongs to the subspa
H2q it follows that the matrix elementskcj% 0TBjcl and
kcjs%≠N dTB jcl are equal. Hence we obtain

kcjs%≠N dTB jcl , 0 . (10)

Thus, the state%≠N violates the partial transposition
criterion. However, as was mentioned, this implies tha
% also does. The above consideration can be forma
summarized as follows. If the output state of Alice-Bob
action appears to have negative partial transposition, th
the basic component% of input state%≠N must have also
had negative partial transposition. This means nothin
but that any action of type (4) on% (including collecting
N pairs) preserves positivity of partial transposition. In
fact, it can be proved in a simpler way [21] by using th
observation thatsA ≠ B%C ≠ DdTB  A ≠ DT %TB C ≠

BT for any operatorsA, B, C, D (hereT stands for usual
transposition). Then it immediately follows that action
of any superoperator of type1

M

P
i Ai ≠ Bi%

≠N A
y
i ≠

B
y
i producing an arbitrary two-component system (no

necessarily a2 3 2 one) preserves positivity of partial
transposition.

Thus, we showed that, if a state% is distillable, it must
violate the Peres separability criterion. It is an importan
result as it implies that there are inseparable states wh
cannot be distilled. Indeed, quite recently one of us
[19] constructed inseparable states which do not viola
the criterion. Some of those peculiar states are dens
matrices for two spin-1 particles (the two-trit case). Usin
the standard basis for this case (j1l j1l, j1l j2l, j1l j3l,
j2l j1l, j2l j2l, and so on), those matrices can be writte
in the following form:

%a 
1

8a 1 1

3

2666666666666664

a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 11a

2 0
p

12a2

2
0 0 0 0 0 0 0 a 0
a 0 0 0 a 0

p
12a2

2 0 11a
2

3777777777777775
,

(11)

with 0 , a , 1. It has been shown [19] by means o
independent separability criterion that those states a
inseparabledespite the fact that they havepositivepartial
transposition. However, as we have shown above, t
density matrices with positive partial transpositioncannot
ce
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be distilled to the singlet form. Consequently, any sta
of the form (11) cannot be distilled.

It is remarkable that the question whether a state
distillable or not has been reduced to the question
whether there is a two-qubit entanglement in a collectio
of N pairs for someN . Thus, the latter condition isthe
necessary and sufficient conditionfor any given state to
be distilled. Indeed, as shown above, if a state% is
distillable then there exist two-dimensional projectionsPA

andPB so that the state% 0 given by Eq. (9) is inseparable.
Conversely, if the latter condition is satisfied then% can
be distilled by projecting%≠N locally by means ofPA

and PB and then applying the protocol proposed in [13
which is able to distill any two-qubit inseparable state
There is an open question as to whether the conditi
is equivalent to violation of the Peres criterion. Then
the latter would acquire the physical sense: Its violatio
would be equivalent to distillability.

Let us now discuss briefly the possible physical meanin
of our result. As a matter of fact, we have revealed
kind of entanglement which cannot be used for sendin
reliably quantum information via teleportation. Using
an analogy with thermodynamics [22], we can conside
entanglement as a counterpart of energy, and sending
quantum information as a kind ofinformational work.
Consequently, we can considerfree entanglementsEfreed
which can be distilled, andbound entanglementsEboundd.
In particular, the free entanglement is naturally identifie
with distillable entanglementD as the latter asks us how
many qubits can we reliably teleport via the mixed stat
This kind of entanglement can always be converted v
distillation protocol to the “active” singlet form.

To complete the analogy, one could consider the asym
totic number of singlets which are needed to produce
given mixed state asinternal entanglementEint (the coun-
terpart of internal energy) [23]. Then, the bound entan
glement can be quantitatively defined by the followin
equation:

Eint  Efree 1 Ebound . (12)

In particular, for pure states we haveEint  Efree and
Ebound  0. Indeed, pure states can be converted in
“lossless” way into active singlet form [18]. In the presen
Letter we show that there existinseparablestates having
reciprocal properties. Namely, for the states of type (11
we haveEint  Ebound andEfree  0. Now, there are two
possibilities:Eint  0 or Eint fi 0. Both cases are curious.
In the first case, we would haveinseparablestates which
can be produced from an asymptoticallyzero number of
singlet pairs. This would imply, in turn, that entanglemen
of formation isnot an additive state function [24], as by
definition it does not vanish for any inseparable state
In the second case, we would have curious states wh
absorb entanglement in an irreversible way. To produ
such states, one needs some amount of entanglement.
once the states were produced, there is no way to reco
5241
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any, however little, piece of the initial entanglement. Th
latter isentirely lost.

A natural problem which arises in the context of th
presented result is, What is the physical reason for wh
the partial transposition is connected with distillability
Our conjecture is that it istimewhich links intimately the
two things. Indeed, transposition can be interpreted as
operation of time reversal [25] which has been recen
considered in the context of the Peres criterion [26]. Als
in the context of distillation, there appeared the proble
of time. Namely, distillation is inherently connected with
the quantum error correction for the quantum noisy chann
supplemented by the two-way classical channel [7]. T
quantum capacity of such channels can be strictly larg
than without the classical channel. However, the price w
must pay is that the error correction with two-way clas
sical communication cannot be used to store the quant
information in noisy environment [7] because one cann
send the signal backward in time. Needless to say, dee
investigation of the connection among the distillation, pa
tial transposition, and time reversal seems to be more th
desirable.

Finally, it is perhaps worth mentioning the story of non
locality of mixed states, beginning with the work of Werne
[10]. He suggested that there are curious inseparable st
which do not exhibit nonlocal correlations. Then, Popes
[27] showed that there is a subtle kind of pure quantu
correlations which is exhibited by Werner mixtures. Th
distillability of all two-qubit states [13] proved that all of
them are also nonlocal. One could suspect that the st
will end by showing that all inseparable states can be d
tilled, hence they are nonlocal. Here, we showed that it
not true. So, one is now faced with the problem simila
to the initial one, i.e., are the inseparable states with po
tive partial transposition nonlocal? Now, in view of th
above result, it follows that the problem certainly cann
be solved by means of the distillation concept.
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