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Magnetic Induction of dx22y2 1 idxy Order in High- Tc Superconductors
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I propose that the phase transition in Bi2Sr2CaCu2O8 recently observed by Krishanaet al. [Science
277, 83 (1997)] is the development of a smalldxy superconducting order parameter phased bypy2
with respect to the principaldx22y2 one to produce a minimum energy gapD. The violation of both
parity and time-reversal symmetry allows the development of a magnetic moment, the key to explai
the experiment. The origin of this moment is a quantized boundary current ofIB  2eDyh at zero
temperature. [S0031-9007(98)06047-5]

PACS numbers: 74.25.Bt, 74.25.Dw, 74.25.Fy
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In a recent paper Krishanaet al. [1] have reported a
phase transition in Bi2Sr2CaCu2O8 induced by a mag-
netic field and characterized by a kink in the thermal co
ductivity as a function of field strength, followed by a
flat plateau. The high-field state is also superconducti
They argued from the existence of this plateau that h
transport by quasiparticles was zero in the new state a
that this probably indicated the development of an ener
gap. The transition has the peculiarity of being easily i
duced by small fields. Krishanaet al. report the empirical
relation Tc ~

p
B, although over the limit field range of

0.6 T , B , 5 T, and also that the transition sharpens
Tc is reduced.
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I propose that the new high-field state is the parity a
time-reversal symmetry violatingdx22y2 1 idxy supercon-
ducting state proposed long ago by me [2], which has ma
properties in common with quantum hall states, inclu
ing particularly chiral edge modes and exactly quantiz
boundary currents. The essential point of my argum
is that the state must have a magnetic moment in orde
account for the experiment, and this is possible only if it v
olates both parity and time-reversal symmetry. The dev
opment ofs 1 id order, for example, or high-momentum
Cooper pairing [3] are both ruled out for this reason, as
a restructuring of the vortex lattice.

My hypothesis leads, through reasoning described
low, to the model free-energy functional
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whereD is the induced energy gap andy 
p

y2y2 is the
root-mean-square velocity of thed-wave node. There are
three key steps leading to this functional: (1) The ado
tion of conventional quasiparticles at four nodes as t
low-energy excitation spectrum of the parentdx22y2 state.
(2) The derivation of a relation between the minimum e
ergy to inject a quasiparticle in the bulk interior and
quantum-mechanical boundary current. (3) A guess as
the temperature dependence of this boundary current ba
on legitimate but model-dependent calculations. The l
of these, which I shall defend below, is pure phenomen
ogy, so this is a theory of energy scales andnot a theory
of the transition. The value of the node velocity is fixe
by experiment, in particular, photoemission bandwidth [
and the temperature dependence of the penetration d
in yttrium barium copper oxide [5,6]. Following Lee an
Wen [7] I shall use the valuesy1  1.18 3 107 cmysec
and y1yy2  6.8, or h̄y  0.30 eV Å. The uncertainty
in this number is about 10%. At zero temperature the fr
energy is minimized by
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At finite temperature I find a weakly first-order transitio
to a state withD  0 at

kBTc  0.52D0 . (4)

This is plotted against the experiment in Fig. 1. It wi
be seen to account for both the functional form of th
transition temperature and its absolute magnitude with
adjustable parameters.

The assumption of conventional quasiparticles
d-wave nodes leads to the repulsiveD3 and free-
quasiparticle entropy terms in Eq. (1). The model here
not critical, since only the node matters, so let us use
BCS Hamiltonian

H 
X
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Vkk0c
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2k#c2k0#ck0" . (5)

As usual we consider variational ground states of the fo

jCl 
Y

k

huk 1 ykc
y
k"c

y
2k#j j0l ,

jukj2 1 jykj2  1 , (6)
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FIG. 1. Comparison of measured transition temperature ve
sus magnetic field (diamonds) with Eq. (5).

and minimize the expected energy
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Equivalently we may take Eqs. (8) to definejCl in terms
of Dk and minimize the expected energy
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to obtain Eq. (10). Regardless of whether the extrem
condition is met the expected energy of the quasiparticle
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r-

al

is

kCk"jH jCk"l  kCjH jCl 1
p

´2
k 1 jDkj2 . (13)

The prototypicaldx22y2 1 idxy state is

´k  22tfcosskxbd 1 cosskybdg , (14)

Dk  Dx22y2 fcosskxbd 2 cosskybdg

1 iDxy sinskxbd sinskybd . (15)

The velocity in Eq. (1) is related to the model param
ters by
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Assuming now that the extremal condition requiresDxy

to be zero, so that the native ground state has onlydx22y2

order, and then forcing the minimum quasiparticle ener
to beD, one finds that the energy is minimized when
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whereq is the distance to the node in symmetrized unit
and equals
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The quasiparticle contribution to the finite-temperatu
free energy under these circumstances is

Fquasi
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Let us next consider the zero-temperature magnetic m
ment, which is due to a circulating boundary current of

IB  2
e
h

D0 . (20)

This works out to0.13 mA for a gap of 1.64 meV induced
by a field 1 T. Boundary currents of this magnitude a
known to result from the development of aT -violating
order parameter of this size [8], so the issue is not t
existence of these currents or their disappearance when
second-order parameter vanishes but rather their spec
functional dependence onD and sense of circulation.T
andP must both be violated for the boundary currents
generate a moment. Thes 1 id state, for example, will
not work because its reflection symmetry about thex axis
forces the currents at the1y and 2y edges to flow in
5189
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the same direction, whereas flow in opposite directions
required to generate a moment.

Thedx22y2 1 idxy state differs fundamentally froms 1

id conventionals-wave states innot being continuously
deformable to a Fermi sea on a sample with edges,
though it can be so deformed on a torus. This is t
property underlying Wiegmann’s concept of a “topologica
superconductor” [9]. On a torus we may write
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(22)
as usual, and thus continuously deform the Fermi seajF0l
into any BCS superconducting statejFl we like by appro-
priate choice of the functionuk . On a sample with edges,
however, this makes no sense becausek is not a good quan-
tum number. The best we can do is substitute the tim
reversed orbital pairs exps6ikxd sinsnpyyLd, whereL is
the sample width andn is an integer, for the plane waves
exps6ik ? rd in the above expression, in which case w
find the order parameterDk to beevenunder parity in the
y direction, a property fundamentally incompatible wit
d 1 id pairing. Thus we confront a problem similar to
the one encountered in the vortex lattice—the solution
which was the invention of the Bogoliubov–de Genne
equations—namely, that excitation of Cooper pairs in
time-reversed orbital pairs makes no sense in a magn
field. In this case, of course, the violation of parity an
time-reversal invariance comes not from an external ma
netic field but from the vacuum itself.

The dx22y2 1 idxy state is, however, continuously de
formable into a doubly occupied Landau level. Th
is demonstrated with the following simple lattice ex
ample. Let

HHF  2t
X

k
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k t3Ck

1 fcosskxbd 2 cosskybdgCy
k t1Ck

1 2m sinskxd sinskydCy
k t2Ckj (23)

be the Hartree-Fock Hamiltonian for adx22y2 1 idxy su-
perconductor on a square lattice, wherem is a constant
characterizing the size of the energy gap. Then the Ham
tonianUysudHHFUsud, where
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with ,j and mj denoting thex and y coordinates of the
jth lattice site, interpolates betweenHHF at u  0 and a
lattice Landau level Hamiltonian atu  py4, all the while
having the same eigenvalue spectrum due to the unitar
of Usud [10,11]. More specifically, since

c
y
j"c

y
j# 2 cj#cj"  ic

y
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the site transformations repeat with the pattern shown
Fig. 2, where
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so we have for the transformed bond Hamiltonian from
site 2 to site 1
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and so forth for the other bonds. The transformation o
the diagonal bonds give6it3, as appropriate for magnetic
bands on a lattice.

Let us now imagine wrapping a ribbon ofdx22y2 1

idxy superconductor into a loop and adiabatically insertin
magnetic flux hcye through this loop following the
procedure used in a quantum hall thought experime
[12]. This insertion commutes with the rotation of the
superconductor into the quantum hall state by virtue o
the gap and therefore has the same effect in the tw
cases, i.e., to “pump” one" and one# quasiparticle from
one edge to the other. The edge currents in either ca
may be identified by separating this spectral flow into
(1) transfer of a state from the chemical potential a
the left edge to thelowest available energy in the bulk
interior and (2) the mirror image of this at the right edge
Only the lowest-energy bulk state matters because th
anticrossing rule prevents any higher-energy states fro
flowing to the chemical potential. The edge current i
then given by Eq. (20), whereD0 is the difference in
energy between this lowest-energy bulk excitation and th
chemical potential.

Flux addition also induces bulk supercurrent, forma
gauge transformations being not so innocuous in a s
perconductor, but this is easily removed by causing th

FIG. 2. Illustration of unitary transformation between the
dx22y2 1 idxy superconducting state and a filled Landau leve
on a lattice.
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ring circumferenceL to diverge, since the energy in ques
tion is
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nss$rd d $r , (28)

where ns is the superfluid density, which falls off as
1yL. Equivalently, one may say that there is a physic
difference between current already present and curr
induced by the injected flux.

The final matter for consideration is the reduction o
this moment by thermal excitation of quasiparticles. Th
is, unfortunately, sensitive to details and thus difficult t
calculate with sufficient accuracy to describe the pha
transition. It can be understood simply in terms of the flu
Hamiltonian obtained by rotating Eq. (23) byu  py4.
This consists of upper and lower quantum hall bands w
opposite quantizations, these being manifested prima
in the states of energy nearD  4tm. Evaluating the
Hall conductance of this model by the Kubo formula i
the limit of smallm we find that [11]
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The strong quenching effect atkBT $ D occurs because
free quasiparticles contribute a Hall conductance oppos
to that of the ground state. Assuming now thatD varies
slowly in space and equals zero at the sample edge,
may integrate in from the edge to obtain
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The version of this appropriate to Eq. (17) is
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This is quite close to the functional form appearing i
Eq. (1) in the range of interest, saturates to linearity
D at zero temperature, becomes exponentially quench
for temperatureskBT ¿ D, but gives no phase transition
The phenomenological function I chose is merely a
approximation to this one constrained to be analytic
D and odd. The proportionality ofTc to D0, however,
-

al
ent

f
is
o
se
x

ith
rily

n

ite

we

n
in
ed

.
n
in

is expected on general grounds because there is no o
energy scale in the problem.

The complete absence of thermal transport aboveTc

in the experiment is not explained by thermal activati
to a gap of orderD0, as this is simply too small to freeze
out all the quasiparticles. This criticism, however, appli
equally well to any theory of the effect one would care
consider, for it is physically unreasonable for a gap mu
larger thankBTc to develop spontaneously. I therefor
believe that absence of transport is an effect of enhan
scattering and trapping of quasiparticles in the new st
and is a detail to be worked out once the symmetry of
second-order parameter is established. There is certa
the potential for violent scattering in thedx22y2 1 idxy

state given the inhomogeneity of the magnetic field d
to the vortex lattice and the possibility that the transitio
is weakly first order, but it is a mistake to use this
a criterion for deciding whether the symmetry I hav
identified is the right one.
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