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Vortex Lattice Structures of Sr;RuQy4
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The vortex lattice structures of JRuQ, for the odd-parity representations of the superconducting
state are examined. Particular emphasis is placed upon the two dimensional representation which is
believed to be relevant to this material. It is shown that when the zero-field state breaks time reversal
symmetry, there must exigtvo superconducting transitions when there is a finite field along a high
symmetry direction in the basal plane. Also it is shown thagaarevortex lattice is expected when
the field is along thec axis. The orientation of the square lattice with respect to the underlying
ionic lattice yields information as to which R4d orbitals are relevant to the superconducting state.
[S0031-9007(98)06315-7]

PACS numbers: 74.20.De, 74.25.Dw, 74.60.Ec

The oxide superconductorRuQ; is structurally simi- ~ symmetry properties a&,, k,) [8]. The brokenT state
lar to the highT,. materials but differs markedly from the would then correspond ton, ;) =« (1,i). The z com-
latter in its electronic structure [1]. In particular, the nor- ponent of the local magnetic fiell, couples linearly to
mal state near the superconducting transition R8O,  this state via the symmetry allowed couplifig (n; 7, —
is well described by a quasi-2D Landau Fermi liquid [2]. »> ). Magnetic properties of such a broken time reversal
There now exists considerable evidence that the supercoatate are discussed in Ref. [8]. The identification of this
ducting state of SRuQ, [1] is not a conventionat-wave  state as the superconducting ground state would prove a
state. Nuclear quadrupole resonance measurements sheignificant advance since the only other nemave state
no indication of a Hebel-Slichter peak iyT,T [3], T.  for which the symmetry has been unambiguously identi-
is strongly suppressed by nonmagnetic impurities [4], andied is thed,- - state in highf. cuprates (even after more
tunneling experiments are inconsistent witivave pair- than a decade of research into this problem for the heavy
ing [5]. While these measurements demonstrate that thiermion compounds URtand UBg3). Below some ob-
superconducting state is neAwvave, they do not deter- servable consequences of %, 1,) « (1,i) state are re-
mine what pairing symmetry actually occurs in this ma-vealed which, if seen, would identify this as the relevant
terial. The determination of the pairing symmetry in pairing state for SIRUQ,.
unconventional superconductors is a notoriously difficult | investigate within Ginzburg Landau (GL) theory the
problem and theoretical insight provides a useful guidevortex lattice structures expected for the odd-parity REPS
The observations that the Fermi liquid corrections dueof the superconducting state, focusing mainly on kg
to electron correlations are similar in magnitude to thosdREP. It is initially shown that a general consequence of
found in superfluid®He and that closely related ruthen- the broken7 state described above is that in a finite
ates are itinerant ferromagnets have led to the proposahagnetic field oriented along a high symmetry direction in
that the superconducting state inBuQ, is of odd parity  the basal plane there will existsecondsuperconducting
[6]. Even with this insight there still remain five odd-parity transition in the mixed phase as temperature is reduced.
states that have different symmetry—all of which have arhe high field state is a vortex lattice for a single
nodeless gap and therefore similar thermodynamic propsomponent order parameter with line nodes. These nodes
erties [6]. Recently, muon spin rotatiop&R) measure- vanish when the second transition occurs. It is then shown
ments indicate that a spontaneous internal magnetizatidhat asquarevortex lattice is expected to appear for all
begins to develop &f. [7]. The most natural interpreta- the odd-parity REPS when the field is along thewxis.
tion of this moment is that the superconducting sbaemks Observable differences are shown to exist between the
time reversal symmetryX). This places a strong con- 1D and the 2D REPS for this field orientation. Finally,
straint on the pairing symmetry in RuQ, since itimplies  within the recently proposed model of orbital dependent
that the superconducting order parameter must have moseiperconductivity of SRuQ, [9] it is also shown that
than one component [8]. Of the possible representationthe orientation of square vortex lattice with respect to
(REPS) of theDy, point group only the two dimensional the underlying crystal lattice dictates which of the Rii
(2D) I's,, andI's, REPS exhibit this property. Of these two orbitals give rise to the superconducting state.
theI's, REP is the most likely to occur in §RuQ, due to To demonstrate the presence of the two superconduct-
arguments of Ref. [6] and the quasi-2D nature of the elecing transitions described above consider the magnetic field
tronic properties. The order parameter in this case has twalong thex direction (¢ is chosen to be along the basal
component$n, 17;) that share the same rotation-inversionplane main crystal axis) and a homogeneous zero-field
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state(n;, 92) = (1,i). In general the presence of a mag-(—1,i) # ¢'#(1,i), where¢ is a phase factor. This im-
netic field along thet direction breaks the degeneracy plies thato, is nota symmetry operator of the zero-field
of the (51, n2) components, so that only one of thesephase. It follows that there must exist a second transi-
two components will order at the upper critical field [e.g.,tion in the finite field phase at which; becomes nonzero.
(m1,m2) = (0,1)]. As has been shown for type Il super- Similar arguments hold for the field along any of the other
conductors with a single component the order parametdhree crystallographic directions in the basal plane. The
solution is independent af [10] so thato, (a reflec- existence of two transitions for all four crystallographic
tion about thex direction) is a symmetry operation of axes in the basal plane is a consequence of the zero-field
the (51, m2) = (0,1) vortex phase. Now consider the broken7 state.

zero-field phasdn, n,) « (1,i), o, transforms(1,i) to For a more detailed analysis consider the following
| dimensionless GL free energy density for thg REP
f= =P+ /2 + Ba(mn; — mm))?/2 + BslmPPImal® + IDem|* + [Dymal?

+ k(IDymi 1> + [Dxml?) + wks(ID 1> + |D mal?)

+ k3[(Dym1) (Dym2)* + H.c] + wa[(Dyn1) (Dxma)* + H.el + R, (1)
where h=V XA, D,=V,/k—iA, [ is | average over all the sheets of the Fermi surface. A
in units B2/4m, lengths are in units A =  knowledge of the pair scattering amplitude on each sheet
[72c¢2B,/(16¢*k am)]/2, h is in units v/2B. =  and between the sheets is required to deternyiri@, 14].

Oy/(dmArE), a = aoT —T.), &= (x1/a)/? and Recently, to account for the large residual density of
k = A/&. Note thata, &, B., andk are simply conve- states (DOS) observed in the superconducting state, it has
nient choices and do not correspond to measured valudeen proposed that either the or the {xz, yz} Wannier

of these parameters. The couplinb.(nin, — n>7;)  functions exhibit superconducting order [9]. This model
mentioned in the introduction is equivalent up to aimplies that there are two possible values pf one
surface term to the difference of the; and x4 terms  for the ¥ sheet §,,) and one for an average over the
in Eq. (1). For the application of Eq. (1) to,®uQ, it  {«, B} sheets ¥,.,;). A tight binding model indicates

is reasonable to determine the phenomenological coeffiy,, = 0.67 and vy,.,. = 0.11 [15]. These values are
cients in the weak-coupling limit sinc&./Tr = 10*.  sensitive to changes in the parameters of the tight binding
Furthermore, the measurements of Mackeretieal. of model; however, the qualitative result that, > 1/3 and

T. as a function of impurity concentration show thatvy..,. < 1/3 is robust. Physically,, > 1/3 because of
the ratio of the mean free path to the zero-temperaturéhe proximity of they Fermi surface sheet to a Van Hove
coherence length is>8 for T, > 1.3 K [4], indicat- singularity andy,.,, < 1/3 due to the quasi-1D nature
ing that the clean limit should also be a reasonablef the{«, B} surfaces [12,13].

approximation for SSRuQ,. Taking for theI's, REP Following Burlachkov [16] for the solution of upper
the gap function described by the pseudo-spin-pairingritical field #¢> for the field in the basal plane, the
gap matrix: A = i[nv, /W2 + mvy/\(v)]o.o,,  vector potential is taken to b& = Hz(sind, — cosd,0)
where the bracket§) denote an average over the Fermi(¢ is the angle the applied magnetic field makes
surface ando; are the Pauli matrices, it is found that with the % direction). After setting the compo-
Br=kKky=K3=kK4=7vy and B3 =3y — 1, where nent of D along the field to be zero it is found
y = (2v2)/(v¥). Note that 0=y =1 and that that H®(0) = x/[ksA(6)/2]/>,  where A(§) =

y = 1/3, respectively, for a cylindrical or spherical 1 + y — [(1 — y)? — (1 + y)(1 — 3y)sirt26]"/2

Fermi surface. These parameters agree with the cylindriA measurement of the temperature independent fourfold
cal Fermi surface results of Ref. [11]. Itis easy to verifyanisotropy in H% thus determinesy. To determine
that in zero field(»;, n,) = (1,i) is the stable ground the field at which the second transition discussed above
state for all allowedy. occurs consider the magnetic field along theirection.

It is informative to determine the values ¢fthat are  The free energy of Eq. (1) is then similar to that studied
relevant to SfRuQy. Local density approximation band in UPt [10,17,18] and since SRuQy is a strong type Il
structure calculations [12,13] reveal that the density oksuperconductor with a GL parameter of 31 for the field in
states near the Fermi surface are due mainly to the fouhe basal plane [20] the procedure of Garg and Chen [17]
Ru 44 electrons in ther,, orbitals. There is a strong to study the second transition can be applied here. At
hybridization of these orbitals with the Qp orbitals ngb 1, orders and the vortex lattice solution is given by
giving rise to antibondingr* bands. The resulting bands [10,17,18]
have three quasi-2D Fermi surface sheets labeled

B, and ¥ (see Ref. [2]). Thea and 8 sheets consist = ZCneinqze*(Ks/y)‘/ZKH[y*qn/(KH>]2/2’
of {xz,yz} Wannier functions and the sheet ofxy n
Wannier functions. In general is not given by a simple (2)
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where ¢, = ¢"’7/2 and ¢ has the two possible values 10 ; ; ‘ ‘ 2.0

qi = V3H«km(y/ks)'/? or g5 = Hrm(y/ks)'*//3 -

(these two solutions are degenerate). At the second | a m 118
transition thern, component becomes nonzero. As is

discussed in Refs. [17,18] the solution f@y corresponds

to a lattice that is displaced relative to that gf by .
d = (¥,z). Accordingly, the field at which the second £,
transition occurs is found by substituting T o4

0.6 -

‘ovfov

M = i3 oA ) = R RHLy =5 =an (1)) 2
n

02 k92y 1.2
(3)
and Eqg. (2) into the free energy, minimizing with respect %%, 02 04 0.6 08 10™°
to the displacement vectal, and determining when the v

coefficient of > becomes zero. The numerical solution i 1. The ratio of the two transition lines and the two
for the ratio of the second transition fief#h to the upper specific heat jumps for the field along as a function of
critical field H., and the specific heat jump of the secondy. The open (closed) circles correspond to the zeros of the
transitionAC, to that of the first transitiod C; is shown 72 (m) lattice. The vertical lines separate regions where the

. : : . . depicted vortex lattice structures are favored. For all three
in Fig. 1. Three vortex lattice configurations are foundIattice structures the and z axes have the same orientation

to be stable as a function of (depicted in Fig. 1). For and the dimensions of the rectangular cell are the same.
0<1vy<0.187 g = q» andd = (T, T,)/4 (T, and T,
are the translation vectors of the centered rectangular
cell for the n, lattice), for 0.187 < y < 0433 ¢ = ¢, particular for the field along the direction the gap matrix
andd = (T,,T.)/4, and for0.433 < y <1 g = ¢, and  is given byA = i[n,(r)vx(k)/\/(v5)lo- 0o, which is zero
d = 0. For the field alongt = § the ratio H,/H,, is for k, = 0 (note that symmetry allows a further contribu-
given by Fig. 1 withy replaced by(1 — y)/(1 + 3y).  tionto the gap proportional ttv. ooy which will reduce
The arguments in Ref. [19] imply that the shape of thethe line nodes to point nodes; however, it is expected that
vortex lattice unit cell forH < H, will be strongly field this contribution is small). 1f4,/H., <1 then the ar-
dependent. guments of Volovik [21] imply that folH, < H < H,,

The second phase transition will reveal itself throughthe DOS varies ag/H/H., (provided the residual DOS
a discontinuity in both the specific heat and the dc magobserved in the zero-field superconducting state is sub-
netic susceptibility. It is of interest to note that evidencetracted). In the low-field phase the line nodes vanish and
for this transition may already exist in the ac magneticaS @ consequence transport measurements should also be
susceptibility measurements of Yoshielaal. [20]. They sensitive to the second transition.
observed a second peak in the imaginary part of the mag- Now consider the magnetic field oriented along the
netic susceptibility only when the flux lines were parallelaxis. SettingD, = 0 writing Il = «(iD, + D,)/2H,
to the basal plane. Another intriguing feature of the abovdl - = k(iD; — D,)/2H, n: = (9. + in,)/v/2, and
described phase diagram is that the high-field phase con- = (9, — iny)/\/i, minimizing the quadratic portion
responds to a vortex lattice for a gap withe nodes. In | of Eq. (1) with respect ta), andn- yields

- m) _ H( (1 + y)(1 + 2N) (1 + p)2 + (1 =32 \ [ 7+ 4
n- 1+ yI% + (1 - 3y)I[3% (1 + y)(1 +2N) n_ )’

where N = IT.I1_. The maximum value offf that | solution for the form of the vortex lattice represents a
allows a nonzero solution fam ., n—) yields the upper complex problem due to the presence of many Landau
critical field HS. For y # 1/3 HS must be found levels in the solution ofn.,n-) and the weak type I
numerically (note that fory = 1/3 the solution can nature of SfRuQ, for the field along the: axis (Ref. [20]
be found analytically [8, 22]). Expandingn.,n-) indicatesk = 1.2). Here | present results that are strictly
in terms of the eigenstates & (Landau levels) and valid in the largex limit and leave the treatment for
diagonalizing the resulting matrix yield&¢ (y). The generalx to a later publication [a perturbative expansion
form of the eigenstate all¢ is found to ben.(r) = in (1 — 3y)/(1 + v) indicates that the qualitative results
> =0 Gan+2Gan+2(r) and  n_(r) = X ,—¢asmPa,(r), are unchanged fok = 1.2 [15]]. In the largex limit
where ¢,(r) =Y, cne'27"2H,[% — gm/(kH)] X  the form of the vortex lattice is found by minimizing
e <HIX—qm/(MF/2 /(41)1/2 the coefficientsa, are real, B = fi/(In[2)? [fs is the quartic part of Eq. (1)] with
(%,7) is the vector(x, y) rotated by an anglé about the respect to the coefficients,, ¢, and §. It is assumed

z axis, andH,(x) represent Hermite polynomials. The thatc, = c,+,. This restricts the vortex lattice structures
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to be centered rectangular with a short akis= 27/gq  between the 2D and the 1D REPS is that for the 2D REP
and a long axid., = 2¢/(xH). Theratior = L,/L, is  the vortex lattice remains square upltowhile for the 1D

/3 for a hexagonal vortex lattice and is 1 for a squareREPS the vortex lattice is hexagonalZat Also, the GL
vortex lattice. | further restrict the analysis to the two theories for the 1D and the 2D REPS predict a fourfold
orientations § = {0, 7/4} since these correspond to anisotropy inHZ’ but this anisotropy vanishes @t for
aligning one of the vortex lattice axes with one of thethe 1D REPS and does not vanishratfor the 2D REP.

high symmetry directions in the basal plane. Remarkably, In conclusion | have examined GL models for the odd-
the treatment of the many Landau levels in the solution oparity REPS of the superconducting state fosR&rO;.

n+ and n— becomes numerically straightforward when It was found that if the zero-field ground state breaks
B is expressed as a sum over the reciprocal lattice give symmetry (the 2D REP) then there should exist a
byl = £l,27 /L, + $l2w /L, [15] (see also Ref. [23]). second transition in the mixed state when the magnetic
It is found thatB is minimized forc, = ¢"*7/2 and that  field is applied along a high symmetry direction in the
the values ofr and & depend upony. For y < 1/3 basal plane. It was also shown that when the field is along
(y=1/3) 6 =0 (0 = w/4) andr varies continuously the ¢ axis there will be a square vortex lattice for all the
from /3 to 1 asy decreases (increases) fromf3 to  possible odd-parity superconducting states.

1/3 — 0.0050 (1/3 + 0.0050). For y < 1/3 — 0.0050 | acknowledge support from the Natural Sciences and
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that is aligned with the underlying crystal lattice is
expected neaH¢. Note the appearance of the square
vortex lattice correlates with an anisotropy i of
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