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Electron loss and electron-induced photon-emission probabilities are calculated near arbitrarily shaped
dielectrics described by frequency-dependent response functions. The exact solution of Maxwell’s
equations is reduced to self-consistent equations involving integrals over the interfaces. The particular
case of axially symmetric interfaces of arbitrary shape is discussed in detail. Photon-emission
probabilities are shown to be of the same order of magnitude as loss probabilities in some cases,
suggesting the possibility of measuring electron-induced radiation as a new microscopy technique.
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Scanning transmission electron microscopy (STEM
can perform electron energy loss spectroscopy on t
nanometer scale. The relatively intense valence-loss sp
tral region DE ­ h̄v # 50 eV can be interpreted us-
ing the classical response theory based on the compl
frequency-dependent dielectric functionesvd for each
component of the specimen structure. In the nonre
tivistic approximation, analytical eigenmode and stoppin
power solutions for simple shapes such as planes [1,
cylinders [3], or spheres [4,5] have proved useful an
for more complex geometries, can be supplemented b
numerical, boundary-charge approach [6–9]. These no
relativistic calculations neglect retardation effects, whic
become significant in structures of characteristic dime
sion a . cyw, and also ignore all radiative losses, in
cluding transition and Cherenkov radiation. Relativisti
analytical solutions, however, if available at all, are muc
more complicated even for slabs or planes [10,11].

Retardation effects can be incorporated in full three
dimensional computations. Purcell and Pennypacke
method [12] of filling each part of the dielectric medium
with an array of coupled dipoles has been applied to stu
the optical properties of dielectric grains as well as to bo
isolated and interacting spheres [13,14]. Recently, Pend
et al. [15] have developed a new numerical method o
solving Maxwell’s equations for the study of photonic
band structures.

Here, for structures of arbitrary shape, we present a n
approach to the computation of energy loss and electro
induced photon-emission spectra based on the numer
solution of Maxwell’s equations by the boundary elemen
method [16]. A detailed study of the case of small spher
shows that, even outside the familiar Cherenkov or tran
tion radiation regimes, photon-emission probabilities ca
be a significant fraction of total loss probabilities, sugges
80 0031-9007y98y80(23)y5180(4)$15.00
)
he
ec-

ex,

la-
g
2],
d,
y a
n-
h
n-
-
c
h

-
r’s

dy
th
ry
f

ew
n-

ical
t

es
si-
n
t-

ing the possibility of detecting the induced radiation to de
rive information on the target.

The electric and magnetic fields in a nonmagnetic inho
mogeneous material are conveniently expressed in terms
scalar and vector potentialsf andA asH ­ = 3 A and
E ­

iv
c A 2 =f, respectively, where the Lorentz gauge

condition= ? A 2
iv

c ef ­ 0 has been adopted,e is the
space and frequency-dependent local dielectric functio
[atomic units (a.u.) will be used unless otherwise spec
fied]. Then, the Maxwell equations reduce to

s=2 1 k2edf ­ 24psrye 1 ssd , (1a)

s=2 1 k2edA ­ 2
4p

c
s j 1 md , (1b)

wherek ­ vyc, ss ­ 1
4p D ? =

1
e , m ­ 2

iv

4p f=e, andr

(j) is the external charge (current) density.
Focusing on an abrupt interface separating two differe

media described by dielectric functionsej , j ­ 1, 2,
the electromagnetic fields find their sources in bot
the external perturbation and the polarization charge
and currents induced on the interface,ss and m, as
can be seen in Eqs. (1). Therefore, the fields mu
result from the propagation of these sources by mea
of Green functionsGjsrd ­ expsikjrdyr appropriate for
each separate medium, wherekj ­ k

p
ejsvd and the

square root is chosen such thatkj lies in the upper
complex plane in order to guarantee that the fields vani
at infinity. More precisely, the potentials inside medium
j read∑

fsrd
Asrd

∏
­

Z
dr0 Gjsjr 2 r0jd

∑
rsr0dyesr0, vd

jsr0dyc

∏
1

Z
S

ds Gjsjr 2 sjd
∑

sjssd
hjssd

∏
, (2)
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where the additional integrals over the interfaceS are re-
quired partly to include the effects of the interface charg
and currents noted above and partly to compensate for
discontinuity of the Green function at the interface. Actu
ally, upon insertion of Eq. (2) into Eqs. (1), one finds tha
the former is the solution of the latter vanishing at infinity
provided the customary boundary conditions of the ele
tromagnetic field are satisfied. Moreover, those bounda
conditions determinesj andhj for a given choice of the
external source.

The continuity of the parallel electric field and the
normal magnetic field at the interface is guaranteed
the continuity of the potentials, which in turn leads to
es
the
-
t
,
c-
ry

by

G1s1 2 G2s2 ­ 2sw1 2 w2d , (3a)

G1h1 2 G2h2 ­ 2sg1 2 g2d , (3b)

where∑
wjssd
fjssd

∏
­

Z
dr

∑
1

ns ? =s

∏
Gjsjs 2 rjd

rsrd
esr, vd

, (4)

and matrix notation has been adopted, so that interfa
coordinatess are used as matrix and vector indices, an
matrix-vector products such asGjsj involve integration
over the interface.

The continuity of the parallel magnetic field and the
normal electric displacement leads to
H1h1 2 H2h2 1 pnsG1s1 ­ 2q1 1 q2 2 pnsw1 , (5a)

1
ik

se1H1s1 2 e2H2s2d 2 e1nsG1 ? h1 1 e2nsG2 ? h2 ­ e1

√
ns ? g1 2

f1

ik

!
2 e2

√
ns ? g2 2

f2

ik

!
, (5b)
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where Hjss 2 s0d ­ ns ? =sGjsjs 2 s0jd 6 2pdss 2 s0d
(the sign is1 for j ­ 1, and2 for j ­ 2), p ­ ikse2 2

e1d,∑
gjssd
qjssd

∏
­

1
c

Z
dr

∑
1

ns ? =s

∏
Gjsjs 2 rjd jsrd , (6)

andns is chosen to point towards medium 2.
Upon discretization of the surface integrals usingN

points, Eqs. (3)–(6) become a set8N linear equations,
which can be solved by direct numerical inversion
a time proportional to512N3. A more efficient (6N3)
numerical procedure has been followed here consisting
separately manipulating operators such asGj , which now
becomeN 3 N matrices.

For simplicity, we have considered the case of axia
symmetric, but otherwise arbitrarily shaped, dielectric
This allows analytical evaluation of the azimuthal interfac
integrals, so that the number of pointsN is considerably
reduced, though one has to sum over the azimuthal mom
tum numberm. In the examples that follow, 50 points pe
object have been enough to reach convergence.

The loss probabilityGloss for an electron moving with
velocity v can be obtained from the induced electric fie
Eind acting on the electron, whose sources are found
the auxiliary boundary charges and currents [see Eq. (
One has

Glosssvd ­
1

pv

Z
dt Rehe2ivtv ? Eindfrestd, vgj , (7)

whererestd describes the electron trajectory.
Figure 1 shows the loss probability for an electron mo

ing near a set of aligned spheres as shown in the
sets. The results derived from the nonrelativistic theo
(broken curves, obtained in thec ! ` limit) are com-
pared with the fully relativistic results (solid curves). Th

Drude dielectric functionesvd ­ 1 2
v2

p

vsv1ihd has been
used to describe the target, with parameters appropr
for Al. The frequencies of the various loss peaks a
n
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characteristic of each target, and the electron velocity an
trajectory determine the weight of each of them in the
spectrum. Under the conditions considered in Fig. 1, typ
cal of STEM, the lowest orderm modes are emphasized.
The figure illustrates how much they are influenced by
relativistic effects for targets on the nanometer scale.

Previous nonrelativistic results for one [4] and two [5]
spheres are fully reproduced using the present method. A
a further test, the relativistic calculations of Fig. 2 for the
isolated sphere have been compared with an analytical e
pression, which can be written as a sum over the contribu
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FIG. 1. Loss probability per unit energy range and per spher
for a 100-keV electron traveling in vacuum parallel to the
axis of symmetry of a set of 1–4 aligned Al spheres and
passing at 1 nm from their surfaces. Consecutive curves a
shifted 0.1 a.u. upwards to improve readability. The sphere
are described by the Drude dielectric function (see text) with
vp ­ 15.8 eV and h ­ 1.06 eV. The radius of the spheres
is 10 nm. Contiguous spheres are separated by 1 nm. So
(broken) curves correspond to the relativistic (nonrelativistic
theory. The total loss probability per sphere isø2.2% in
all cases.
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FIG. 2. Loss probability (solid curves) and photon-emissi
probability (broken curves) for a100-keV electron passing at a
distance of 1 nm from a sphere of radius 10 nm described
the Drude dielectric function withvp ­ 15.8 eV and different
values of the dampingh (see labels). The inset shows the tot
probability as a function of damping.

tion of different multipoles. More precisely [17],

Glosssvd ­
1

cv

X̀
l­1

lX
m­2l

K2
m

µ
vb
yg

∂
3 fCM

lm Im htM
l j 1 CE

lm Im htE
l jg , (8)

where g is the Lorentz relativistic contraction facto
CM

lm and CE
lm are positive constants that depend only

yyc, andtn
l ­ sind

n
l expsdn

l d are the magnetic and electri
scattering matrices written in terms of the correspon
ing phase shifts [18]dn

l for n ­ M and n ­ E, respec-
tively. The results of analytical and numerical calculatio
cannot be separated on the scale of Fig. 2 (solid curve

The photon-emission probabilityGrad has been ob-
tained by dividing byv the component of the Poynting
vector normal to an arbitrarily large sphere centered at
sample. The emission increases with decreasing dam
h and it coincides with the loss probability for real diele
tric functions, in which case the medium cannot abso
any energy and the stopping of the electron goes enti
into radiation. This is shown in Fig. 2 (broken curve
for the case of an isolated sphere. Actually, for the is
lated sphere,Grad is given by Eq. (8) upon substitution
of jtn

l j2 for Imhtn
l j and it is easy to show explicitly tha

Gloss ­ Grad for real dielectric functions. The finite los
probability for h ­ 0 is due to the finite width of the
natural oscillations of the sphere [19].

The emitted radiation is not subject to the Cherenk
condition for low-l modes [this follows from Eq. (8)],
dominant in the case considered in Fig. 2. Rather, it
connected to the intrinsic finite width of the modes of t
sphere. Nevertheless, even at 100 keV the radiative
rections for an isolated 10-nm sphere are quite signific
(see inset in Fig. 2). The photon-emission probability a
the loss probability are both of the same order of mag
5182
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tude, making possible the direct detection of the electro
induced photon emission under study.

For a realistic finite dampingh, the photon-emission
probability presents the same features contained in
loss function, but some of them are nearly suppress
as can be seen both in Fig. 2 for the isolated sphere an
the upper part of Fig. 3 for the same targets as in Fig.
The angular distributions of photons shown in the conto

FIG. 3. Upper part: Photon-emission probability under th
same conditions as in Fig. 1, except that the probability has
been divided by the number of spheres. Lower part: Conto
plots showing the angle-resolved photon-emission probabil
averaged over azimuthal directions. The distance betwe
consecutive contour curves corresponds to a factor of
starting from small values in the dark regions and reachi
0.005 a.u. per stereo radian in the curves limiting white are
The total emission probability ranges from 0.32% (on spher
to 0.42%.
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FIG. 4. Loss probability (solid curves) and photon-emissio
probability (broken curves, multiplied by a factor of 3) for a
100-keV electron passing at a distance of 1 nm from the surfa
of a Al cylindrical ellipsoid. The electron moves parallel to the
axis of symmetry, along which the semiaxis of the ellipsoi
takes different values (b ­ 14, 12, 10, 8, and 6 nm from top
to bottom; see insets). The other semiaxis is 10 nm in a
cases. Consecutive curves have been shifted 0.05 a.u. upwa
to improve readability. The angular distribution of photon
emission probability is shown in the insets for the extreme cas
of b ­ 6 nm andb ­ 14 nm.

plots of Fig. 3 exhibit a preference for emission along th
direction of motion of the electron.

The features of both the loss function and the photo
emission probability are very sensitive to the structure
the object along the direction of motion of the electrons, a
shown in Fig. 4, where the loss probability (solid curves
and the photon-emission probability (broken curves, mu
tiplied by 3) are represented for ellipsoidal targets wit
the same circular projection perpendicular to the electro
trajectory.

In summary, a formalism has been presented to sim
late fully relativistic electron energy loss and electron
induced photon-emission spectra in the presence
arbitrarily shaped dielectrics. Making use of the bound
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ary element method, the three-dimensional soluti
of Maxwell’s equations is reduced to surface-integr
equations. Even in small isolated spheres, the electro
damping and radiation losses can be comparable, rais
the possibility of direct detection of the latter as a ne
source of microscopical information on the target. I
larger systems or in Cherenkov emission situation
relativistic effects will be even more significant.
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