VOLUME 80, NUMBER 23 PHYSICAL REVIEW LETTERS 8 UNE 1998
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Electron loss and electron-induced photon-emission probabilities are calculated near arbitrarily shaped
dielectrics described by frequency-dependent response functions. The exact solution of Maxwell’'s
equations is reduced to self-consistent equations involving integrals over the interfaces. The particular
case of axially symmetric interfaces of arbitrary shape is discussed in detail. Photon-emission
probabilities are shown to be of the same order of magnitude as loss probabilities in some cases,
suggesting the possibility of measuring electron-induced radiation as a new microscopy technique.
[S0031-9007(98)06300-5]
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Scanning transmission electron microscopy (STEM)ing the possibility of detecting the induced radiation to de-
can perform electron energy loss spectroscopy on thave information on the target.
nanometer scale. The relatively intense valence-loss spec-The electric and magnetic fields in a nonmagnetic inho-
tral region AE = hw = 50 eV can be interpreted us- mogeneous material are conveniently expressed in terms of
ing the classical response theory based on the complegcalar and vector potentias andA asH =V X A and
frequency-dependent dielectric functiar{w) for each E = “2A — V¢, respectively, where the Lorentz gauge
component of the specimen structure. In the nonrelagonditionV - A — “2e¢ = 0 has been adopted, is the
tivistic approximation, analytical eigenmode and Stoppingspace and frequency-dependent local dielectric function
power solutions for simple shapes such as planes [1,2}atomic units (a.u.) will be used unless otherwise speci-

cylinders [3], or spheres [4,5] have proved useful andﬁed]_ Then, the Maxwell equations reduce to
for more complex geometries, can be supplemented by a

numerical, boundary-charge approach [6—9]. These non- (V* + kK*e)p = —4m(p/e + o)), (1a)
relativistic calculations neglect retardation effects, which 477

become significant in structures of characteristic dimen- (V2 + K*e)A = - (j +m), (1b)
sion a > ¢/w, and also ignore all radiative losses, in- ,

cluding transition and Cherenkov radiation. Relativisticwherek = w/c, oy = 7=D - Vi, m = —;2¢Ve, andp
analytical solutions, however, if available at all, are much(j) is the external charge (current) density.

more complicated even for slabs or planes [10,11]. Focusing on an abrupt interface separating two different

Retardation effects can be incorporated in full three-media described by dielectric functions;, j = 1,2,
dimensional computations. Purcell and Pennypacker'the electromagnetic fields find their sources in both
method [12] of filling each part of the dielectric medium the external perturbation and the polarization charges
with an array of coupled dipoles has been applied to studgnd currents induced on the interface, and m, as
the optical properties of dielectric grains as well as to bottrcan be seen in Egs. (1). Therefore, the fields must
isolated and interacting spheres [13,14]. Recently, Pendmesult from the propagation of these sources by means
et al.[15] have developed a new numerical method ofof Green functionsG;(r) = explik;r)/r appropriate for
solving Maxwell's equations for the study of photonic each separate medium, wheke = k+/€;(w) and the
band structures. square root is chosen such that lies in the upper

Here, for structures of arbitrary shape, we present a newomplex plane in order to guarantee that the fields vanish
approach to the computation of energy loss and electrorat infinity. More precisely, the potentials inside medium
induced photon-emission spectra based on the numericalread
solution of Maxwell's equations by the boundary element , ,
method [16]. A detailed study of the case of small spheres [‘Z’(r)} = ]dr'G;(lr — r'|)[p(r,)/f(r "")}
shows that, even outside the familiar Cherenkov or transi- Ar) ‘ ih/e
tion radiation regimes, photon-emission probabilities can aj(s)
be a significant fraction of total loss probabilities, suggest- + fs ds Gj(Ir —s)) [ h;(s) } ’ (2)
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where the additional integrals over the interfacare re- Gioy — Gyoy = — (@1 — @), (3a)
quired partly to include the effects of the interface charges .

and currents noted above and partly to compensate for the Gihy = Gohy = —(g1 — g2), (3b)
discontinuity of the Green function at the interface. Actu-\yhere
ally, upon insertion of Eq. (2) into Egs. (1), one finds that

the former is the solution of the latter vanishing at infinity, |:§Dj(s)i| _ ] dr[ 1 }G(Is ~ ) p(r) @)
provided the customary boundary conditions of the elec- | fj(s) Vs 17/ er,m)’

tromagnetic field are satisfied. Moreover, those boundary . ) )
conditions determine; andh; for a given choice of the and matrix notation has been adopted, so that interface
external source. ' coordinatess are used as matrix and vector indices, and

The continuity of the parallel electric field and the Matrix-vector products such &;o; involve integration

normal magnetic field at the interface is guaranteed bVer the interface. o
the continuity of the potentials, which in turn leads to The continuity of the parallel magnetic field and the
| normal electric displacement leads to

Hihy — Hyhy + pnGiop = —q; + q@ — pnsey, (5a)
1 - - _ ) |
E(EIHIUI €Hyo;) — €nGy - hy + eongGy - hy = € n; - g i e(ns g~ o | (5b)
where Hj(s — s')=n; - VsG(Is — s'|) = 278(s — ') | characteristic of each target, and the electron velocity and
(the signis+ for j = 1, and— for j = 2), p = ik(eo —  trajectory determine the weight of each of them in the
€1), spectrum. Under the conditions considered in Fig. 1, typi-

g;(s) 1 1 . cal of STEM, the lowest order modes are emphasized.
[q'j(s)} =7 ]d [ -V, }GMS —r))j(r), (6) The figure illustrates how much they are influenced by
andn, is chosen to point towards medium 2 relativistic effects for targets on the nanometer scale.

Upon discretization of the surface integrals usiNg Previous nonrelativistic results for one [4] and two [5]

points, Egs. (3)—(6) become a s& linear equations spheres are fully reproduced using the present method. As

which can be solved by direct numerical inversion ir]afurther test, the relativistic calculations of Fig. 2 for the

a time proportional to512N3. A more efficient 6N°) |solat(_ad sphgre have been_ compared with an analytica! ex-
numerical procedure has been followed here consisting iRressmn, which can be written as a sum over the contribu-
separately manipulating operators suchGaswhich now

becomeN X N matrices. 0.5 - . : . —— .

For simplicity, we have considered the case of axially 2N
symmetric, but otherwise arbitrarily shaped, dielectrics. —
This allows analytical evaluation of the azimuthal interface
integrals, so that the number of poim¥sis considerably
reduced, though one has to sum over the azimuthal momen-=" 0.3
tum numbein. Inthe examples that follow, 50 points per
object have been enough to reach convergence.

The loss probabilityl"!** for an electron moving with
velocity v can be obtained from the induced electric field
E" acting on the electron, whose sources are found in
the auxiliary boundary charges and currents [see Eqg. (2)].
One has 0.0,

I (@) = L / dtRefe 'y - EM[r,(1), w]}, (7) w(eV)
Tw

wherer, () describes the electron trajectory. FIG. 1. Loss probability per unit energy range and per sphere
Figure 1 shows the loss probability for an electron mov-for a 100-keV electron traveling in vacuum parallel to the
ing near a set of aligned spheres as shown in the ir@XiS_of symmetry of a set of 1-4 aligned Al spheres and

> . assing at 1 nm from their surfaces. Consecutive curves are
sets. The results derived from the nonrelativistic theonghiﬂedgo_l a.u. upwards to improve readability. The spheres

(broken curves, obtained in the— <« limit) are com-  are described by the Drude dielectric function (see text) with
pared with the fully relativistic results (solzid curves). Thew, =158 eV andn = 1.06 eV. The radius of the spheres

. . . . w; is 10 nm. Contiguous spheres are separated by 1 nm. Solid
Drude dielectric functiore(w) = 1 — w(wiin) has been broken) curves correspond to the relativistic (nonrelativistic)

used to describe the target, with parameters appropriatfeory. The total loss probability per sphere 42.2% in
for Al. The frequencies of the various loss peaks areall cases.

(a.u

0.2

Probabil

0.1

5181



VOLUME 80, NUMBER 23 PHYSICAL REVIEW LETTERS 8 UNE 1998

! ' tude, making possible the direct detection of the electron-

s~
i | eigy 12 e ] induced photon emission under study.
e = | For a realistic finite damping;, the photon-emission
= | {emission ] ] probability presents the same features contained in the
. 03 :
= 0.01 0.1 v Q loss function, but some of them are nearly suppressed,
o, 0.4r n(eV) . as can be seen both in Fig. 2 for the isolated sphere and in
= \ the upper part of Fig. 3 for the same targets as in Fig. 1.
= k\ The angular distributions of photons shown in the contour
<
o 0.2
o
= 03 04 05 06 07 08
A~ 020 -
=
S o15—8
= /%
o (eV) :; 0.10 — )
FIG. 2. Loss probability (solid curves) and photon-emission = W
probability (broken curves) for &00-keV electron passing at a S 005
distance of 1 nm from a sphere of radius 10 nm described by a M

the Drude dielectric function witlw, = 15.8 eV and different
values of the damping (see labels). The inset shows the total
probability as a function of damping.

tion of different multipoles. More precisely [17],

l & < wb .
rlOSS(a)) - K’Zn<_> o
cw 21,2 5y ;

X [ClpIm "} + Cl, Im {r73]. - (8)

where y is the Lorentz relativistic contraction factor,
c)! and Ct,, are positive constants that depend only on
v/c,ands; = sind; exp(§;) are the magnetic and electric
scattering matrices written in terms of the correspond-
ing phase shifts [18p, for v = M andv = E, respec-
tively. The results of analytical and numerical calculations
cannot be separated on the scale of Fig. 2 (solid curves).
The photon-emission probability™®! has been ob-
tained by dividing byw the component of the Poynting
vector normal to an arbitrarily large sphere centered at the
sample. The emission increases with decreasing damping
7 and it coincides with the loss probability for real dielec-
tric functions, in which case the medium cannot absorb
any energy and the stopping of the electron goes entirely
into radiation. This is shown in Fig. 2 (broken curves)
for the case of an isolated sphere. Actually, for the iso-
lated sphere]'™¢ is given by Eq. (8) upon substitution
of |¢/'|> for Im{z/'} and it is easy to show explicitly that
rloss = 1rad for real dielectric functions. The finite loss
probability for n = 0 is due to the finite width of the
na'truhrgl:ri(i:tltlgl?gsi;){ig;]ei:pnh;riu[é?e]ét to the CherenkovFlG' 3. Upper part: Photon-emission probability under the
Z : same conditions as in Fig. 1, except that the probability has not
condition for lowi modes [this follows from Eq. (8)], been divided by the number of spheres. Lower part: Contour
dominant in the case considered in Fig. 2. Rather, it iplots showing the angle-resolved photon-emission probability
connected to the intrinsic finite width of the modes of theaveraged over azimuthal directions. The distance between
sphere. Nevertheless, even at 100 keV the radiative cofonsecutive contour curves corresponds to a factor of 2,

f f isolated 10 h ite sianifi tarting from small values in the dark regions and reaching
rections for an isoiate -Nm Sphere are quite signilicary o5 g g, per stereo radian in the curves limiting white areas.

(see insetin Fig. 2). The photon-emission probability andrhe total emission probability ranges from 0.32% (on sphere)
the loss probability are both of the same order of magnito 0.42%.
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7 ary element method, the three-dimensional solution
of Maxwell's equations is reduced to surface-integral
equations. Even in small isolated spheres, the electronic
damping and radiation losses can be comparable, raising
the possibility of direct detection of the latter as a new
source of microscopical information on the target. In
larger systems or in Cherenkov emission situations,
relativistic effects will be even more significant.
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