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Spontaneous Spin-Up during the Decay of 2D Turbulence
in a Square Container with Rigid Boundaries
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Direct numerical simulations of the decay of 2D turbulent Navier-Stokes flows inside a square
container with no-slip boundaries are presented. Several numerical runs have been carried out for three
different values of the Reynolds number. A surprising observation in a majority of these runs is the
spontaneous spin-up of the flow during the initial stage of the self-organization of the flow, which is due
to normal and shear stresses exerted on the fluid by the rigid boundaries. [S0031-9007(98)06284-X]

PACS numbers: 47.27.Eq, 47.32.Cc

Numerical studies of decaying two-dimensional (2D)boundaries? Is the decay scenario of 2D turbulence in
turbulence, based on simulations of the Navier-Stokesontainers with rigid boundaries consistent with predic-
equations for incompressible flows on a square dotions based on maximum entropy theories? Can the fluid
main with periodic boundary conditions, have revealedspontaneously spin up by acquiring angular momentum
the emergence of coherent vortex structures such aue to the interaction of the flow with the boundaries?
monopoles, dipoles, and, occasionally, tripoles [1—4]How anisotropic and inhomogeneous are the turbulent ve-
This process is commonly referred to as self-organizatiofocity fluctuations in the presence of boundaries? In this
of the flow. By employing periodic boundary conditions Letter, we focus only on questions concerning the large-
it is implicitly assumed that boundaries have no signifi-scale flow dynamics in decaying 2D turbulence.
cant effect on the decay process. We recall that self- Recently, Liet al. [13—15] reported results of compu-
organization of 2D turbulent flows contrasts strongly withtations of decaying 2D turbulence inside a circular rigid
the behavior of 3D turbulence. In the 3D case, energyoundary. The simulations with no-slip boundaries and
cascades from the injection scale to the smallest scales initial velocity field containing a large amount of net
where it is finally dissipated, even in the limit of van- angular momentuni revealed a very slow decay d@f.
ishing viscosity. It might therefore be expected that afThe angular momentum also appears to be a better con-
some distance from the boundaries 3D turbulence is aktant of motion than the kinetic energy. For this case, the
most unaffected by the presence of rigid walls. Howeverguasistationary intermediate state consists of a monopo-
in 2D turbulence, due to self-organization of the flow, thelar vortex in the center of the circular container. In
average size of the vortices increases, and vortex-wall incontrast, runs withL(r = 0) = 0 showed the eventual
teractions will eventually play an important role in the formation of a rather persistent dipolar structure. The vor-
decay of 2D turbulent flows on a bounded domain (withticity produced in the boundary layer between the dipole
rigid walls). Additional arguments justifying a more fun- and the no-slip boundary is predominantly accumulated in
damental study of the influence of boundaries on the flowwhe wake of the dipole.
dynamics are the following: Experiments with quasi-2D We report here on results of several numerical simula-
flows in rotating [5] or stratified fluids [6,7], or in elec- tions of decaying 2D turbulent flows on a square domain
tromagnetically forced flows in electrolyte solutions [8], (=1 = x = 1,—1 =y = 1) with impermeable bound-
are usually carried out in finite-sized containers with rigidaries for Re= 1000, 1500, and 2000 with no-slip«(= 0
boundaries. Furthermore, several theoretical approachesd v = 0, with u and v the components of the ve-
for investigating 2D flows take into account the pres-locity in the x andy directions, respectively) boundary
ence of boundaries. Examples are the study by Pointinonditions. The Reynolds number of the flow is de-
and Lundgren [9] on the statistical mechanics of 2D vorfined as Re= UW /v, where U is the rms velocity of
tices in a bounded container and the classification study dhe initial flow field, W is the half-width of the container,
self-organized structures in 2D turbulence in perfect fluidsand » is the kinematic viscosity of the fluid. The nu-
(Euler flows) by Chavanis and Sommeria [10]. The lattermerical simulations of the 2D Navier-Stokes equations
approach is based on an application of the maximum enfwithout using hyperviscosity or any similar artificial dis-
tropy theory as introduced by, e.g., Miller [11] and Robertsipation on small or large scales) are performed with
and Sommeria [12]. a 2D Chebyshev pseudospectral method, with a maxi-

Naturally arising questions concerning numerical andnum of 289 Chebyshev modes in each direction. The
experimental studies of 2D decaying turbulence are théme integration is based on the second order accurate
following: How is the decay scenario of 2D turbulence semi-implicit Adams-Bashforth Crank-Nicolson scheme.
on a square domain modified by the presence of rigidrhe numerical calculations, except the evaluation of
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the nonlinear terms, are performed in spectral spacdor all numerical runs the kinetic energy of the flow field
Fast-Fourier transform methods are used to evaluate thdrops fromE(t = 0) = 2 to E(t = 0") = 1 during the
nonlinear terms following the procedure designed byfirst time integration step, because the initial velocity field,
Orszag [16], where the padding technique has been usedth V - u; # 0, is then projected onto the subspace of
for de-aliasing. Further details of the numerical procedurealivergence-free velocity fields. A more proper treatment
can be found in Ref. [17]. for obtaining a divergence-free initial velocity field is
The initial condition for the velocity field, denoted by possible, but for the present simulations the procedure
u;, is obtained by a zero-mean Gaussian random realizalescribed above is sufficient; the details of the initial flow
tion of the first65 X 65 Chebyshev spectral coefficients field were found to be not important.
of bothu; andv;, and subsequently applying a smoothing The angular momentum of the flow, defined with respect
procedure in order to enforag; = 0 at the boundary of to the center of the container, is
the domain. The variance,,, of the velocity spectrum
of u; is chosen as

1 1
L= [ [ Irwt = yute axay

2 n m
0' =
o 1+ [(1/8)n]*} {1 + [(1/8)m]*}’ 1,1
T+ [(1/3)nF} {1 + [(1/8)m]'} =—if [uww%mwmw,(a
With 0 < n,m < 64, (1) 2 )1 )4
and o, = 0 for n,m = 65. The resulting flow field is wherew = dv/dx — du/dy represents the vorticity of
denoted byU(x,y). The smoothing function ig(x) =  the flow. Because of the initialization procedure of the

{1 —exd—pB0 — x?)?]}, with g =100. The initial flow field, the mean value of.(r = 0) over a large
velocity field is thusu;(x,y) = f(x)f(y)U(x,y), where number of realizations is zero. However, for a particular
the flow field is normalized in order to enforce tlig-  realization the flow was given a net nonzero angular
norm of the velocity per unit surface of the initial flow momentum/(s = 0) # 0, but still small compared to the
field to be equal to unity. It should be emphasized thagngular momenturh,, of the same amount of fluid in solid

no-slip, Re=2000

(d) t=10.0 (e) t=20.0 (f) t=50.0
FIG. 1. Vorticity contour plots of the simulation with no-slip boundary conditions=R2000. Drawn contours ) represent
positive vorticity, and dashed contours-— —) represent negative vorticity. The contour level increment is (a) and (b) 2, (c) 0.8,

(d) 0.5, (€) 0.25, (f) 0.1.
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spontaneous spin-up for Re=2000 the flow evolves to an intermediate state consisting of a
monopole with a ring of oppositely signed vorticity.

As shown in Fig. 2(a) (upper curve), the absolute
value of the angular momentum of the flow observed in
the numerical run discussed in the previous paragraph
increases suddenly from the vallig| = 0 to [L| = 0.3
during a short time interval5 = r = 15), and decays
afterwards very slowly |{| = 0.15 for r = 100). This
sudden increase of the angular momentum reflects the
spontaneous spin-upf the flow. Since the angular
momentum of unbounded viscous flows is conserved
when the total circulation (as in bounded domains with
no-slip walls) is zero, the spontaneous spin-up is a process
03} 5 75 &5 35 50 which is entirely due to the finiteness of the flow. This

TIME feature can also be observed from the rate of change
of L, which can be expressed as a boundary integral
containing contributions from viscous forces only [18].
A practical implication of the spin-up phenomenon is that
a torque needs to be exerted on the container in order
to prevent spontaneous rotation of the container since the
total angular momentum of the torque-free fluid-container
system is conserved. Note that the total linear impulse
is zero for flows in domains with rigid walls at rest (the
density of the fluid is assumed to be constant).

Spontaneous spin-up has been observed in several other
runs. Three typical examples are shown in Figs. 2(a)
and 2(b). Thirteen different runs have been carried
out with Re= 2000 and eight of these runs showed
spontaneous spin-up. Three runs show weak spin-up
which is characterized by a rather strong increase of

ANGULAR MOMENTUM

(a)

ANGULAR MOMENTUM

-0.3 1 1

0 20 40 50 80 100 |L| during the initial stage of the flow evolution, but a
TIME fast decrease ofL| is observed forr = 30. Two runs
() show no spin-up at all. Typical properties of the flow

FIG. 2. The angular momentui olotted versus dimension observed in the eight runs that show spontaneous spin-up
less timer for Reg= 2000 for four tygical runs that show spon- are thg charactengﬂc Spin-up time, which is aboet 17,
taneous spin-up. the spin-up amplitude, which is abolk| = 0.22, and
the character of the flow during the intermediate stage of

body rotation and containing the same total kinetic energylecay, which is always a strong monopolar or a rotating
(E = 1), for which it can be shown thaL,,| = 2.3. tripolar structure. Runs with a lower Reynolds number

Figure 1 shows some snapshots of decaying turbuleng®e = 1500 and 1000) show the same decay properties,
for Re= 2000 in a container with no-slip boundaries. although less pronounced for Re 1000. Spontaneous
Note that the total circulation for no-slip runs is alwaysspin-up in the simulations with Re 1500 is always
equal to zero (within machine accuracy). The no-slip run@accompanied by the formation of a tripole or monopole
predominantly show the appearance of intense vorticitys an intermediate state. The runs with-Rd 000 nearly
filaments which arise from viscous vorticity production always relax directly towards a rather strong monopole
in the shear layers at the domain boundaries. Thes&hen spontaneous spin-up is observed (only in two cases
intense vorticity filaments are either injected into the flowa weak tripolar structure has been found). All data of the
interior or they roll up into a vorticity blob. In the latter present runs are summarized in Table I.
case, they usually pair with the neighboring (primary) During the decay of 2D turbulence, three major pro-
vortex, thus forming a dipolar structure. Figures 1(a) anccesses are relevant: turbulent spectral transfer due to non-
1(b) show the formation of intermediate-scale vorticeslinear interactions, the selective decay mechanism, and in
Vorticity-gradient sheets and several merging events arthe later stage of the flow evolution (foer= 150 in the
visible. A snapshot of vortex merging is even betterruns with Re= 1500 and 2000) the process of self-similar
observed in Fig. 1(d), which represents the flow evolutiordecay. In the latter process, the dynamics is strongly
att = 10 (the time is made dimensionless with/U, and  dominated by viscous decay (for a more elaborate dis-
is comparable with an eddy turnover time). Foe 20, cussion, see Ref. [19]). The three sets of simulations
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TABLE I. Several characteristics obtained from ensembleof us (S.R.M.) is grateful for support by the Nether-
simulations of decaying 2D turbulence in square containerfands Geosciences Foundation (GOA) with financial aid

with no-slip boundaries. The characteristic spin-up timesg o the Netherlands Organization for Scientific Research
and amplitudes are based on averages of the runs showi WO)

spontaneous spin-up.
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Mech. 25, 241 (1993).
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spin-up phenomenon. In the minority of simulations that Phys. Rev. Lett67, 3772 (1991). ,

P PP B y [9] Y.B. Pointin and T.S. Lundgren, Phys. Fluid®, 1459
do not show any spin-up (20% of all runs), the flow (1976).

evolves to an antisymmetric intermediate state similar toj10) p. H. Chavanis and J. Sommeria, J. Fluid Me&h4, 267
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numbers 2000, 1500, and 1000, show spontaneous spii=>] S: Li: D. Montgomery, and W.B. Jones, Theor. Comput.

Fluid Dyn. 9, 167 (1997).
up of the flow due to normal and shear stresses exerte[%]
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