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Vibrations and Oscillatory Instabilities of Gap Solitons
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Stability of optical gap solitons is analyzed within a coupled-mode theory. Lower intensity solit
are shown to always possess a vibration mode responsible for their long-lived oscillations. As
intensity of the soliton is increased, the vibration mode falls into resonance with two branches o
long-wavelength radiation producing a cascade of oscillatory instabilities of higher intensity solit
[S0031-9007(98)06265-6]
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In the late 1970s and early 1980s, the theory
elementary particles [1] and condensed matter physics
particular, the Su-Schrieffer-Heeger polyacetylene mod
[2]) stimulated a wide interest in particlelike solutions o
classical spinor field equations. Recently there has bee
remarkable upsurge of the interest; the localized solutio
of spinorlike systems have made a comeback under
new name ofgap solitons.

Thanks to the gap in the linear spectrum, soliton
in spinorlike systems can propagate without losing the
energy to resonantly excited radiation waves [3,4]. A
example of the gap-soliton bearing system is given
an optical fiber with periodically varying refractive index
[3]; here the gap is produced by the Bragg reflectio
and resonance of the waves along the grating. Anoth
class of gap solitons arises in two-wave resonant opti
materials with ax s2d susceptibility and diatomic crystal
lattices (see [4] and references therein). Finally, in th
already mentioned polyacetylene model [2], the gap
the electron spectrum is due to the electron-phon
interaction and effective period doubling of the lattice.

The aim of this Letter is to analyze thestability of gap
solitons. Previous analytical studies of the spinor solito
stability faced serious obstacles (cf. [5]), while results
computer simulations were contradictory (cf. [6,7]). A
a result, no stability or instability criterion is available to
date. The main difficulty of the previous analyses was th
they were all based on a postulate that stable solutions m
render the energy minimum. In the actual fact, howeve
the minimality of energy is not necessary for stability i
systems with indefinite metrics [8]. As far asoptical gap
solitons are concerned, they have been commonly deem
stable following recent computer simulations carried o
for certain particular parameter values [9]. In this Lette
we demonstrate that the gap solitonscanbe unstable, elu-
cidate the mechanism of instability, and demarcate the s
bility/instability regions on the plane of their parameters

In nonlinear optics the gap solitons are usually analyz
within the coupled-mode theory [3] which reduces to
system of coupled equations for the amplitudes of t
forward- and backward-propagating waves,

isut 1 uxd 1 y 1 sjyj2 1 rjuj2du ­ 0 ,

isyt 2 yxd 1 u 1 sjuj2 1 rjyj2dy ­ 0 .
(1)
0031-9007y98y80(23)y5117(4)$15.00
of
(in
el
f
n a
ns
the

s
ir
n

by

n
er

cal

e
in
on

n
of
s

at
ust
r,

n

ed
ut
r

ta-
.
ed
a

he

In the periodic Kerr medium one typically hasr ­
1y2 [3]; in other problems of the fiber opticsr may
range up to infinity [10]. In the caser ­ 0 Eqs. (1)
yield the massive Thirring model of the field theory
In this case Eqs. (1) are invariant with respect to t
Lorentz transformationsX ­ sx 2 Vtdy

p
1 2 V 2, T ­

st 2 Vxdy
p

1 2 V 2, with u and y transforming as com-
ponents of the Lorentz spinor [see Eq. (2) below]. A
though in the general case (r fi 0) the Lorentz symmetry
is broken, its artifact is that the soliton solution is sti
written in terms of the boosted variablesX andT [9],

u ­ aW sXdeyy21iwsXd2i cosu T ,

y ­ 2aWpsXde2yy21iwsXd2i cosu T ,
(2)

wherea22 ­ 1 1 r coshs2yd,

wsXd ­ 2a2r sinhs2yd arctan

(
tanhfssinudXg tan

u

2

)
,

W sXd ­
sinu

coshfssinud X 2 iuy2g
.

Here the rapidityy parametrizes the soliton’s velocity
V ­ tanhy, and u determines its detuning frequenc
within the spectrum gap,V ­ cosu (0 , u , p). At
the upper edge of the gap (i.e., asu ! 0) and assuming
jV j ø 1, Eq. (2) approaches the small-amplitude no
linear Schrödinger soliton [3]:W sXd ! usechfu sX 2

iy2dg. At the lower edge, i.e., in the limitu ! p, the
gap soliton has a finite amplitude and decays as a po
law: W sXd ­ iysX 1 iy2d. These two limits are referred
to as the “low intensity” and “high intensity” limits [3].

Linearizing Eq. (1) about the stationary soliton (2) an
choosing the perturbation as

u ­ faWsXd 1 z1sXdeilT geyy21iwsXd2iV T ,

y ­ f2aWpsXd 1 z2sXdeilT ge2yy21iwsXd2iV T ,

up ­ faWpsXd 1 z3sXdeilT geyy22iwsXd1iV T ,

yp ­ f2aW sXd 1 z4sXdeilT ge2yy22iwsXd1iV T

gives an eigenvalue problem

Ĥ z ­ lJz, J ­

µ
s0 0
0 2s0

∂
, (3)

wherez ­ sz1, z2, z3, z4dT and the Hermitian operator̂H
is defined by
© 1998 The American Physical Society 5117
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Ĥ ­ i

µ
s3 0
0 2s3

∂
d

dX
1

µ
s1 0
0 s1

∂

1 sjW j2 1 cosudJ2 1 a2

0BBB@
re2yjW j2 2W2 re2yW2 2jW j2

2Wp2 re22yjW j2 2jW j2 re22yWp2

re2yWp2 2jW j2 re2y jW j2 2Wp2

2jW j2 re22yW2 2W 2 re22y jW j2
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(Here s0, s1, and s3 are the Pauli matrices.) Equa
tion (3) has four zero eigenvalues arising from symm
tries of Eqs. (1) and four branches of the continuo
spectrum pertaining to reall. The associated eigen
functions can be specified by their asymptotic b
havior as X ! 2`; in particular, the eigenfunctions
associated withl1skd ­

p
1 1 k2 2 cosu and l2skd ­p

1 1 k2 1 cosu satisfy

Zs1dsX, kd ! s0, 0, 1, 2rdTeikX , (4)

Zs2dsX, kd ! s1, r , 0, 0dT eikX , (5)

respectively. Herer ­ rskd ­
p

1 1 k2 1 k. The con-
tinuous spectrum solutions describe radiations propag
ing on the solitonic background.

In the Thirring case (r ­ 0) the set of the neutral and
continuum eigenfunctions is complete [11] so that a
additional eigenvalues are absent. However, asr deviates
from zero, new eigenvalues can detach from the edges
the continuous spectrum. To see whether this is inde
the case, we expand solutions to (3) over the complete
of the Thirring eigenfunctions,

zsXd ­
2X

i­1

Z `

2`

aiskdZsidsX, kd
l 2 liskd

dk 1 s· · ·d , (6)

where s· · ·d stands for terms which remain bounded a
l approachesl1s0d and l2s0d. Using the orthogonality
relations between the Thirring eigenfunctions [11], Eq. (
can be reduced to a system of two integral equations

aiskd ­
s21dir

4p
p

1 1 k2 rskd

2X
j­1

Z `

2`

Kijsk, k0dajsk0d
l 2 ljsk0d

dk0

(7)
si ­ 1, 2d, with the kernel

Kij ­ coshs2yd
Z 1`

2`

spp
i 1 qp

i d spj 1 qjd dX

1 sinhs2yd
Z 1`

2`

spp
i pj 2 qp

i qjd dX . (8)

Here pm ­ WpZ
smd
1 1 WZ

smd
3 , qm ­ WZ

smd
2 1 WpZ

smd
4

(m ­ 1, 2), and we have denotedZ
sidp
n ­ Z

sidp
n sX, kd and

Z
sjd
n ­ Z

sjd
n sX, k0d. The edges of the continuum branche

l1s0d and l2s0d, are well separated unlessu ø py2.
Consequently, ifu is not very close topy2 we can get
away with a single-mode approximation and disregard t
nonresonant branch. First, letu ø py2 and assume that
a new eigenvalue detaches from the edge of the (inn
branchl1: l ­ l1s0d 2

1
2 k2. Sendingr ! 0 and dis-
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regarding the branchl2, we obtain jkj ­
1
2 rK11s0, 0d.

The Thirring eigenfunctions pertaining tok ­ 0 sat-
isfy Z

s1d
1 sX, 0d ­ 2Z

s1dp
2 sX, 0d ; z

s1d
1 sXd andZ

s1d
3 sX, 0d ­

2Z
s1dp
4 sX, 0d ; z

s1d
2 sXd; this follows from (3)–(5). Using

these symmetries we finally arrive at

jkj ­ 2
r

2
coshs2yd

Z 1`

2`

fW szs1dp
1 2 z

s1d
2 d 2 c.c.g2 dX .

(9)

Since the right-hand side in Eq. (9) is positive, w
conclude that a small deviation from the integrable ca
r ­ 0 does indeed bring about a new real eigenvaluel ,

l1s0d. This additional eigenvalue represents a vibratio
mode of the gap soliton withu ø py2.

Next, letp 2 u ø py2 and assume that an eigenvalu
l ­ l2s0d 2

1
2 k2 detaches from the branchl2 (which is

now the inner branch). The same asymptotic procedu
as above producesjkj ­ 2

1
2 rK22s0, 0d. Making use of

the symmetry relationsZ
s2d
1 sX, 0d ­ Z

s2dp
2 sX, 0d ; z

s2d
1 sXd

andZ
s2d
3 sX, 0d ­ Z

s2dp
4 sX, 0d ; z

s2d
2 sXd, this becomes

jkj ­ 2
r

2
coshs2yd

Z 1`

2`

fW szs2dp
1 1 z

s2d
2 d 1 c.c.g2 dX .

(10)

Since the right-hand side is negative, we have arrived a
contradiction. Thus the birth of a vibration mode canno
occur forp 2 u ø py2.

Finally, the caseu ø py2 has to be analyzed within
the full two-mode system (7); in this casebothcontinuous
branches are resonant. We letu ­ py2 1 e and look
for a new eigenvalue asl ­ minhl1s0d, l2s0dj 2

1
2 k2.

Assuming Rek . 0 and r ! 0, the system (7) can be
reduced to an algebraic equation fork,p

k2 1 4e s4k 1 2rK22d 2 2rK11k 2 r2D ­ 0 ,

(11)

where D ­ K11K22 2 K12K21 and Kij ­ Kijs0, 0d.
[Here we have assumede . 0; for e , 0 one should
simply transposek and

p
k2 1 4jej in Eq. (11).] To

find the coefficients in (11), we first derive the edg
eigenfunctionsz

sid
n sXd for u ­ py2,

z
s1d
1 sXd ­ 2i sechs2Xd tanhsX 2 ipy4d ;

z
s1d
2 sXd ­ tanhs2Xd tanhsX 1 ipy4d ;

z
s2d
1 sXd ­ szs1d

2 dp; z
s2d
2 sXd ­ 2szs1d

1 dp. Equation (8) yields

Knns0, 0d ­ 2fp 1 s21dn2g coshs2yd, n ­ 1, 2 ;

K12s0, 0d ­ K21s0, 0d ­ 24 sinhs2yd , (12)
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and the analysis of the roots of Eq. (11) becomes straig
forward. Whene , ecr ­ frDy4K22g2, there are 4 real
roots, k1 , k4 , k2 , 0 , k3. The positive rootk3

corresponds to the above-mentioned vibration mode t
continues fromu ­ 0 (see Fig. 1). The negative rootk2

becomes positive fore betweenecr and someeosc wherek2

merges withk3. That is, in this narrow region the gap soli
ton has two vibration modes. Ate ­ eosc the two modes
resonate,k andl become complex, and the oscillatory in
stability sets in (curve 1 in Fig. 1).

The numerical analysis of the eigenvalue problem (
shows that the above bifurcation pattern persists for fin
r. In Fig. 2(a) we have demarcated the boundary of t
stability domain in the (V, V ) plane forr ­ 1y2. The
asymptotic approximation for the oscillatory bifurcatio
curve,V ­ cosfeoscsV d 1 py2g, is also shown for com-
parison (dashed curve). Figure 2(b) is a similar bifurc
tion and stability chart forr ­ `.
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FIG. 1. Numerically found eigenvalues. Dashed lines indica
the edges of the continuous spectrum. A real eigenva
detaches froml1 at u ­ 0, and another real eigenvalue
detaches froml2 at u ­ ucr . py2 (not clearly visible). At
u ­ uosc the two collide and the oscillatory instability sets in
(curve 1). Another complex doublet (curve 2) emerges fro
l1 at u ­ u2. Finally, one more real eigenvalue detaches fro
l2 and moves on the imaginary axis atutr (curve 3).
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As we increaseu further on, another pair of complex
eigenvalues detaches from the edge of the continu
spectrum (curve 2 in Fig. 1). In contrast to the fir
bifurcation, this happens near the edge of the outer bra
of the continuous spectrum. There is no intermedia
region with two real discrete eigenvalues—the detach
eigenvalues are complex at once. The growth rate
this secondary instability is smaller than that of the p
mary one.

Here it is important to emphasize that the oscillato
instabilities cannot be detected within the variation
approach. One notices that (2) is a stationary point of
functional L ­ H 2 VP 2 vN , where the conserved
Hamiltonian, momentum, and energy are given by

H ­
1
2

Z `

2`

"
isuup

x 1 ypyxd 2 2yup

2 juyj2 2
r

2
sjuj4 1 jyj4d 1 c.c.

#
dx , (13)

P ­
i
2

Z `

2`
suup

x 1 yyp
x 2 c.c.d dx , (14)

FIG. 2. Stability charts for (a)r ­ 1y2 and (b)r ­ `.
Curves 1 and 2 are the lines of the primary and second
oscillatory bifurcations, and the line 3 demarcates the onse
the translational instability.
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and N ­
R1`

2`sjuj2 1 jyj2d dx, respectively, andv ­
V

p
1 2 V 2. The idea of the variational (or energetic)

approach to stability would be to prove that the solito
minimizes H for the fixed P and N or, equivalently,
that d2L is positive definite. However, writingd2L ­
sz, Ĥ zd with Ĥ as in (3), and noting that the continuous
spectrum of the eigenvalue problem̂H z ­ Ez extends
from minus to plus infinity, one immediately concludes
that the formd2L is bounded neither from above nor from
below.

The integrals of motion are not entirely useless thoug
They allow one to detecttranslationalbifurcations where
a real eigenvaluel approaches zero and then passe
on to the imaginary axis. According to the multiscale
expansion method [12,13], the zero crossing occurs wh

Dsv, V d ­
≠Ns

≠v

≠Ps

≠V
2

≠Ns

≠V
≠Ps

≠v
­ 0 , (15)

where Ps, Ns are the invariantsP, N computed on
the soliton (2):Ps ­ 4a4V s1 2 V 2d21y2P̃sV , Vd, Ns ­
4a2ÑsVd,

P̃ ­

√
1 1 r

5 1 V 2

1 2 V 2

!p
1 2 V2 2

4rVÑsVd
1 2 V 2

,

Ñ ;
p

2
2 arcsinV .

The dependenceV ­ Vtr sV d defined by Eq. (15) can be
found explicitly; we have plotted it in Fig. 2 (solid line 3).
Consistently with conclusions of the multiscale analysi
the numerical study of Eq. (3) reveals that one more re
eigenvalue detaches from the inner branch of continuo
spectrum, reaches zero exactly atu ­ utr , and moves on
to the imaginary axis (curve 3 in Fig. 1).

Finally, we make contact with two results available in
literature. First, the stable gap solitons of Ref. [9] wer
observed in simulations withr ­ 1y2 and u ­ py2;
these values fall into the stability domain of Fig. 2(a)
The observed soliton oscillations [9,14] are due to th
excitation of the vibration mode. Second, stationar
solutions on finite intervalsare known to be unstable
for high incoming intensities and exhibit self-pulsation
and switchings from high- to low-transmissive stationar
states [15,16]. The gap solitons correspond to the asym
totic limit of the stationary solutions in which the en-
ergy flow through the system vanishes [3]. Therefore, o
present discussion should correspond to theg ! 0, L !

` limit of the stability analysis of Ref. [16]. However,
our instability results cannot be deduced from the previo
analysis as it was confined to the regionV ­ 0, V . 0
where the gap soliton is stable.

In conclusion, we have demonstrated that for an
r . 0 the soliton solution of Eq. (1) becomes unstabl
as V is decreased beyond a (negative) critical valu
The instability is caused by the resonance between t
soliton’s vibration mode and two branches of the long
wavelength radiation. This “triple-resonance” mechanis
5120
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is different from previously encountered mechanisms
oscillatory instability (cf. [17]).
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