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Theory of Incoherent Dark Solitons
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We formulate the theory of incoherent dark spatial solitons in noninstantaneous self-defocusing non-
linear media. We find that the basic modal constituents of these incoherent dark soliton entities are
radiation modes as well as bound states. Our results explain for the first time why incoherent dark soli-
tons are in fact gray and why a transversehase flip can facilitate their observation. [S0031-9007
(98)06257-7]

PACS numbers: 42.65.Tg, 03.40.Kf

Until quite recently, the commonly held impression was Last month, incoherent dark-stripe and dark-hole
that optical solitons are inherently coherent structures(vortex) solitons were experimentally demonstrated in a
Lately, however, two experimental studies have demonbiased photorefractive crystal [9]. In all cases, these
strated beyond doubt that incoherent spatial solitons arself-trapped incoherent beams carried the characteristic
also possible [1]. More specifically, incoherent bright soli-signature of dark incoherent soliton structures [6,8]; i.e.,
tons were found to exist in noninstantaneous nonlinear mehey were found to be gray. Moreover, in agreement
dia such as biased photorefractives. In order to explaiwith predictions [6], the incoherent dark solitons were
these newly observed entities, two complementary thecexperimentally observed when an appropriate phase
retical methods have been developed [2,3]. The first iprofile was imposed on the wave front. Yet, at this point,
the so-called coherent density approach which is by naseveral important questions remain unanswered. First of
ture better suited to analyze the behavior and coherengl, are there truly stationary incoherent dark solitons and
properties of incoherent beams under dynamical propagavhy are they gray? Furthermore, why is thephase
tion conditions [2]. The second method is a self-consistenjump necessary for their excitation and how is it possible
modal theory, which is capable of identifying stationaryfor this initial phase imprint to survive in the midst of
incoherent bright solitons, their range of existence, andandom-phase fluctuations? The answers to the above
their coherence properties [3]. The equivalence of thesgquestions cannot be obtained from the coherent density
two methods was later established in saturable nonlinmethod (because of its inherent complexity) nor from
ear media of the logarithmic type where both approachethe approximate Vlasov approach. These issues can be
were found to exhibit analytical results [4]. Another ap-resolved only by identifying the modal composition of
proach based on geometrical optics has been recently sutipese dark incoherent soliton states, as was done in the
gested in the limit of broad incoherent beams [5]. In viewcase of their bright soliton counterparts [3].
of these developments, one may now pose the following In this Letter, by means of an exact solution, we
important question: Are incoherent dark solitons also posdemonstrate for the first time that stationary incoherent
sible in nonlinear media? To resolve this issue, a compudark solitons can exist in noninstantaneous nonlinear self-
tational study was recently undertaken using the coheremtefocusing media. These solitons involve, in general, a
density method [6]. The numerical results of this workbelt of radiation modes (both odd and even) as well as
suggested that incoherent dark quasisolitons can be effebound states. The presence of even radiation and bound
tively excited in self-defocusing (reverse biased) photoremodes explains why these structures are in fact gray.
fractive crystals, provided that, at the origin,naphase Moreover, we find that the odd radiation modes dominate
jump is imposed on the incoherent wave front [6]. Evenwithin the dark region of the beam, which explains the
more importantly, unlike their coherent counterparts [7],phase shift required to excite these dark incoherent soliton
these dark incoherent solitons were always found to bstates. The coherence properties of these solitons are also
gray! The gray character of these solutions is in quali-considered, and they are found to be in good agreement
tative agreement with some earlier predictions of randomwith the results of previous computational studies [6].
phase envelope solitons made by Hasegawa two decades.et us consider a self-defocusing nonlinear medium
ago within the context of plasma physics [8]. In that earlyof the Kerr type, i.e.n? = n} — n,I, whereny is the
pioneering work, the average dynamics of all of the randinear refractive index of the materiah, is the Kerr
dom quasiparticles involved were treated using a Vlasoxoefficient, and/ is the optical intensity. We assume
transport equation. that the nonlinearity responds much slower than the
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characteristic phase fluctuation time across the beam s Intensity Profiles

as to avoid beam breakup due to speckle instabilities
[3,10]. Thus, in this regime, the material will expe-
rience only the time-averaged beam intensity. Sucth

B=k} (ng —ny1, <l—£2 ))

bound states

noninstantaneous Kerr-like media include biased photo:

refractives at low intensity ratios and materials with

appreciable thermal nonlinearities [11]. For example, al
Q

typical phase fluctuation time is us, whereas a photo-
refractive crystal responds withinl s [9]. Let the time-
averaged intensity profile of this planar dark incoherent
soliton be of the form

I, = Io[1 — &*sech(x/x)]. Q) 0

where the parametef = 1 is associated with its grayness FIG. 1. Eigenvalue diagram associated with a first-order
and x, is related to its spatial extent. The partially incoherent dark soliton. The bound state intensity as well as the

i i i i idntensities of the even and odd radiation modesdat 0.1
Spat'.a”y incoherent dark beam is quaSImonochromgtlc'are also depicted. The dark stripe on the right sh(gvs the )spatial
and it propagates along Furthermore, let the electric 4yiant of the soliton-induced waveguide when= 0.5.
field of all of the modes comprising this beam be written
asE = U(x) expiBz), whereg is the mode propagation
constant. Using Eq. (1), the modal functi@n is then
found to obey the following Helmholtz equation:

d*U

modes

upper limit of the integral is taken at infinity. As we
will see, Q is typically in the neighborhood of) = 0,

St g+ fsech(s)]U =0, (2) far away from Qmax = ko(nd — naly)?xy, which in
ds turn sets the upper limit of this integral. Under in-
wheres = x/xg, g = [ki(n§ — naly) — B2Ix¢, andf =  coherent excitation, the following relationships hold

kixgenaly. In the spirit of Ref. [3], the next task will be true: {cpmchn) < Smn, (epC;,) =0, (¢,¢;) =0, and

to identify an appropriate modal composition such that théé¢.(Q)c:(Q")) = (¢,(Q)c:(Q")) « D(Q)5(Q — Q). In
time-averaged intensity; gives rise to a nonlinear index other words, the statistical time expectation value of
change which is self-consistent [12] with the compositionthe c-field coefficients is zero between different bound
assumed in the very beginning. In general, Eq. (2) exhibitenodes, and the same applies between bound modes and
two types of eigenfunctions: radiation modes and boundadiation modes (odd or even). Furthermore, the odd and
modes. As shown schematically in Fig. 1, bound stategven radiation modes are always uncorrelated. Among

are possible whenever = —g? or g2 > ko(nd — maly),  the even radiation modes, the coefficients correlate
whereas radiation modes require tat= + Q% or 8> <  only for the same value o, and this is also true for the
ki (nd — naly). odd radiation fields. The last relationship also implies

At this point, let us first assume that the waveguidethat the odd and even radiation modes are equally excited
induced by this dark beam can support only one boundt the same2 [with strengthD(Q)]. This is because the
mode. This latter requirement can be met provided thatandom source shows no preference to either odd or even
the coefficient of the seéks) potential is set equal to two; radiation modes. The positive functidn(Q) represents
i.e., f=2orx; =2/(kie?n,ly) [13]. In this case, all a radiation-mode distribution.
possible modes allowed by Eq. (2) are given by [14] By utilizing these latter relationships, the intensity

U, = sechis), (3a) (E(s,z)E*(s, z)) can then be obtained from Eq. (4), i.e.,

Ur. = Q codQs) — tanhs) sin(Qs),  (3b) I = A%sech(s) + f mD(Q) [0? + tanH(s)]dQ, (5)
U,, = Q sin(Qs) + tanhs) co9Qs). (3c) _ 0
For f = 2, U, is the only allowed bound state (g =  Where in Eq. (5) we made use of the fact thet. . |* +

1), and the two degenerate eigenfunctidits, and U, , Uy o> = 02 + tank¥(s), and(lc, |*) = A2. Thefirstterm
are part of the radiation-mode continuum. It is important" EQ- (5) arises from the bound mode whereas the second
to note thatl/, , is an even radiation mode wheredis,  ©N€ from the combined intensity of odd and even radiation

is odd. Following these results, the total electric field jsModes. For self-consistency, it is required that the inten-
given by [13] sity given by Eq. (5) is identical té, of Eq. (1). This is

E = ¢pUp(s) expli Byz) + /;) d0[2.(0)U, (s, 0) satisfied provided that

— - 2
+ 2,(0)U, ,(5,0)] exdliB, (0], (4) W= |, p@ie+ e, (62)
where ¢, and ¢,, are modal field coefficients that in *
general vary randomly in time [3,4]. In Eg. (4), the A2 :j; DQ)[1 = &*(Q* + D]dQ. (6b)
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The analytical solution given by Egs. (6) clearly demon-other hand, foQ, = 0 ande* # 1, we obtain an incoher-
strates that stationary incoherent dark solitons indeed exisently coupled dark-bright soliton pair, identical in nature to
This is the first time we know of that a soliton was found tothat previously considered in photorefractive crystals [16].
involve acontinuumof radiation modes as well as bound From the conditionaZ(ZQ(% + 1) = 1, itis also clear that
states. Even more importantly, this new class of solitons ithe dark soliton becomes more gray as its incoherence in-
gray because of the presence of even radiation and boumtleases. Another interesting possibility arises in the limit
modes. Itis evident from Egs. (6) that the radiation mode=2(2Q3 + 1) = 1. In this case, the bound state is empty
distribution functionD(Q) is by no means unique. Infact, (I, = 0) and thus the dark incoherent soliton consists of
infinitely many self-consistent solutions can be obtainedonly radiation modes. As previously noted, the dark inco-
depending on the particular choice BfQ). herent soliton is actually gray because of the presence of
To further illustrate our results, 1€(Q) be Boltzmann-  even radiation and even bound modes. To further illus-
like, i.e., D(Q) = Dy exp(—Q/Qo), whereQ, represents trate these issues, let us consider a practical example. Let
the 0 width of this distribution. The exponentially ny = 2, Ay = 0.5 um, andn,ly = 1073, Let the soliton
decreasing character @(Q) can be justified whenever grayness be 50% o> = 0.5. These parameters are in
the angular power spectrum of the incoherent sourcéact close to those previously considered in photorefrac-
decreases with the launch angle [2,6]. As a result, moréves [6,9]. In this caseyy = 5 um, and this soliton ex-
power is expected to be coupled into small-ari@le~ 0) ists forQ, = 1/+/2. Figures 2(a) and 2(b) show the soli-
radiation modes than in those at high@fs. For this ton intensity profile and correlation length wh@p = 0.4.

specific choice ofD(Q), one quickly finds thatD, =  The correlation length of the soureel3.5 um. The de-
(In/Q0) 203 + 1)~! and that A% = [;[1 — £2(2Q3 +  pression in, ats =~ 0 is due to the presence of the bound
D] (ng + 1)~'. Thus,I; = I, + I., where mode. Figures 2(c) and 2(d) provide the same information
I whenQ, = 0.7. This corresponds to a source correlation
Iy = —5——[1 — %203 + 1)]sech(s), (7a) length of=5.3 um, and in this case the bound mode is al-
200 + 1 most absent. For this reasdp,increases around the dark

Io ) notch. Overall, the behavior of the and!, curves is in
I, = 2Q§—+1[2Q0 + 1 — sech(s)]. (7b)  qualitative agreement with the findings of previous studies

[6]. From the above results, it becomes apparent that, for
In Egs. (7),1, is the bound-mode intensity component our choice ofD(Q), the radiation modes are mostly con-
of the dark incoherent soliton, ant} is the intensity fined within a narrow belt aroun@ =~ 0. Because of this,
profile of the radiation-mode belt. It is also clear from the odd radiation modes dominate in the soliton-induced
Eq. (7a) that this soliton exists provided(203 + 1) =  waveguide as shown schematically in Fig. 1. This behav-
1. The complex coherence factpr »(s1, s2) [15] of this  ior can be easily understood by considering Egs. (3b) and
incoherent soliton can then be obtained from Eq. (4) by3c) in the neighborhood of = 0 whenQ =~ 0. Thus, in
evaluating the quantity order to effectively launch this dark incoherent soliton the
. o A2 phase must be properly manipulated so that, at the center
(E(s1,2)E"(s2,2)) o A" seclts,) sectts2) (s = 0), the field distribution is mostly odd. This explains

+ ] D(Q) [Ur,e(sl)Ur,E(SZ)
0

+ Ur,o(sl)Ur,o(S2):| dQ (8) Is 08 (a) 08 © 08 (e)
In turn, its correlation length can be found fraiy(s) = e=05 £=05 €= 0.49
x0 [7 o lpmia(s,s + 8)12ds [6]. 06 06 06
Let us now physically interpret these results. From the g, 04 04
f = 2 condition, one can deduce that, for a givern, -0 0 =00 =00 10
the width xy of the dark soliton increases with its gray- 3 13

ness. Moreover, it is important to note th@t defines L/,

the correlation length at the tails — *«) of this dark ® L2 @
incoherent soliton. In these regions, the bound states di 2 11
appear and the soliton correlation length is determined b Q=04 | Q=07
the width Q¢ of the radiation-mode belt. At the tailg, 0 0
Jo 0 10 -10 0 10 o 0 10

decreases ag, increases and vice versa. In fagt,in

these regions coincides with the correlation length of the

source. In the limitQy = 0, 2 = 1, Egs. (7) reduce to FIG. 2. Intensity profiles and corresponding correlation length

the well-known coherent dark spatial soliton solution [7].8%r\gensd(goairf)t:.)r?cfir(:j';c;hir%rg %%%(Sfliog'yhe(g)%@hi

In this case,;, = 0 and the soliton consists of an odd same information for a second-order dark incoherent soliton
tanhs) mode at cutoff with/, = « everywhere. On the whene? = 0.49 andQ, = 0.5.

S S S
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why a 7-phase shift can greatly facilitate their observa-of Ref. [17]. The modal composition of even higher-order
tion [6,9]. Depending on initial conditions, the even bounddark incoherent solitonsf = 12,20,...) can be obtained
mode may subsequently appear as a result of evolution. in a similar fashion.

Similarly, higher-order dark incoherent solitons can In conclusion, we have theoretically demonstrated the
be obtained forf = 6,12,20,... [13,14]. For exam- existence of dark incoherent spatial solitons in noninstan-
ple, if f = 6, the soliton-induced potential can supporttaneous self-defocusing nonlinear media. These new dark
two bound states, i.e.U,, = secH(s) and U,, = soliton entities were found to involve radiation modes as
seclfs) tanh(s) at g7 = 4 and g5 = 1, respectively. In Wwell as bound states. Our results explain for the first time
this cas€ f = 6), the radiation modes are given by why these solitons are gray and whyraphase shift tends

I 2 _ to facilitate their experimental observation. Finally, it will
Ue =1+ 0 3 tant?(s)] cosQs) be of interest to explore the possibility of extending our

— 30 tanh(s) sin(Qs), (92)  results in two dimensions, i.e., in the description of two-
;o ) . dimensional dark incoherent solitons [9].
Ur, =[1+ 0% = 3 tani(s)] sin(Qs) This research was supported by AFOSR, NSF, and
+ 30 tanh(s) co9Qs). (9b) ARO.

ThusIj, = B?secH(s) + C%sech(s) tanH(s). Asin the
case of first-order incoherent dark soliton®(Q) is
not unique. If we choose, howeverD(Q) =
D} exp(—0/0o), we find thatD{ = (Io/200) (1205 +
503 +2)7',  B2= QoDi[(3 + 605) — 2&*(12Q) +
505 +2)], and C% = B +9Q,D). The intensity
component of the radiation belt is given by

I' = D)0o[2(1204 + 503 + 2) + 9secH(s)
— (12 + 6Q3) sech(s)]. (10)

Again, I, + I' = I, wherel, is given by Eq. (1). From
the above,C > B, and this soliton is possible provided
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