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Theory of Incoherent Dark Solitons
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We formulate the theory of incoherent dark spatial solitons in noninstantaneous self-defocusing non
linear media. We find that the basic modal constituents of these incoherent dark soliton entities ar
radiation modes as well as bound states. Our results explain for the first time why incoherent dark sol
tons are in fact gray and why a transversep-phase flip can facilitate their observation. [S0031-9007
(98)06257-7]

PACS numbers: 42.65.Tg, 03.40.Kf
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Until quite recently, the commonly held impression wa
that optical solitons are inherently coherent structure
Lately, however, two experimental studies have demo
strated beyond doubt that incoherent spatial solitons a
also possible [1]. More specifically, incoherent bright sol
tons were found to exist in noninstantaneous nonlinear m
dia such as biased photorefractives. In order to expla
these newly observed entities, two complementary the
retical methods have been developed [2,3]. The first
the so-called coherent density approach which is by n
ture better suited to analyze the behavior and coheren
properties of incoherent beams under dynamical propag
tion conditions [2]. The second method is a self-consiste
modal theory, which is capable of identifying stationar
incoherent bright solitons, their range of existence, an
their coherence properties [3]. The equivalence of the
two methods was later established in saturable nonl
ear media of the logarithmic type where both approach
were found to exhibit analytical results [4]. Another ap
proach based on geometrical optics has been recently s
gested in the limit of broad incoherent beams [5]. In vie
of these developments, one may now pose the followi
important question: Are incoherent dark solitons also po
sible in nonlinear media? To resolve this issue, a comp
tational study was recently undertaken using the coher
density method [6]. The numerical results of this wor
suggested that incoherent dark quasisolitons can be eff
tively excited in self-defocusing (reverse biased) photor
fractive crystals, provided that, at the origin, ap-phase
jump is imposed on the incoherent wave front [6]. Eve
more importantly, unlike their coherent counterparts [7
these dark incoherent solitons were always found to
gray! The gray character of these solutions is in qua
tative agreement with some earlier predictions of random
phase envelope solitons made by Hasegawa two deca
ago within the context of plasma physics [8]. In that ear
pioneering work, the average dynamics of all of the ra
dom quasiparticles involved were treated using a Vlas
transport equation.
0031-9007y98y80(23)y5113(4)$15.00
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Last month, incoherent dark-stripe and dark-ho
(vortex) solitons were experimentally demonstrated in
biased photorefractive crystal [9]. In all cases, the
self-trapped incoherent beams carried the characteri
signature of dark incoherent soliton structures [6,8]; i.
they were found to be gray. Moreover, in agreeme
with predictions [6], the incoherent dark solitons wer
experimentally observed when an appropriate pha
profile was imposed on the wave front. Yet, at this poin
several important questions remain unanswered. Firs
all, are there truly stationary incoherent dark solitons a
why are they gray? Furthermore, why is thep-phase
jump necessary for their excitation and how is it possib
for this initial phase imprint to survive in the midst o
random-phase fluctuations? The answers to the ab
questions cannot be obtained from the coherent den
method (because of its inherent complexity) nor fro
the approximate Vlasov approach. These issues can
resolved only by identifying the modal composition o
these dark incoherent soliton states, as was done in
case of their bright soliton counterparts [3].

In this Letter, by means of an exact solution, w
demonstrate for the first time that stationary incohere
dark solitons can exist in noninstantaneous nonlinear s
defocusing media. These solitons involve, in general
belt of radiation modes (both odd and even) as well
bound states. The presence of even radiation and bo
modes explains why these structures are in fact gr
Moreover, we find that the odd radiation modes domina
within the dark region of the beam, which explains thep-
phase shift required to excite these dark incoherent soli
states. The coherence properties of these solitons are
considered, and they are found to be in good agreem
with the results of previous computational studies [6].

Let us consider a self-defocusing nonlinear mediu
of the Kerr type, i.e.,n2 ­ n2

0 2 n2I, where n0 is the
linear refractive index of the material,n2 is the Kerr
coefficient, andI is the optical intensity. We assume
that the nonlinearity responds much slower than t
© 1998 The American Physical Society 5113
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characteristic phase fluctuation time across the beam
as to avoid beam breakup due to speckle instabiliti
[3,10]. Thus, in this regime, the material will expe
rience only the time-averaged beam intensity. Su
noninstantaneous Kerr-like media include biased phot
refractives at low intensity ratios and materials wit
appreciable thermal nonlinearities [11]. For example,
typical phase fluctuation time is1 ms, whereas a photo-
refractive crystal responds within0.1 s [9]. Let the time-
averaged intensity profile of this planar dark incohere
soliton be of the form

Is ­ I0f1 2 ´2 sech2sxyx0dg , (1)
where the parameteŕ2 # 1 is associated with its grayness
and x0 is related to its spatial extent. The partially
spatially incoherent dark beam is quasimonochromat
and it propagates alongz. Furthermore, let the electric
field of all of the modes comprising this beam be writte
asE ­ Usxd expsibzd, whereb is the mode propagation
constant. Using Eq. (1), the modal functionU is then
found to obey the following Helmholtz equation:

d2U
ds2

1 fg 1 f sech2ssdgU ­ 0 , (2)

wheres ­ xyx0, g ­ fk2
0 sn2

0 2 n2I0d 2 b2gx2
0 , andf ­

k2
0x2

0´2n2I0. In the spirit of Ref. [3], the next task will be
to identify an appropriate modal composition such that th
time-averaged intensityIs gives rise to a nonlinear index
change which is self-consistent [12] with the compositio
assumed in the very beginning. In general, Eq. (2) exhib
two types of eigenfunctions: radiation modes and boun
modes. As shown schematically in Fig. 1, bound stat
are possible wheneverg ­ 2q2 or b2 . k2

0 sn2
0 2 n2I0d,

whereas radiation modes require thatg ­ 1Q2 or b2 ,

k2
0 sn2

0 2 n2I0d.
At this point, let us first assume that the waveguid

induced by this dark beam can support only one bou
mode. This latter requirement can be met provided th
the coefficient of the sech2ssd potential is set equal to two;
i.e., f ­ 2 or x2

0 ­ 2ysk2
0´2n2I0d [13]. In this case, all

possible modes allowed by Eq. (2) are given by [14]
Ub ­ sechssd , (3a)

Ur ,e ­ Q cossQsd 2 tanhssd sinsQsd , (3b)

Ur ,o ­ Q sinsQsd 1 tanhssd cossQsd . (3c)
For f ­ 2, Ub is the only allowed bound state (atq2 ­
1), and the two degenerate eigenfunctionsUr ,e and Ur ,o

are part of the radiation-mode continuum. It is importan
to note thatUr ,e is an even radiation mode whereasUr ,o
is odd. Following these results, the total electric field
given by [13]

E ­ cbUbssd expsibbzd 1
Z `

0
dQfc̃esQdUr ,ess, Qd

1 c̃osQdUr ,oss, Qdg expfibr sQdzg , (4)

where cb and c̃e,o are modal field coefficients that in
general vary randomly in time [3,4]. In Eq. (4), the
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FIG. 1. Eigenvalue diagram associated with a first-ord
incoherent dark soliton. The bound state intensity as well as
intensities of the even and odd radiation modes (atQ ­ 0.1)
are also depicted. The dark stripe on the right shows the spa
extent of the soliton-induced waveguide when´2 ­ 0.5.

upper limit of the integral is taken at infinity. As we
will see, Q is typically in the neighborhood ofQ ø 0,
far away from Qmax ­ k0sn2

0 2 n2I0d1y2x0, which in
turn sets the upper limit of this integral. Under in
coherent excitation, the following relationships hol
true: kcb,mcp

b,nl ~ dmn, kcbc̃p
e,ol ­ 0, kc̃o c̃p

el ­ 0, and
kc̃esQdc̃p

esQ0dl ­ kc̃osQdc̃p
osQ0dl ~ DsQddsQ 2 Q0d. In

other words, the statistical time expectation value
the c-field coefficients is zero between different boun
modes, and the same applies between bound modes
radiation modes (odd or even). Furthermore, the odd a
even radiation modes are always uncorrelated. Amo
the even radiation modes, thẽce coefficients correlate
only for the same value ofQ, and this is also true for the
odd radiation fields. The last relationship also implie
that the odd and even radiation modes are equally exci
at the sameQ [with strengthDsQd]. This is because the
random source shows no preference to either odd or e
radiation modes. The positive functionDsQd represents
a radiation-mode distribution.

By utilizing these latter relationships, the intensityI ~

kEss, zdEpss, zdl can then be obtained from Eq. (4), i.e.,

I ­ A2 sech2ssd 1
Z `

0
DsQd fQ2 1 tanh2ssdg dQ , (5)

where in Eq. (5) we made use of the fact thatjUr ,ej
2 1

jUr ,oj2 ­ Q2 1 tanh2ssd, andkjcb j2l ~ A2. The first term
in Eq. (5) arises from the bound mode whereas the seco
one from the combined intensity of odd and even radiati
modes. For self-consistency, it is required that the inte
sity given by Eq. (5) is identical toIs of Eq. (1). This is
satisfied provided that

I0 ­
Z `

0
DsQd sQ2 1 1d dQ , (6a)

A2 ­
Z `

0
DsQd f1 2 ´2sQ2 1 1dg dQ . (6b)
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The analytical solution given by Eqs. (6) clearly demo
strates that stationary incoherent dark solitons indeed ex
This is the first time we know of that a soliton was found
involve acontinuumof radiation modes as well as boun
states. Even more importantly, this new class of solitons
gray because of the presence of even radiation and bo
modes. It is evident from Eqs. (6) that the radiation mo
distribution functionDsQd is by no means unique. In fact
infinitely many self-consistent solutions can be obtaine
depending on the particular choice ofDsQd.

To further illustrate our results, letDsQd be Boltzmann-
like, i.e., DsQd ­ D0 exps2QyQ0d, whereQ0 represents
the Q width of this distribution. The exponentially
decreasing character ofDsQd can be justified whenever
the angular power spectrum of the incoherent sou
decreases with the launch angle [2,6]. As a result, mo
power is expected to be coupled into small-anglesQ ø 0d
radiation modes than in those at higherQ’s. For this
specific choice ofDsQd, one quickly finds thatD0 ­
sI0yQ0d s2Q2

0 1 1d21 and that A2 ­ I0f1 2 ´2s2Q2
0 1

1dg s2Q2
0 1 1d21. Thus,Is ­ Ib 1 Ir , where

Ib ­
I0

2Q2
0 1 1

f1 2 ´2s2Q2
0 1 1dg sech2ssd , (7a)

Ir ­
I0

2Q2
0 1 1

f2Q2
0 1 1 2 sech2ssdg . (7b)

In Eqs. (7), Ib is the bound-mode intensity componen
of the dark incoherent soliton, andIr is the intensity
profile of the radiation-mode belt. It is also clear from
Eq. (7a) that this soliton exists provided́2s2Q2

0 1 1d #

1. The complex coherence factorm1,2ss1, s2d [15] of this
incoherent soliton can then be obtained from Eq. (4)
evaluating the quantity

kEss1, zdEpss2, zdl ~ A2 sechss1d sechss2d

1
Z `

0
DsQd fUr ,ess1dUr ,ess2d

1 Ur ,oss1dUr ,oss2dg dQ . (8)

In turn, its correlation length can be found fromlcssd ­
x0

R`

2` jm1,2ss, s 1 ddj2 dd [6].
Let us now physically interpret these results. From t

f ­ 2 condition, one can deduce that, for a givenn2I0,
the width x0 of the dark soliton increases with its gray
ness. Moreover, it is important to note thatQ0 defines
the correlation length at the tailsss ! 6`d of this dark
incoherent soliton. In these regions, the bound states
appear and the soliton correlation length is determined
the widthQ0 of the radiation-mode belt. At the tails,lc

decreases asQ0 increases and vice versa. In fact,lc in
these regions coincides with the correlation length of t
source. In the limitQ0 ­ 0, ´2 ­ 1, Eqs. (7) reduce to
the well-known coherent dark spatial soliton solution [7
In this case,Ib ­ 0 and the soliton consists of an od
tanhssd mode at cutoff withlc ­ ` everywhere. On the
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other hand, forQ0 ­ 0 and´2 fi 1, we obtain an incoher-
ently coupled dark-bright soliton pair, identical in nature to
that previously considered in photorefractive crystals [16]
From the conditioń 2s2Q2

0 1 1d # 1, it is also clear that
the dark soliton becomes more gray as its incoherence i
creases. Another interesting possibility arises in the lim
´2s2Q2

0 1 1d ­ 1. In this case, the bound state is empty
sIb ­ 0d and thus the dark incoherent soliton consists o
only radiation modes. As previously noted, the dark inco
herent soliton is actually gray because of the presence
even radiation and even bound modes. To further illus
trate these issues, let us consider a practical example. L
n0 ­ 2, l0 ­ 0.5 mm, andn2I0 ­ 1023. Let the soliton
grayness be 50% oŕ2 ­ 0.5. These parameters are in
fact close to those previously considered in photorefrac
tives [6,9]. In this case,x0 . 5 mm, and this soliton ex-
ists forQ0 # 1y

p
2. Figures 2(a) and 2(b) show the soli-

ton intensity profile and correlation length whenQ0 ­ 0.4.
The correlation length of the sourceø13.5 mm. The de-
pression inlc at s ø 0 is due to the presence of the bound
mode. Figures 2(c) and 2(d) provide the same informatio
whenQ0 ­ 0.7. This corresponds to a source correlation
length ofø5.3 mm, and in this case the bound mode is al-
most absent. For this reason,lc increases around the dark
notch. Overall, the behavior of theIs and lc curves is in
qualitative agreement with the findings of previous studie
[6]. From the above results, it becomes apparent that, fo
our choice ofDsQd, the radiation modes are mostly con-
fined within a narrow belt aroundQ ø 0. Because of this,
the odd radiation modes dominate in the soliton-induce
waveguide as shown schematically in Fig. 1. This behav
ior can be easily understood by considering Eqs. (3b) an
(3c) in the neighborhood ofs ø 0 whenQ ø 0. Thus, in
order to effectively launch this dark incoherent soliton the
phase must be properly manipulated so that, at the cen
ss ­ 0d, the field distribution is mostly odd. This explains

FIG. 2. Intensity profiles and corresponding correlation length
curves of a first-order incoherent dark soliton when (a),(b)´2 ­
0.5 andQ0 ­ 0.4; (c),(d) ´2 ­ 0.5 andQ0 ­ 0.7. (e),(f) The
same information for a second-order dark incoherent solito
when´2 ­ 0.49 andQ0 ­ 0.5.
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why a p-phase shift can greatly facilitate their observ
tion [6,9]. Depending on initial conditions, the even boun
mode may subsequently appear as a result of evolution

Similarly, higher-order dark incoherent solitons ca
be obtained forf ­ 6, 12, 20, . . . [13,14]. For exam-
ple, if f ­ 6, the soliton-induced potential can suppo
two bound states, i.e.,U 0

b1 ­ sech2ssd and U 0
b2 ­

sechssd tanhssd at q2
1 ­ 4 and q2

2 ­ 1, respectively. In
this casesf ­ 6d, the radiation modes are given by

U 0
r ,e ­ f1 1 Q2 2 3 tanh2ssdg cossQsd

2 3Q tanhssd sinsQsd , (9a)

U 0
r ,o ­ f1 1 Q2 2 3 tanh2ssdg sinsQsd

1 3Q tanhssd cossQsd . (9b)

ThusI 0
b ­ B2 sech4ssd 1 C2 sech2ssd tanh2ssd. As in the

case of first-order incoherent dark solitons,DsQd is
not unique. If we choose, however,DsQd ­
D0

0 exps2QyQ0d, we find thatD0
0 ­ sI0y2Q0d s12Q4

0 1

5Q2
0 1 2d21, B2 ­ Q0D0

0fs3 1 6Q2
0d 2 2´2s12Q4

0 1

5Q2
0 1 2dg, and C2 ­ B2 1 9Q0D0

0. The intensity
component of the radiation belt is given by

I 0
r ­ D0

0Q0f2s12Q4
0 1 5Q2

0 1 2d 1 9 sech4ssd

2 s12 1 6Q2
0d sech2ssdg . (10)

Again, I 0
b 1 I 0

r ­ Is, whereIs is given by Eq. (1). From
the above,C . B, and this soliton is possible provided
B2 $ 0. In the limit B ­ 0, the first (even) bound mode
is empty, and the soliton involves only radiation mode
and the next odd bound state. Furthermore, for a giv
degree of grayness and nonlinear index change, thef ­ 6
dark soliton is broader than the first-order one by a fac
of

p
3. Figures 2(e) and 2(f) depict the intensity profil

and correlation length of such a second-order incoher
dark soliton, under the same parameters used before w
Q0 ­ 0.5, ´2 ­ 0.49, and x0 . 8.8 mm. The source
correlation length is12 mm. As shown in Fig. 2(f), the
correlation length curve now exhibits a richer substructu
within the local lc minimum arounds ø 0. This is
due to the presence of the additional odd bound mo
Figures 2(b), 2(d), and 2(f) also suggest that what w
found in the computational study of Ref. [6] was actually
dark incoherent soliton of the first-order type withA ø 0.
More specifically, thelc curve of the dark quasisoliton
of Ref. [6] was very similar to that of Fig. 2(d) and ha
no substructure arounds ø 0 which is characteristic of a
higher-order dark soliton state. It is also very importa
to note that, in this latter casesf ­ 6d, the narrowsQ ø
0d radiation-mode belt is dominated by even radiatio
modes within the waveguide region. On the other han
our analysis shows that this second-order dark incoher
soliton has a strong contribution from the second o
bound state which, by the way, is never empty. Su
higher-order dark solitons can be launched by prope
“engineering” the input beam in a manner similar to th
5116
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of Ref. [17]. The modal composition of even higher-orde
dark incoherent solitonssf ­ 12, 20, . . .d can be obtained
in a similar fashion.

In conclusion, we have theoretically demonstrated th
existence of dark incoherent spatial solitons in noninstan
taneous self-defocusing nonlinear media. These new da
soliton entities were found to involve radiation modes a
well as bound states. Our results explain for the first tim
why these solitons are gray and why ap-phase shift tends
to facilitate their experimental observation. Finally, it will
be of interest to explore the possibility of extending our
results in two dimensions, i.e., in the description of two
dimensional dark incoherent solitons [9].
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ARO.

[1] M. Mitchell, Z. Chen, M. F. Shih, and M. Segev, Phys.
Rev. Lett. 77, 490 (1996); M. Mitchell and M. Segev,
Nature (London)387, 880 (1997).

[2] D. N Christodoulides, T. H. Coskun, M. Mitchell, and
M. Segev, Phys. Rev. Lett.78, 646 (1997); D. N.
Christodoulides, T. H. Coskun, and R. I. Joseph, Opt. Lett
22, 1080 (1997).

[3] M. Mitchell, M. Segev, T. H. Coskun, and D. N.
Christodoulides, Phys. Rev. Lett.79, 4990 (1997).

[4] D. N. Christodoulides, T. H. Coskun, M. Mitchell, and
M. Segev, Phys. Rev. Lett.80, 2310 (1998).

[5] A. W. Snyder and D. J. Mitchell, Phys. Rev. Lett.80, 1422
(1998).

[6] T. H. Coskun, D. N. Christodoulides, M. Mitchell,
Z. Chen, and M. Segev, Opt. Lett.23, 418 (1998).

[7] Y. S. Kivshar and B. Luther-Davies, Phys. Rep.298, 81
(1998).

[8] A. Hasegawa, Phys. Fluids18, 77 (1975);20, 2155 (1977);
Opt. Lett.5, 416 (1980).

[9] Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D. N.
Christodoulides, Science280, 889 (1998).

[10] B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov,
Principles of Phase Conjugation(Springer-Verlag, Berlin,
1985).

[11] J. P. Gordonet al., J. Appl. Phys.36, 3 (1965); S. A.
Akhmanovet al.,JETP Lett.6, 38 (1967); M. Segevet al.,
Phys. Rev. Lett.73, 3211 (1994); D. N. Christodoulides
and M. I. Carvalho, J. Opt. Soc. Am. B12, 1628 (1995).

[12] A. W. Snyder, J. D. Mitchell, and Y. S. Kivshar, Mod.
Phys. Lett. B9, 1479 (1995).

[13] A. W. Snyder and J. D. Love,Optical Waveguide Theory
(Chapman and Hall, New York, 1983); T. Tamir,Guided-
Wave Optoelectronics(Springer-Verlag, Berlin, 1990).

[14] G. L. Lamb, Elements of Soliton Theory(Wiley, New
York, 1980).

[15] L. Mandel and E. Wolf,Optical Coherence and Quantum
Optics(Cambridge University, New York, 1995).

[16] D. N. Christodoulides, S. R. Singh, M. I. Carvalho, and
M. Segev, Appl. Phys. Lett.68, 1763 (1996); Z. Chen,
M. Segev, T. H. Coskun, D. N. Christodoulides, Y. S.
Kivshar, and V. V. Afanasjev, Opt. Lett.21, 1821 (1996).

[17] M. Mitchell, M. Segev, and D. N. Christodoulides, Phys.
Rev. Lett.80, 4657 (1998).


