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Time Delay Induced Death in Coupled Limit Cycle Oscillators
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We investigate the dynamical behavior of two limit cycle oscillators that interact with each other
time delayed coupling and find that time delay can lead to amplitude death of the oscillators even if
have the same frequency. We demonstrate that this novel regime of amplitude “death” also exis
large collections of coupled identical oscillators and provide quantitative measures of this death re
in the parameter space of coupling strength and time delay. Its implication for certain biological
physical applications is also pointed out. [S0031-9007(98)06334-0]
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Coupled limit cycle oscillators provide a simple bu
powerful mathematical model for simulating the collectiv
behavior of a wide variety of systems that are of interest
physics [1–10], chemistry [11,12], and biological science
[13,14]. These oscillators have also attracted some lar
scale numerical [15] and novel experimental efforts [16
For weakly coupled oscillators the predominant effect
a synchronization of the frequencies of the individual os
cillators to a single common frequency once the couplin
strength exceeds a certain threshold, while the amplitud
remain unaffected. For stronger couplings the amplitud
also play an important role and give rise to interestin
phenomena like the Bar-Eli effect [11] where all the os
cillators suffer an amplitude quenching or “death” [6,9]
In general there can be a wide variety of collective be
havior including partial synchronization, phase trapping
large amplitude Hopf oscillations, and even chaotic be
havior [3–5]. In recent times there have been extensi
investigations of coupled oscillator systems including ele
gant statistical mechanics formulations in the limit of a
infinite number of oscillators [7,10].

The salient features of the behavior of a finitely larg
number of oscillators (usually obtained from numerica
or approximate analytic means) can often be understo
by analyzing just two coupled oscillators. We hav
carried out such an analysis to investigate the effe
of time delay on the interaction between two limi
cycle oscillators. Time delay is ubiquitous in mos
physical and biological systems [17–19], arising from
finite propagation speeds of signals, for example, an
have not been widely studied in the context of couple
limit cycle oscillator systems. Nieburet al. [20] and
Schuster and Wagner [21] who are some of the few wh
have carried out such an investigation, have restrict
themselves to the simplercoupled phasemodels where
the phenomenon of amplitude death does not exist.
our model equations we have retained both the phase a
amplitude response of the oscillators and we find th
time delay has a significant effect on the characteristi
of all the major cooperative phenomena like frequenc
locking, phase drift, and amplitude deaths. In particula
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t
e
in
s
ge
].
is
-
g
es
es
g
-
.
-
,
-

ve
-

n

e
l
od
e
ct
t
t

d
d

o
ed

In
nd

at
cs
y
r

our detailed numerical investigations show that in th
presence of time delay the parameter regime of amplitu
death can extend down to the region of zero frequen
mismatch between the oscillators. This is in shar
contrast to the situation with no time delay where a
previous numerical and analytical studies [3,5,6,9] sho
that amplitude death can occur only if the couplin
between oscillators is sufficiently strong and when th
frequencies are sufficiently disparate. In this Letter w
confine ourselves primarily to the effect of time delaye
coupling on the phenomenon of amplitude death an
present a detailed numerical and analytical estimate
the parameter space in coupling strength and time de
where such a death can occur for identical oscillator
We also establish that this effect is not an artifact of th
simple two oscillator model, but can occur for a system o
a large number of globally (or locally) coupled identica
oscillators (including the continuum limit ofN ! `).

We analyze the following model equations:
ÙZ1std ­ s1 1 iv1 2 jZ1stdj2dZ1std

1 KfZ2st 2 td 2 Z1stdg , (1)

ÙZ2std ­ s1 1 iv2 2 jZ2stdj2dZ2std

1 KfZ1st 2 td 2 Z2stdg , (2)

where t is a measure of the time delay,K is the cou-
pling strength,v1,2 are the intrinsic frequencies of the
two oscillators, andZ1,2 are complex. The model is a
generalization of the diffusively and linearly coupled os
cillators studied extensively, for example, in [3,11]. Th
time delay parameter is introduced in the argument of th
coupling oscillator [e.g.,Z2 in (1)] to physically account
for the fact that its phase and amplitude information is re
ceived by oscillatorZ1 only after a finite timet (due to
finite propagation speed effects). In the absence of co
pling (K ­ 0) each oscillator has a stable limit cycle a
jZi j ­ 1 on which it moves at its natural frequencyvi .
The coupled equations represent the interaction betwe
two weakly nonlinear oscillators (that are near a Hopf b
furcation) and whose coupling strength is comparable
the attraction of the limit cycles. It is important then to
© 1998 The American Physical Society 5109
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retain both the phase and amplitude response of the
cillators [3]. The stateZi ­ 0 is an equilibrium solution
of the system of equations [(1) and (2)]. ForK ­ 0 this
equilibrium state is linearly unstable since the individu
oscillators tend to stable limit cycle statesjZij ­ 1. The
stability of amplitude deathfor K fi 0 has been studied
in great detail by Aronsonet al. [3] for system ((1),(2))
in the absence of any time delay in the coupling (i.e., f
t ­ 0). The conditions for stability found by them are

K . 1 and D ­ jv1 2 v2j . 2
p

2K 2 1 , (3)

which shows that amplitude death can occur in this ca
only for sufficiently large values ofD providedK . 1.

In Fig. 1(a), we reproduce the bifurcation diagram o
Aronsonet al. [3] where the region marked I represent
the amplitude death region and the dotted curves mark
boundary as defined by condition (3). The two boundin
curves intersect at the point (K ­ 1, D ­ 2). Regions
marked II and III represent phase locked and phase d
regions, respectively, which we will not discuss in deta
here. In Fig. 1(b) we present the bifurcation diagra
of (1),(2) for t ­ 0.0817. Note that in contrast to the
diagram of Fig. 1(a), the amplitude death region no
extends down toD ­ 0 and has a finite extent along the
coupling strength (K) axis. We find that the phenomenon
persists for a range oft after which the bifurcation curve
lifts up from theD ­ 0 line and identical oscillators can
no longer suffer death. Figure 2(a) shows this region, f
different values ofv, in t-K space for which amplitude
death of identical oscillators can occur. The size
this death islandis a function of the frequency of the
oscillators (v), as shown by the other curves. We sha
soon show that the size is also a function ofN, the number
of oscillators. The bifurcation curves (including the islan
boundaries) have been obtained from a linear stabil
analysis of (1),(2) about the originsZ1 ­ Z2 ­ 0) as
well as direct numerical integration of the equation
Assuming the linear perturbations to vary aselt the
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FIG. 1. Bifurcation diagram of Eqs. (1) and (2). (a)t ­ 0.
Region I is the amplitude death region, region II is the pha
locked region, and region III corresponds to the phase dr
or incoherent region. (b)t ­ 0.0817, and v̄ ­ 10. The
death region extends down toD ­ 0, indicating that identical
oscillators can suffer amplitude death. The phase locked reg
is split into two disjoint regions.
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characteristic eigenvalue equation we get is

s1 2 K 1 iv1 2 ld s1 2 K 1 iv2 2 ld2

K2e22lt ­ 0 , (4)

wherel is the complex eigenvalue and the complete s
of eigenvalues includes those arising from the compl
conjugate equations of (1) and (2). Setting Resld ­ 0
in (4) and separating the real and imaginary parts, t
equations for the critical curves (i.e., the marginal stabili
condition) are

l2
I 1 2lIv̄ 1 v̄2 2

D2

4
2 s1 2 Kd21

K2 coss2lI td ­ 0 , (5)

2s1 2 Kd sv̄ 1 lI d 1 K2 sins2lItd ­ 0 , (6)

wherelI ­ Imagsld andv̄ ­ sv1 1 v2dy2 is the mean
frequency. EliminatinglI between (5) and (6) and
considering the full set of eigenvalues, we obtain th
following transcendental relation betweenK , D, and t

which is now the modified marginal stability condition in
place of (3),

ga ­ K2 sinsat 6 2v̄td , (7)

wherea ­
q

D2 2 4g2 7 4
p

K4 2 g2D2, andg ­ 1 2

K . Note that for t ­ 0, the above relation readily
simplifies to (3) and yields the marginal stability curve
K ­ 1 and 2K ­ 1 1

D2

4 . Figure 1(b) is a numerical
plot of (7) for t ­ 0.0817.

To obtain a condition for the death of identical oscilla
tors we repeat the analysis withv1 ­ v2 ­ v in (4) and
after eliminatinglI , obtain the relations

t ­
cos21s1 2 1yKd
v 2

p
2K 2 1

; t ­
p 2 cos21s1 2 1yKd

v 1
p

2K 2 1
.

(8)
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FIG. 2. (a) The region of amplitude death forN ­ 2 as a
function of the common intrinsic frequency. The size of th
the island decreases with decreasing frequency and vanis
below a certain threshold. (b) The death islands as a funct
of the number of globally coupled oscillators. Each oscillator
assumed to have an intrinsic frequency ofv ­ 10. The death
island survives even in the limit ofN ! `.
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The region of intersection between the two curves (
corresponds to thedeath islandregion of Fig. 2(a). It
demonstrates the only stability switches (of the origi
that take place as a function oft. For a given value ofv
and at a fixedK we move (by varyingt) from an unstable
region into a stable region as we cross the left boundary
the island to emerge again into an unstable region as
cross the right boundary of the island. No otheramplitude
death islands are seen for larger values oft (for a fixed
v). We have also confirmed this analytically by lookin
at the behavior of the supremum of the real parts of t
roots of the transcedental equation,dlRydt [obtained
from (4) with D ­ 0] as a function oft in the various
parameter regimes [18]. The detailed mathematical pro
of this result will be published elsewhere.

Can this phenomenon occur for an arbitrary numb
of oscillators? To answer this question we have inve
tigated the following generalized set of globally couple
equations:

ÙZistd ­ s1 1 ivi 2 jZistdj2dZistd

1
2K
N

NX
j­1

fZjst 2 td 2 Zistdg

2
2K
N

fZist 2 td 2 Zistdg , (9)

where i ­ 1, . . . , N and the last term on the right-han
side has been included to remove the self-coupling ter
For t ­ 0, (9) reduces to the set of equations that ha
been extensively studied by Ermentrout [9], Mirollo an
Strogatz [6], and others [4]. Mirollo and Strogatz [6] hav
provided rigorous analytical and numerical conditions f
amplitude death in such a system. Their conclusions,
general, are similar to the case ofN ­ 2, namely, that
one needs a sufficiently large variance in frequencies
death to occur andK has to be sufficiently large. We
have been able to carry out a similar linear stabili
analysis of (9) around the origin for the case of fini
t and for a large number of identical oscillators (vj ­
v, j ­ 1, . . . , N). The resulting stability condition yields
the following bounding curves for the death island regio

t ­
cos21 p

v 2
p

4Kb 2 1
; t ­

2p 2 cos21 p

v 1
p

4Kb 2 1
,

t ­
cos21s b

b21 pd
v 1

p
q

; t ­
2p 2 cos21s b

b21 pd
v 2

p
q

,

(10)

where p ­ 1 2 1ys2Kbd, q ­ 4K2 2 1 1 4Kbs1 2

2Kd, and the factorb ­ s1 2 1yNd introduces theN
dependence of the island size explicitly. In Fig. 2(b) w
have plotted these islands forN ­ 2, 3, 4 andN ­ `. To
confirm these results we have also numerically scann
the region with a direct numerical integration of (9) fo
a large number of oscillators, up toN ­ 10 000, and
found excellent agreement. We have also carried o
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a similar study for a large number of locally couple
identical oscillators (nearest neighbor coupling [2]) wit
periodic boundaries and find that time delay introduc
death islands in such systems as well. Thus it appe
that in the presence of finite time delay in the mutu
coupling, amplitude death of identical oscillators is
fairly universal phenomenon and occurs for any arbitra
numberN of oscillators extending up toN ­ ` over a
range oft and K values. To the best of our knowledge
such a result has not been realized in the past and m
have important applications in biological or physica
systems. There are many physical examples of amplitu
death in real systems. One of the earliest that w
investigated both theoretically and experimentally is th
of coupled chemical oscillator systems, e.g., coupl
Belousov-Zhabotinskii reactions carried out in couple
stirred tank reactors [11,12]. They can also occur
ecological contexts where one can imagine two sites ea
having the same predator-prey mechanism which cau
the number density of the species to oscillate. If th
species are capable of moving from site to site at a prop
rate (appropriate coupling strength) the two sites m
become stable (stop oscillating) and acquire constant p
ulations. Another important application of this concep
is in pathologies of biological oscillator networks, e.g
an assembly of cardiac pacemaker cells [13]. Amplitu
death signifies cessation of rhythmicity in such a syste
which is otherwise normally spontaneously rhythmic fo
other choices of parameters. For the onset of such
arrhythmia, current models based on coupled oscilla
networks need to assume a significant spread in
natural frequencies of the constituent cells (oscillator
[6]. Our work demonstrates that this assumption may n
be necessary if one takes into account time delay effe
arising naturally from the finite propagation times of th
signals exchanged between the cells. Another possi
application is in the area of high power microwav
sources where it is proposed to enhance the microwa
power production by phase locking a large numb
of sources such as relativistic magnetrons [22]. Tim
delay effects, arising from the finite propagation tim
of information signals traveling through the connectin
waveguide bridges, could impose important limitations o
the connector lengths and geometries in these schem
Our findings could provide a guideline in this direction
It should be noted that a form of oscillator death describ
in [23] for identical oscillators is not a genuine amplitud
death since it occurs in the context of aphase onlymodel.
Time delay in our study provides a new mechanism f
genuine amplitude death to occur in coupled identic
oscillators.

Finally, it is worthwhile to mention that time delay can
introduce other interesting phenomena as well, some
which have been studied in the context of thephase only
model and need to be investigated for the more gene
phase and amplitude model. Our numerical results,
5111
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FIG. 3. The bifurcation diagram of Eqs. (1) and (2) fo
t ­ 0.4084 and v̄ ­ 10. The amplitude death region (I) is
surrounded by the phase locked regions (II). The dotted cu
which separates the incoherent (III) and the phase lock
regions is obtained from numerical integration of the origin
equations.

example, show that the bifurcation diagram of the syste
in the presence of time delay has a significantly rich
structure. Figure 3 is an example for theN ­ 2 sys-
tem for t ­ 0.4084, which can be contrasted with the
Aronsonet al. [3] diagram of Fig. 1(a). Note that one no
longer has the clean separation of the Bar-Eli region, t
phase locked region, and the phase drift region into thr
disjoint regions that converge at a single degenerate po
Instead the phase locked region now always surrounds
Bar-Eli region and the single degenerate point is replac
by a series ofX points resulting from the braided structur
of the phase locked region in the vertical direction. A
large values ofK other bifurcation curves appear in the
phase locked region indicating the appearance of high
frequency states [21]. A detailed investigation of variou
properties of this rich phase diagram, including stabili
studies of the various states, is now in progress and w
be reported elsewhere.

*Email address: tapovan@plasma.ernet.in
†Permanent address: 12 Billings Street,Acton, MA
01720.
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