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Time Delay Induced Death in Coupled Limit Cycle Oscillators
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We investigate the dynamical behavior of two limit cycle oscillators that interact with each other via
time delayed coupling and find that time delay can lead to amplitude death of the oscillators even if they
have the same frequency. We demonstrate that this novel regime of amplitude “death” also exists for
large collections of coupled identical oscillators and provide quantitative measures of this death region
in the parameter space of coupling strength and time delay. Its implication for certain biological and
physical applications is also pointed out. [S0031-9007(98)06334-0]

PACS numbers: 05.45.+b, 87.10.+e

Coupled limit cycle oscillators provide a simple but our detailed numerical investigations show that in the
powerful mathematical model for simulating the collective presence of time delay the parameter regime of amplitude
behavior of a wide variety of systems that are of interest irdeath can extend down to the region of zero frequency
physics [1-10], chemistry [11,12], and biological sciencesmismatch between the oscillators. This is in sharp
[13,14]. These oscillators have also attracted some largeontrast to the situation with no time delay where all
scale numerical [15] and novel experimental efforts [16].previous numerical and analytical studies [3,5,6,9] show
For weakly coupled oscillators the predominant effect ishat amplitude death can occur only if the coupling
a synchronization of the frequencies of the individual os-between oscillators is sufficiently strong and when the
cillators to a single common frequency once the couplindrequencies are sufficiently disparate. In this Letter we
strength exceeds a certain threshold, while the amplitudesonfine ourselves primarily to the effect of time delayed
remain unaffected. For stronger couplings the amplitudesoupling on the phenomenon of amplitude death and
also play an important role and give rise to interestingoresent a detailed numerical and analytical estimate of
phenomena like the Bar-Eli effect [11] where all the os-the parameter space in coupling strength and time delay
cillators suffer an amplitude quenching or “death” [6,9]. where such a death can occur for identical oscillators.
In general there can be a wide variety of collective be\We also establish that this effect is not an artifact of the
havior including partial synchronization, phase trappingsimple two oscillator model, but can occur for a system of
large amplitude Hopf oscillations, and even chaotic bea large number of globally (or locally) coupled identical
havior [3-5]. In recent times there have been extensivescillators (including the continuum limit gf — o).
investigations of coupled oscillator systems including ele- We analyze the following model equations:

gant statistical mechanics formulations in the limit of an Zl(t) =1+ iw — |1Z1(OPZi(2)
infinite number of oscillators [7,10].
The salient features of the behavior of a finitely large + K[Zo(t — ) = Zi(1)], 1)
number of oscillators (usually obtained from numerical Zo(1) = (1 + iwy — 1Z2()|P)Za(1)
or approximate analytic means) can often be understood
by analyzing just two coupled oscillators. We have + K[Zi(t — 1) = Zx(1)], (2)

carried out such an analysis to investigate the effectvhere = is a measure of the time dela¥ is the cou-

of time delay on the interaction between two limit pling strength,w;, are the intrinsic frequencies of the
cycle oscillators. Time delay is ubiquitous in mosttwo oscillators, andZ,, are complex. The model is a
physical and biological systems [17-19], arising fromgeneralization of the diffusively and linearly coupled os-
finite propagation speeds of signals, for example, andillators studied extensively, for example, in [3,11]. The
have not been widely studied in the context of coupledime delay parameter is introduced in the argument of the
limit cycle oscillator systems. Niebuet al.[20] and coupling oscillator [e.g.Z, in (1)] to physically account
Schuster and Wagner [21] who are some of the few whdor the fact that its phase and amplitude information is re-
have carried out such an investigation, have restrictedeived by oscillatorZ; only after a finite timer (due to
themselves to the simpleroupled phaseanodels where finite propagation speed effects). In the absence of cou-
the phenomenon of amplitude death does not exist. Ipling (K = 0) each oscillator has a stable limit cycle at
our model equations we have retained both the phase and;| = 1 on which it moves at its natural frequenay;.
amplitude response of the oscillators and we find thafThe coupled equations represent the interaction between
time delay has a significant effect on the characteristicbvo weakly nonlinear oscillators (that are near a Hopf bi-
of all the major cooperative phenomena like frequencyfurcation) and whose coupling strength is comparable to
locking, phase drift, and amplitude deaths. In particulathe attraction of the limit cycles. It is important then to
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retain both the phase and amplitude response of the osharacteristic eigenvalue equation we get is
cillators [3]. The stateZ; = 0 is an equilibrium solution B L _ SN
of the system of equations [(1) and (2)]. F&r= 0 this (1=K +ioy =N =K+ iwy = A)
equilibrium state is linearly unstable since the individual K2 " =0, (4)

oscillators tend to stable limit cycle stat = 1. The . .
Y B | where A is the complex eigenvalue and the complete set

stability of amplitude deathfor K # 0 has been studied . . e
of eigenvalues includes those arising from the complex

in great detail by Aronsoret al. [3] for system ((1),(2)) . . .
in the absence of any time delay in the coupling (i.e., forponjugate equations of (1) and (2). Setting(Re= 0

7 = 0). The conditions for stability found by them are in (4) and separating the real and imaginary parts, the
' equations for the critical curves (i.e., the marginal stability
K>1 and A= |w1 - a)2| > 242K — 1, (3) Condition) are
which shows that amplitude death can occur in this case A+ 20,0 + @2 - A_z — (1 - K+
only for sufficiently large values ok providedk > 1. !
In Fig. 1(a), we reproduce the bifurcation diagram of K*coq2A;7) =0, (5)
Aronsonet al. [3] where the region marked | represents
the amplitude death region and the dotted curves mark the 2(1 — K) (@ + Ap) + K?sin2A;7) =0, (6)
boundary as defined by copdition (3). The two bqundinthere)u — Imag\) and® = (o) + @,)/2 is the mean
curves intersect at the poink(= 1,A = 2). Regions frequency. ~ EliminatingA; between (5) and (6) and
marked Il and IIl represent phase locked and phase dri éonsidering the full set of eigenvalues, we obtain the
regions, respectively, which we will not discuss in deta“following transcendental relation betweésﬁ, A, and 7

here. In Fig. 1(b) we present the bifurcation diagra o e . . e
of (1),(2) for r = 0.0817. Note that in contrast to the:}é\'lg'cc: ('; (n3(;w the modified marginal stability condition in

diagram of Fig. 1(a), the amplitude death region no
extends down ta\ = 0 and has a finite extent along the ga = K*sinfar = 2a71), @)
coupling strengthK) axis. We find that the phenomenon

persists for a range af after which the bifurcation curve \yhereq = \/AZ — 4g2 T 4JK* — g?AZ, andg = 1 —
lifts up from theA = 0 line and identical oscillators can g Note that for r = 0, the above relation readily

g%longer S‘IJffer d;eath. Figure 2(a)fshov;/]§ thhis re?ior(;, fo&implifies to (3) and yields the marginal stability curves
fflerent values Ok, In 7-K space for which amplitude , _ 4 angox — 1 + 4 Figure 1(b) is a numerical

death of identical oscillators can occur. The size of lot of (7) f .

this death islandis a function of the frequency of the plot of ( ).OrT = 0.0817. . . .

oscillators (), as shown by the other curves. We shall To obtain a condition for the death of identical oscilla-
’ own by : : tors we repeat the analysis withy = w, = w in (4) and

soon show that the size is also a functionVgfthe number L g .

X ! . . . . after eliminating;, obtain the relations
of oscillators. The bifurcation curves (including the island

boundaries) have been obtained from a linear stability  cos!(1 — 1/K) 7 — cos (1 — 1/K)
; R - : -
analysis qf (1),(2) ab_out f[he orlgu(\Zl Z, =0) as o — V2K — 1 o+ V2K — 1
well as direct numerical integration of the equations.
Assuming the linear perturbations to vary a§' the (8)
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FIG. 1. Bifurcation diagram of Egs. (1) and (2). (a)= 0. FIG. 2. (a) The region of amplitude death foF = 2 as a
Region | is the amplitude death region, region Il is the phasdunction of the common intrinsic frequency. The size of the
locked region, and region Il corresponds to the phase drifthe island decreases with decreasing frequency and vanishes
or incoherent region. (b)yr = 0.0817, and @ = 10. The  below a certain threshold. (b) The death islands as a function
death region extends down tb = 0, indicating that identical of the number of globally coupled oscillators. Each oscillator is
oscillators can suffer amplitude death. The phase locked regioassumed to have an intrinsic frequencywpf= 10. The death

is split into two disjoint regions. island survives even in the limit gf — .
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The region of intersection between the two curves (8 similar study for a large number of locally coupled
corresponds to theleath islandregion of Fig. 2(a). It identical oscillators (nearest neighbor coupling [2]) with
demonstrates the only stability switches (of the origin)periodic boundaries and find that time delay introduces
that take place as a function of For a given value ol»  death islands in such systems as well. Thus it appears
and at a fixed we move (by varying) from an unstable that in the presence of finite time delay in the mutual
region into a stable region as we cross the left boundary ofoupling, amplitude death of identical oscillators is a
the island to emerge again into an unstable region as whirly universal phenomenon and occurs for any arbitrary
cross the right boundary of the island. No otherplitude numberN of oscillators extending up t&/ = « over a
deathislands are seen for larger valuesoffor a fixed range ofr andK values. To the best of our knowledge
). We have also confirmed this analytically by looking such a result has not been realized in the past and may
at the behavior of the supremum of the real parts of thdnave important applications in biological or physical
roots of the transcedental equatiaf)z/d7 [obtained systems. There are many physical examples of amplitude
from (4) with A = 0] as a function ofr in the various death in real systems. One of the earliest that was
parameter regimes [18]. The detailed mathematical proahvestigated both theoretically and experimentally is that
of this result will be published elsewhere. of coupled chemical oscillator systems, e.g., coupled

Can this phenomenon occur for an arbitrary numbeBelousov-Zhabotinskii reactions carried out in coupled
of oscillators? To answer this question we have invesstirred tank reactors [11,12]. They can also occur in
tigated the following generalized set of globally coupledecological contexts where one can imagine two sites each

equations: having the same predator-prey mechanism which causes
7)) = (1 + iw; — |Z(OP)Z:(1) the r_1umber density of the. species to osc_illate. If the

N species are capable of moving from site to site at a proper

n 2K Z[Z'(t — 1) = Z:(0)] rate (appropriate coupling strength) the two sites may

N = ! ' become stable (stop oscillating) and acquire constant pop-

2K ulations. Another important application of this concept
- W[Zi(t - 7) = Zi(1)], (9) s in pathologies of biological oscillator networks, e.g.,

, an assembly of cardiac pacemaker cells [13]. Amplitude
wherei =1,...,N and the last term on the right-hand geath signifies cessation of rhythmicity in such a system
side has been included to remove the self-coupling termyhich is otherwise normally spontaneously rhythmic for
For = 0, (9) reduces to the set of equations that haveyther choices of parameters. For the onset of such an
been extensively studied by Ermentrout [9], Mirollo and gyrhythmia, current models based on coupled oscillator
Strogatz [6], and others [4]. Mirollo and Strogatz [6] havenetworks need to assume a significant spread in the
provided rigorous analytical and numerical conditions fornatural frequencies of the constituent cells (oscillators)
amplitude death in such a system. Their conclusions, ife]. Our work demonstrates that this assumption may not
general, are similar to the case 8f= 2, namely, that pe necessary if one takes into account time delay effects
one needs a sufficiently large variance in frequencies foarising naturally from the finite propagation times of the
death to occur and has to be sufficiently large. We gignals exchanged between the cells. Another possible
analysis of (9) around the origin for the case of finitesources where it is proposed to enhance the microwave
7 and for a large number of identical oscillatos;(=  power production by phase locking a large number
w,j =1,...,N). The resulting stability condition yields of sources such as relativistic magnetrons [22]. Time
the following bounding curves for the death island regionge|ay effects, arising from the finite propagation time

cos™! 27 — cos”! of information signals traveling through the connecting
= P ; _ TS p waveguide bridges, could impose important limitations on
T = ; T = s ,
® — v4Kb — 1 @ + V4Kb — 1 the connector lengths and geometries in these schemes.
o o -~ . o S S
_ cos (52 p) 27 —cos (52 p) Our findings could provide a gwde!me in this dlrectlpn.
TS T = — , It should be noted that a form of oscillator death described
® +Jq ® = Jq (10) in [23] for identical oscillators is not a genuine amplitude

death since it occurs in the context ophase onlymodel.
where p =1 — 1/(2Kb), q =4K?> — 1 + 4Kb(1 —  Time delay in our study provides a new mechanism for
2K), and the factorb = (1 — 1/N) introduces theN  genuine amplitude death to occur in coupled identical
dependence of the island size explicitly. In Fig. 2(b) weoscillators.

have plotted these islands fdr = 2,3,4 andN = . To Finally, it is worthwhile to mention that time delay can
confirm these results we have also numerically scanneititroduce other interesting phenomena as well, some of
the region with a direct numerical integration of (9) for which have been studied in the context of fifease only

a large number of oscillators, up t§ = 10000, and model and need to be investigated for the more general
found excellent agreement. We have also carried ouyphase and amplitude model. Our numerical results, for
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FIG. 3. The bifurcation diagram of Eqgs. (1) and (2) for
7 = 04084 and @ = 10. The amplitude death region (l) is
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