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It is shown that the cross section for multiple breakup of a system into charged fragments near the
threshold energy = 0 follows a power law modified by logarithmic correction terms if the system
possesses degenerate normal mode frequencies about the fixed point of the equilibrium configuration.
For more than two identical particles, e.g., a multielectron atom, this will be the generic case since the
equilibrium configuration is highly symmetric. The modified threshold law is derived using consistently
the properties of the classical monodromy matrix about the fixed point to formulate the threshold cross
section. [S0031-9007(98)06296-6]

PACS numbers: 32.80.Fb, 03.65.Sq, 31.15.Gy

The interest in threshold ionization of atoms datesheseN — 1 electrons, the degenerate case is the generic
back to the classical paper by Wannier in 1953 [1].one. Only in the most studied case of two electrons does
Subsequent semiclassical treatments revealed the saitie existence of a single unstable normal mode prevent
result in a quantum mechanical environment, namely, thalegeneracy.
the cross section for electron impact ionization of an atom The degeneracy and the existence of normal modes with
near thresholde = 0 follows a power law,o(€) « €™, the same frequency is evident if one looks at the simplest
where m is a function of the nuclear charge of the case of three electrons which form, in the equilibrium
atom ande = E/I is the excess energy scaled by the configuration, an equilateral triangle with the nucleus in
ionization potentiall [2]. Experimental confirmations of the middle. Complete ionization near threshold occurs
this prediction followed in 1968 with a hydrogen targetif the system approaches this triangular shape while all
[3] and in 1974 [4] with a helium target. Later, the power electrons recede from each other. A failure to reach the
law was also confirmed in double photoionization [5].  equilibrium shape at infinite separation will lead to double

Recent interest in the threshold ionization process hasr single ionization. This failure is determined by the
been fueled by Feagin’s extension of the Wannier theorgxcitation of unstable normal modes about the equilibrium
to the next order [6] and by the so called “hiddenconfiguration. A given electron has two topologically
crossing theory” of ionization which leads to similar different but otherwise identical possibilities to depart from
results [7]. Furthermore, the analytical Wannier law wasts equilibrium position (see Fig. 1). The two possibilities
finally numerically confirmed, classically [8] as well as define two unstable normal modes which can be mapped
quantum mechanically [9]. onto each other by interchanging the label of two of the

One may ask if anything fundamentally different hap-electrons. This is the origin of the degeneracy. It always
pens if the threshold fragmentation leads to more than twoccurs if at least three of the fragments are identical.
electrons in the continuum. Such an experiment is fea- To cast this intuitive picture into a mathematical for-
sible and has actually been realized by measuring triplenalism we will analyze the problem in terms of a classical
photoionization of oxygen and neon [10]. A power law
for the cross section was found whose expongns in
agreement with the one calculated by Klar and Schlecht
[11] and by Grujic [12]. However, the experimental cross
section shows a bend in the slope already at a low excess
energy of about 5% of the triple ionization energy which
prompted a speculation about two different Wannier ex-
ponents coming into play [13]. In the present Letter we
show that, indeed, two exponents corresponding to two
unstable normal modes about the equilibrium configura-
tion exist. However, they arequaland this fact requires
the formulation of a degenerate threshold theory with the
result that the threshold law for triple ionization is modi-
fied by a logarithmic term,

o(e) « €"/(Ine). @

Since multiple threshold ionization withV — 1 free  FIG. 1. The equilibrium position for a three electron atom.
electrons proceeds from an equilibrium configuration ofThe coordinates and angles are indicated.
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fixed point and its instabilities. From the symmetry of the(see, e.g., [14])

equilit_)rium posi_tion it is convenient to Wo_rk in rzlyper- H=up®/8 +uD/2 + C(@)u — u®> =0, (4)

spherical coordinates where the hyperradius (ri + h is th : d o= 7 and

ry + r})!/2 measures the overall volume of the systemVNeré p is the momer;tgmhcorllj_uga_lte 0 = fr anh

All other coordinates are described by angles. Overall” — D.i=j Lij(@)P;P;/u” is the Kinetic energy from the
internal angular momentum of thé particles, containing

rotation of the system is irrelevant for the threshold ion- Il th . d to th I inall
ization, and for the ionization probability it is sufficient &' the momﬁent;?,-chnjugate to the angles;. « Fina Y,
C(w) = V(w,u*)u” is the angular dependent “charge” of

to consider total angular momentutn= 0 [11]. Hence, ) .
g [11] (fhe multielectron Coulomb potenti&l. The form Eq. (4)

we may restrict our analysis to the planar configuratio MR A .
of Fig. 1 which is parametrized by two angl@s and of the Hamiltonian involves already a modified time vari-
ofbler related tor by dr = u¥dr. Nevertheless, at = 0,

#,. Two hyperangles describe the relative distances ; . .
some of the equations of motion can become singular.

the electrons from the nucleus, tan = (r{ + r3)'/2 . . . ;
and tanw, = r1/r,. For a; € (0 7?/2) (ther :ﬁé in/tSr— This can be avoided by a (honcanonical) transformation of
! Ay ' ’ dhe momenta’; to p; = P;/u. Accordingly, Hamilton's

action, all the electrons are free since a bound state ) ; e
one of the electrons correspondsdpor a, = 0 or 7 /2 equations for the angular coordinates are modified to

for r — . In these coordinates we can formulate a rela- . dw; 1 dD(®,p)

. . . ; 2 == = — 5
tively simple expression for the total (classical) ioniza- @i dr 2 ap; ©)
tion cross section, even fa¥ particles. Without exactly - -

specifying the angles we use the convention of a vector p;, = dpi _ _9C@) 1 9D(@.p) _ pip/4. (6)
> dr dw; 2 dw;

o = (ay,...,an-2,01,0,,...), where thea; are hyper- i i

angles describing ratios of distances while there geo- The condition for the fixed point is that all time deriva-
metrical angles. The probability in the = 0 partial tives of the components of the phase space vector
wave to ionizeN — 2 electrons by electron impact, lead- x = (p, p1,...,u, 1,...) vanish, x;, = 0. This con-

ing to fragmentation int&v — 1 electrons and the ion, can dition leads, for the Hamiltonian Eq. (4), to the fixed
be written as an integral over initial phase space projectegoint u* = p; = 0 and the w; are the solutions to

onto the fragmented final states: dC/ow; = 0. From energy conservation we obtain
3IN—6 p* =[-8C(®")]" /2. All momenta but the radial one

Py = l_[ (1/277[ dni_>KN(ﬁ_)- (2) vanish in accordance with our argument that no kinetic

i=1 energy should be wasted in the process of threshold

The n; are angles conjugated to the classical actions Oﬁragmentation. However, why does = 0 correspond
; . . , o
the N — 2 bound electrons before the ionization. The . & fragmentation process? At the fixed point itself,

respective actions are fixed which can be thought of as and this means at =0, the electrons will not come
P P gnt ol gpart. We need small deviatiods: etc. about the fixed
consequence of the specified initial state. The project

onto N-fold fragmentation is aiven b 0;‘30int to describe the behavior for small excess energies
9 9 y €. After the fragmentation the hyperradius must tend to

I s infinity. In scaled coordinates this can be achieved by a
Kn(i7) = (Is'ﬁ}) lj! finite but arbitraryéu which corresponds to an unscaled
1= 1T Jr = 8ue 2 — wfore — 0.

379 . If fragmentation has occurred the particles must have
X p fa da;8(ai(t,77) — ai) |. (3)  had some interaction in order to exchange energy between
the projectile (or the photon) and the bound particles
Exclusion of the limits(§ = 0) ensures that no bound at an earlier timer~ = 0. Nonvanishing interaction
states occur. requires some finite hyperradiug at this time. In scaled
The mechanism of threshold ionization of an atomcoordinates this distance will tend to zero with =
proceeds via a fixed point of the Hamiltonian as shownerg — 0. Hence, the fact that an interaction between the
for the first time by Wannier [1]. Again, this has a simple particles takes place forces the system at threshold to a
physical reason: All electrons must come apart; i.e., th@anishing scaled radial extensiafi = 0. As the energy
radial kinetic energy is positive. However, very close torises the system will depart froni = 0 and we can write
thresholde = 0 the little excess energy available mustfor a small departure
be used for the radial momentum _s'uch that all pa_lrticles Su" = Jeu, 7
come apart. Hence, all other velocities but the radial one ) ) _ -
are zero. This implies that the corresponding angles di/nereé «o is an arbitrary constant anfu™ = du(r").
not change which defines the mathematical situation of 4 N€S€ considerations show that we may use the linearized
fixed point. We can extend the fixed point condition to theduations of motion about the fixed point to fragment the
radial coordinate as well if we use energy scaled distance¥/Stém near threshold with
7 = er. We will work with the regularized Hamiltonian Su/du” o« e /2. (8)
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The linearized equations of motion define aergy e. Using Eq. (8) and the time dependence of the
matrix equation 8x; = > ;M;;6x; with elements radial instability Eq. (10) to replace time by energyin
M;; = éx;/6x;. Note that the stability or monodromy Eq. (9) the probability Eq. (2) for fragmentation infé
matrix M is not of the standard form and also not free charged particles reads finally
symplectic due to the noncanonical transformations. (N-2)8
Nevertheless, the linear system can be solved at the fixed Py(e —0) € ’ (12)
point by standard eigenvalue techniques. We obtain ghereg = 2, /p*.

set of eigenvalues,; and eigenvectordy; whose time 5o far we have assumed that all the eigenvaljesre
evolution is given by different. In case of degeneracy of eigenvalues the mono-
Syi(1) = exp(A;7)8y, . (9) dromy matrix M cannot be fully diagonalized in general

. _ ~~and the solution$y;(r) from Eq. (9) are modified. If:
Because of the structure oM™ the radial motion is ejgenvalues are degenerate, the general solution contains
orthogonal to the angular dynamics afd(7) is simply  additional termst* exp(A7), (k < n) [15]. Hence, if
given by A1 is n-fold degenerate, the dominating term for large
Su(r) = exp(p*r/4)du". 10y T is of the form 6')/1(7.')_—> " lexpA;7)8y,. As a
. _ consequence, the modified threshold law reads
We can now turn to an approximate evaluation of

the ionization probability Eq. (2) near the fixed point. on(e) = €
First, we note that for large times we may replace

t with 7 in Eg. (3). Second, we chang¥ — 2 of
the integration variablesp; to «;(r) such that the
corresponding Jacobi matrix/ with elementsJ;; =
da;(7)/dm; is nonsingular. Now the5 functions can
be trivially fulfilled, and we have to evaluate the Jacobi

determinant. For the linearized dynamics about the fixed o in-plane departure from the equilibrium configura-

point this can be done explicitly by using the time . :
dependence Eq. (9) of the normal modes. For Iarggon of Fig. 1 leads to the exponent

times 7 the mode with the largest eigenvalue (Liapunov 28 = 4N /p* = (a + 2vb)"?, (14)
exponent)A; dominates (we assume a numberihg >

A, > ---) and the elements for the Jacobi matrix acquire’
the simple form m

(N—Z),3| |n€|—(N—2)(n—1)’ (13)

i.e., the cross section in the case of degeneracy is
smaller by a logarithmic correction compared to the
nondegenerate case.
As an application we have investigated the triple ion-
ization of oxygen and neon, i.e., the formation)f= 4
harged fragments. The largest (degenerate) eigenvalue

herea andb are functions of the nuclear chargeand
assM,

Ji(7) = exp(L7) (11) a=—11+13V3Z + 6v/32Z/M, (15)
where theJ;; = (da;/dyi) (dy1/dn;) form a (time in-

_ 2 2
dependent) matrix of coordinate transformation. Through b =1+ 1082% + 6v3Z/M + 32477 /M

Eqg. (8) the radial instability is related to the excess en- + 27(Z/M)>. (16)
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FIG. 2. Threshold ionization cross section from [10]. Part (a) shows the best fit with a pure power law (dashed lines) according
to [10], where8 = 2.170 for Ne&** and 8 = 2.176 for O*". The solid lines are fits with Eq. (17) where the absolute magnitude

of the cross section and are fitting parameters. Part (b) shows# for neon where for the circleg(e) = (e)~>'%? and for the
trianglesF(e) = (e)"2'%2In(e)?. Experimental errors [16] are given and the solid line is from the fit of the neon data in (a).
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In the limit M — <« Eq. (14) coincides with Klar’s result the threshold law for ionization of more than two electrons
[11]. As expected the largest (real) Liapunov exponeninvolves logarithmic correction terms. Their existence is

is degenerate); = A,. Incorporating recent results from a consequence of degenerate eigenmodes in the dynamics
the 4th order Wannier theory [6] and the hidden crossingbout the fixed point which governs threshold ionization.
approach [7] along with the logarithmic terms derivedSince the fixed point equilibrium configuration of a many-
here, we obtain the explicit form of the threshold law for particle system is highly symmetric the degenerate case

triple ionization will be the generic one for three and more identical
fragments.
2.162 2 N
aa(e) = €1%/(In €)” exp(—av/e). 17) We thank Jim Samson for making available his experi-

The constantz has been analytically derived for two- Mental data and John S. Briggs for a critical reading of the
electron escape [6,7], but is unknown for three-electrofnanuscript. This work has been supported by the DFG
escape. Figure 2a shows that a fit with Eq. (17) improve¥ithin the Gerhard Hess-Programm.
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